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Abstract 
This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results from 
two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed 
to be both cooperative and reactive. It combines the advantages of the Particle Filter (PF) and the 
metaheuristic Particle Swarm Optimization (PSO) for ego-vehicles localization applications. In ad-
dition to a simple fusion between the swarm optimization and the particular filtering (which leads 
to the Swarm Particle Filter), the OKPS uses some attributes of the Extended Kalman filter (EKF). 
The OKPS filter innovates by fitting its particles with a capacity of self-diagnose by means of the 
EKF covariance uncertainty matrix. The particles can therefore evolve by exchanging information 
to assess the optimized position of the ego-vehicle. The OKPS fuses data coming from embedded 
sensors (low cost INS, GPS and Odometer) to perform a robust ego-vehicle positioning. The OKPS 
is compared to the EKF filter and to filters using particles (PF and SPF) on real data from our 
equipped vehicle. 
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1. Introduction 
Localization is a key technological component for any Advanced Driver Assistance System (ADAS). The 
localization information can be operated to develop new services which aim to increase drivers’ autonomy and/ 
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or safety. These new services open fields for new Intelligent Transport Systems applied to Road applications 
(ITS-R) i.e. parking valet, and automated driving... Therefore, ego-vehicle accurate and reliable localization 
becomes an important issue in ITS research field. The objective is: to provide a much more precise vehicle 
positioning than with a classic Global Navigation Satellite System (GNSS) and, a reliable and consistent accu- 
rate positioning solution with low financial costs. Thus, on-board sensors or low cost sensors are used to comply 
with the GPS in order to perform a data fusion [1]. Additional sensors like inertial navigation system (INS), 
odometer, and steering wheel angle sensor can be used to bring new information. Fusing GPS with propriocep- 
tive sensors can get a better ego-vehicle positioning and at a higher rate than the GPS alone. 

A large number of research works focuse on data fusion for vehicle localization applications [2]-[4]. Estimat- 
ing the position and orientation estimation is considered as a state estimation problem from a mathematical point 
of view [5]-[7]. State estimation is generally processed using Markovian methods. The Kalman Filter (KF) is an 
optimal filter for state estimation in the case of linear Gaussian systems [8]. Unfortunately, accurate vehicles 
dynamic models are nonlinear. To deal with nonlinearity, the Extended Kalman Filter (EKF) and other Kalman 
variants have been proposed [9]-[15]. The multi-hypothesis particular approach was developed to cover the EKF 
instability for the highly non-linear cases. The Particle Filter (PF) spread for research on autonomous vehicles 
localization and tracking applications [16]-[18]. However, the PF suffers from particles degeneracy and its accu- 
racy depends on the particles number which has a direct impact on the computation time [19]. Resampling 
prevents the particle dispersion and PF divergence [20]. 

Aiming to create autonomous intelligent localization approaches for autonomous smart vehicles, the research 
community interests in hybrid approaches merging benefits from existing independent methods. Firstly intended 
for simulating social behavior, the Particle Swarm Optimization (PSO) [21], is a metaheuristic optimization 
method improved for iterative optimization issues [22]-[25]. Particles of a swarm exchange information and 
coexist in the objective of a mutual cooperation to reach the best solution. The particles move independently 
toward the region where the positioning probability is higher (given the sensor information). Next, particles 
optimize their poses by evolving toward their best neighbors (social communication) to iteratively converge to 
local optima or a global optimum. Localization applications, inspired from PSO, rise within these last years [16] 
[17] [26]. The Swarm Particle Filter (SPF) is an evolved hybridization of a generic PF with PSO [16] [27]-[29]. 
PSO is used to optimize the particle distribution to overcome the PF problems of sample size dependency and 
particles impoverishment. The SPF can be employed for tracking and localization applications [16] [30]. How- 
ever, for multi-sensor data fusion based high dynamic vehicle localization, the SPF still has premature conver- 
gence and parameterization problems. A similar problem has been solved in [26] (where PSO is used for tuning 
noise parameters in addition to a Kalman filter) for dealing with strongly non-linear situations (aircraft abrupt 
dynamic changes). The resulting algorithm is a PSO aided EKF which needs anyway a PSO parameters tuning. 
We inspired from it and introduced an innovative localization method for vehicles. The Optimized Kalman 
Particle Swarm (OKPS) performs the vehicle real-time positioning considering a dynamic optimization problem. 
Earlier versions of our algorithm have been presented in [31] and [32]. This paper improves on our previous 
papers by introducing an adapted criteria for the driving tests and validation. Furthermore, our algorithm is fully 
detailed and a thorough comparison is realized with another algorithms. At each time step, the OKPS tries to 
find the best possible vehicle position according to the predicted vehicle state, the GPS measurement and the 
relayed information between particles (neighbors). The OKPS intends to minimize the parameterization needs 
while taking advantages of PSO/EKF/PF hybrid approach. 

All these approaches are compared and ranked in terms of accuracy and robustness using real word experi- 
mental data of driving scenarios on the Satory-Versailles test track. Filters localization performance is evaluated 
in comparison with a centimetric RTK GPS used as a reference. The filters robustness is evaluated using filters 
uncertainty ellipses areas. The obtained results give a significant distinction between filters performances de- 
pending on the GPS quality (good, noisy, multi-path or missing signal). 

Section 2 is dedicated to a background part; it introduces the approaches inspiring the OKPS by exposing 
their algorithmic and theoretical foundations. The Optimized Kalman Particle Swarm is detailed in Section 3. 
Section 4 carries out a theoretical and experimental filters comparison. Section 5 concludes this paper. 

2. Review of Localization Methods 
This section describes the approaches inspiring the OKPS filter. It gives an overview of the approaches studied 
for the algorithm implementation. Details of the mathematics fundamentals are given for each method. 
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2.1. Extended Kalman Filter (EKF)  
The Extended Kalman Filter (EKF) is a recursive estimator and represents the nonlinear adaptation of the linear 
Kalman filter (KF). For well-defined and accurate modeling of non-linear process, EKF is the most widely used 
filter for state estimation. The process model must be derivable to allow the linearization by Jacobians calcula- 
tion. The previous estimate or state at 1k −  and the current measurements kY  are used to estimate the current 
state. The filtered current estimate is represented by |

ˆ
k kX  and |k kP  represents the estimation uncertainty noted 

as a covariance matrix. 
The EKF passes through two main stages: Prediction and Update. The first one produces a predicted state 

| 1
ˆ

k kX −  using the last estimated state 1| 1
ˆ

k kX − − , the evolution model (Bicycle Model) and data from proprioceptive 
sensors. In the update step, the corrective measure kY  is used to correct the predicted state. The EKF requires 

an initialization step giving initial values to the following parameters: X represents the state vector [ ]Tx yθ , U  
the command vector, P the variance/covariance confidence matrix, µ  the process noise, Q the variance/ 
covariance matrix representing the process noise, v: the measurement noise, R the variance/covariance matrix 
representing the Measurement noise and Y the measures Vector. 

2.1.1. Initialization  

[ ]0 0X̂ E X=  

( ) ( )T

0 0 0 0 0
ˆ ˆP E X X X X = − −  

                              (1) 

( ) ( )T
0Q E µ µ µ µ = − −   

( ) ( )T
0R E v v v v = − −   

2.1.2. Jacobians 
The Jacobian matrices are matrix of partial derivatives. A and H are derived respectively from f, the transition or 
evolution function and h, the observation function. 

( )

( )
1| 1, 1

| 1

ˆ

ˆ=

, ,

,
k k Uk

k k

xk x k X X

k x X X

A f X u

H h X v

µ
− − −

−

=
= ∇

= ∇
                             (2) 

2.1.3. Prediction 
The prediction is made using the evolution model ( )1| 1 1

ˆ ,k k kf X U− − −  and its linear evolution matrix A. 

( )| 1 1| 1 1

T
| 1 1| 1

ˆ ˆ ,k k k k k

k k xk k k xk k

X f X U

P A P A Q

− − − −

− − −

=

= +
                                 (3) 

2.1.4. Update 
The update is a linear correction done with the Kalman gain which is calculated using the measurement matrix 
H to adjust the prediction according to the available measurement. The updated state |

ˆ
k kX  is mathematically a 

linear weighted average between the prediction and the measurement. The weight is the Kalman gain which will 
tend to the prediction or the available measure according to their respective uncertainties. 

( )

1T T
| 1 | 1

| | 1 | 1

| | 1

ˆ ˆ ˆ
k k k k k k k k k

k k k k k k k k k

k k k k k k

K P H H P H R

X X K Y H X

P I K H P

−

− −

− −

−

 = + 
 = + − 

= −

                             (4) 
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2.2. Particle Swarm Optimization Basics (PSO) 
The Particle Swarm Optimization (PSO) is a Metaheuristic Optimization method based on a set of samples 
called particles initially randomly and uniformly distributed in the search space according to a Gaussian 
distribution around an initial value. Each particle moves in the search space and represents a potential solution 
of the processed problem(s). Each particle has a memory capacity that allows it to know at each iteration what is 
its best performance to the current situation. A swarm particle also has the capacity of communicating with its 
neighbors (connected communicative particles), which allows it to know what is the best performance achieved 
by its neighboring particles. Using this information, each particle will move blending together three trends or 
tendencies: The tendency to keep its own way (selfish), the Conservative trend and the Social trend (Panurgism). 
For the first trend, the particle tends to use its inertia and will consequently continue keeping its own direction 
and evolution. By adopting the second trend, the particle tends to go back to its last best performance. For the 
third behavior, the particle tends to move toward the best solution found by its neighborhood. Figure 1 shows 
the PSO particle motion principle illustrating the tendencies collaborative mechanism of the particles. 

A particle i at time k is characterized by a set of attributes. The first attribute is its vector in the search space 
ˆ i

kx . The second one is the displacement information which can be taken and is noted as a speed ˆi
kv . Then, the 

third one is a set of performance information. The first performance data corresponds to the best solution found 
by a particle i

bP  (Personal Best). The second performance data characterizes the best solution at iteration k 
reached by all neighbors bG  (Global Best). At each new iteration, the position of the particle i is updated using 
the previously mentioned information applying the PSO motion principle described in the following evolution 
equations:  

( ) ( )
1

1 1 1 1 2 2 1
Inertia Personal Influence Social Influence

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ .

i i i
k k k

i i i i i
k k b k b k

x x v

v W v c r P x c r G x
−

− − −

= +

= ∗ + ∗ − + ∗ −


 

                       (5) 

In Equation (5), the coefficients 1c  and 2c  are learning terms. The coefficients 1r  and 2r  are random 
numbers following a uniform distribution. These terms are used to produce a variation in the development of 
each particle providing a diversity of attitude that supports the search space exploration. The coefficient W is the 
inertia factor. Some variants of these evolution equations have been proposed in various studies [16] [21] [33] 
[34]. Each of these variants of evolution equations is designed to balance between the tendency to explore and 
the tendency to converge towards the optimal solution (swarm condensation/dispersion). For more details, [35] 
and [36] propose comparative studies of these PSO evolution variants. For the particles interaction, it exists two 
principal sorts of neighborhood topologies (geographical dynamic neighborhood and static social neighborhood). 
The more the neighborhood is informative the more information is shared supporting the swarm convergence.  

 

 
Figure 1. Particle motion in a PSO process.                                         
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The geographical neighborhood topology is based on the nearby particles and is considered as a dynamic 
topology because it needs to be calculated at each iteration (after particles evolution). The social neighborhood 
configurations shown in Figure 2 are set at the beginning of the process and do not require distance calculation 
to find the neighbors. Note that generally, in case of particles convergence, the social neighborhood tends to 
become geographical. 

For readers interested in PSO, [35] and [37] provides an interesting analysis of recent developments in PSO 
evolution strategies and neighborhood topologies providing the basic algorithm and most of its variants. The 
details of the followed steps in the basic Particle Swarm Optimization algorithm are described in Algorithm 1. 

 

 

2.3. Particle Filter (PF) 
The particle filtering is a method of Sequential Monte-Carlo Simulation (SMCS) [19]. Using empirical distribu- 
tion of particles, the Particle Filter (PF) approximates the distribution of an estimated process. Particles explore 
the state space evolving independently in the search space. Each particle is a possible state of the process. 
Particles dispersion and concentration are managed by an Importance Sampling-Resampling (ISR) mechanism 
[20]. The sampling attributes a weight to each particle representing its actual consistency. The resampling up- 
dates these weights and performs a duplication-elimination mechanism according to the updated attributed 
weights. These two importance selection mechanisms work together to guarantee the particles distribution 
homogeneity and the PF stability avoiding the particles impoverishment. The PF is a good alternative to the non- 
linear Kalman filter variants for the ego-vehicle positioning application. With an adequate number of particles, 
the PF approximates the optimal probability distribution of an estimate. In comparison with the Kalman filters, 
the PF can be more accurate and more robust in case of strong non-linearity and noises. However, the PF 

 

 
Figure 2. Different configurations of social neighborhood: Star, ring, and circle.             
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performance depends directly on the available computation power (number of samples). The user must do a 
compromise between computational time and accuracy. The particle filter algorithmic steps (see Algorithm 2) 
are detailed in the following: 

 

 
 

Initialization. The initial position of the ego-vehicle is represented by the state vector [ ]Tinit init init initX x y θ= . 

The initial cloud of particles is drawn around the initial position by assigning each particle a state vector i
initX   

and an initial weight 0
iw . N is the number of particles (samples) which is to determined by the user. The state 

vectors of the particles represent a Gaussian distribution centered on the initial position. 

Particle i has a state vector 

i
init x

i i
init init y

i
init

x
X y

θθ

 +
 

= + 
 + 





 and a weight 0 1iw N= . 

, ,i i i
x y θ    are random variables representing the uncertainty of the initial positioning state. The uncertainty 

ellipse will be determined by the particles scattering across the search space around the initial position according  
to a normal distribution. The centered normal laws of probability used in this case are ( )0, xN σ , ( )0, yN σ , 

( )0,N θσ . When, ( ), ,x y θσ σ σ  are the initial standard deviations noise values given by the sensors charac- 
teristics and/or the standard deviation of an initialization data set. 

Prediction. This stage will give an a priori ego-vehicle positioning estimate for each particle | 1
ˆ i

k kX − . Using 

the proprioceptive sensors data and the last localization estimate 1| 1
ˆ i

k kX − − , the particles will predict the vehicle 

state | 1
ˆ i

k kX − . This predicted position is calculated using the bicycle vehicle model integrating the proprioceptive 

sensors information and noises. The prediction | 1
ˆ i

k kX −  represents the vehicle possible actual state according to  
the last known state and the evolutionary information until this moment. Uncertainties of the evolution model 
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and those of proprioceptive sensors data are very important for the proper functioning of the PF filter. These 
uncertainties are incorporated in order to promote the diversity in the particles evolution. Giving a different 
prediction evolution for each particle, this integration of the measurements and modeling uncertainties is the 
main reason which allows the particles to better explore the search space. When these noises are too low, the 
filter will not explore the search space and noise conditions will not be well represented by the particles 
distribution. When the noises are too high, the filter suffers from particles impoverishment due to excessive 
scattering of particles on several consecutive steps. 

Update. In this stage, the prediction of each particle is adjusted by the reassessment of particles weights 
according to a new updated exteroceptive sensor data provided for instance by a low cost GPS. The update can 
be taken as compromising between the predictive and the corrective estimates. The conciliation between these 
two estimates is done by taking into account their respective uncertainties. The calculation of particles weight is 
carried out by Equation (6). 

( ) ( )

( )
( ) [ ] ( )

1 1

T 1
1

| |

1 1 ˆ ˆexp
22π

i i i i i i
k k k k k k k k

i i i i
k k k k k k k

P P P y x w w P Y X

w w Y Y R Y Y
R

− −

−
−

∝ ≡ ∝ ∗

 ∝ ∗ − − − 
 

                    (6) 

Standardization and Estimation. The weights standardization of the particles is done after updating to 
normalize the probabilities sum. The standardized weights are calculated according to the Equation (7). 

1

i
i k
k N

j
k

j

ww
w

=

=
∑

                                       (7) 

Then, the particles estimates are merged to give a global ego-vehicle state estimation |
ˆ

k kX . The vehicle 
position can be calculated with the Equation (8): 

| | 1
1

ˆ ˆ .
N

i i
k k k k k

i
X X w−

=

= ∗∑                                    (8) 

Resampling. Resampling is a critical step for the stability of the particle filter. It is a selective mechanism 
that eliminates low weight particles and duplicates particles with high weights. The aim of applying the resampl- 
ing mechanism is to control the particles dispersion without affecting the probabilistic distribution of the 
particles (minimum impact on the ellipse of uncertainty). 

It exists a wide range of methods for resampling as well as criteria for enabling/disabling resampling. For 
more details, see here [20]. 

In this work, the used algorithm is the systematic resampling with the Kong criterion noted in the following. 

( )2

1

1
eff N

i
k

j

N
w

=

=
∑

                                    (9) 

effN  is the Kong criterion which indicates the number of effective particles according to their standardized 

weights i
kw . effN  tends to N when the distribution of the particles weights is efficient and effN  tends to 1 

when the distribution of the particles is inefficient. 
If effN  is under the defined threshold thN , the resampling is then performed. The threshold thN  represents 

the minimum of required effectiveness, it is generally a fixed value within this range 0 thN N< ≤ . It is fixed 
using the term α . thN Nα= ∗  with N the number of particles and α  represents the minimum desired 
percentage of consistent particles, for example 0.5α =  for 50% of minimum effective particles. Note that  

depending on the applied resampling approach, particles weights are set to 1i
kw

N
=  or recalculated depending 

on particles duplication number after the resampling process. 
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2.4. The Swarm Particle Filter (SPF) 
The particles of the PF do not perform any individual correction when the GPS is available. The estimation in  
the PF is done only using the weighted predictions | 1

ˆ i
k kX − , see Equation (8). In order to propose an evolutionary  

approach which performs a real corrective step in the updating stage, the Swarm Particle Filter was developed. 
Inspired by the PSO, the SPF is a hybridization of the PF with an integration of the social influence of the 

PSO. The SPF is expected to bring a particles interaction providing the capability for each particle to evolve in 
function of the neighborhood (correct the prediction). Particles go through all the normal PF steps. In addition to 
the classic PF stages, after the update stage, particles communicate and evolve in order to optimize their estimate 
and the swarm distribution. The particles move toward the region maximizing the positioning probabilities 
(particles weights). 

The SPF performs in addition to the PF steps an evolution step just after the update and before the ego-vehicle 
positioning calculation and resampling. The SPF evolution step is the same concept of the evolution in PSO. 
However, the evolution equations are adapted to the application, giving the Equation (10). The scores are 
calculated as PF weights and bG  is obtained by comparing the particles weights. Figure 3 describes the PF 
hybridization giving the SPF algorithm (see Algorithm 3).  

( )1 | 1

| | 1

ˆˆ ˆ

ˆ ˆ ˆ

i i i
k k b k k

i i i
k k k k k

v W v randn G X

X X v

− −

−

= ∗ + −

= +
                            (10) 

In the literature, approaches addressing dynamic optimization problems [XIA04] eliminate the i
bP  part from 

 

 
Figure 3. SPF algorithm based on PF/PSO hybridization.                                                                
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the basic PSO evolution Equation (5) ( i
bP  is set equal to the particle current position), this operation is called 

memory erasing. By considering the optimization in a dynamic environment, the choice of erasing memories of 
the particles is adopted. The PSO Equation (5) gives then the SPF evolution Equation (10). This evolution 
variant also integrates Gaussian random numbers instead of learning factor with uniform random numbers. It 
was proposed and validated by [34] with the advantage of minimizing the number of parameters to be fixed in 
comparison with the basic PSO evolution. 

The SPF filter applied to the ego-vehicle localization showed problems of premature convergence. The main 
reason is that the particles exchange only weight information. This weight calculated using Equation (6) con- 
siders the particle performance exclusively according to the GPS data. Thus, when the GPS data is erroneous 
and its measurement error matrix kR  is not sufficiently representative of the measure noise, the particles are 
attracted by the GPS data. By applying this principle, the SPF develops after few localization steps too much 
dependency on GPS data and the particles distribution is concentrated steeply around the current GPS data. This 
behavior penalizes the filter in the next prediction steps until a new GPS data arrives. Complying with the PF 
filtering and PSO evolution concept, The SPF suffers generally from premature convergence or swarm explo- 
sion problems. The SPF needs also PSO parameters tuning by the user. 

In order to prevent the premature convergence problem, some particles are deprived of the neighborhood 
information bG  which creates troublemaking particles preventing premature swarm concentration. The trou-  
blemaking particles (blind/non evolutive particles) are selected by fixing their number at the beginning or chose 
randomly at each step. These kind of particles do not apply the PSO optimization encouraging the swarm 
expansion and the search space exploration. 

Based on the SPF concept and trying to overcome the problems of the GPS attraction and premature conver- 
gence, the OKPS filter was developed to perform a reactive-cooperative ego-vehicle localization. The idea of the 
OKPS conception is to allow each particle to judge its uncertainty not only relatively to GPS data, but by taking 
also into account the swarm dynamic (theoretically the vehicle dynamic). It will make each particle acting as a 
sensor fitted with self-diagnostic capacity. Then, each particle will provide an estimate and its associated estima- 
tion error. 
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3. The Optimized Kalman Particle Swarm (OKPS) 
The OKPS is an evolution of the SPF. This proposed filter integrates in addition to the social concept of the SPF 
a cognitive one. The cognitive concept consists in giving an intelligence self-diagnostic capacity to the swarm 
particles. An adaptive weighting function, called fitness function is also developed to allow adaptive particles 
weights calculation considering this new capacity. The fitness function takes the EKF gain concept in order to 
be as representative as possible of the particle current probability. The role of the fitness function is to give a 
weight for each particle considering its efficiency relatively to the GPS measure and relatively to the particle 
confidence on its prediction at the same time. 

3.1. OKPS Implementation 
To perform an optimization-filtering approach allowing to be both reactive and cooperative, the OKPS combines 
the advantages of the already presented techniques. The cooperative aspect consists in the information 
exchanging and interaction between particles. While, the reactive aspect comes out in the capacity of detecting 
changes in the vehicle’s dynamic. This capacity is the direct consequence of fitting particles with a simple 
self-diagnose mechanism. The idea is performed by enhancing particles with a probability matrix iP  (Inspired 
from the uncertainty matrix P of the EKF method) allowing each particle to evaluate its likelihood. The iP  
matrix has to be as representative as possible of the particle positioning uncertainty. It is the reason why this 
matrix is managed (updated at each step) by an Extended Kalman filter gain K. After an initialization step, the 
OKPS filter performs the localization following the logical step of prediction and update integrating the new 
particles and swarm features. The OKPS algorithm (Algorithm 4) can be considered as an evolved SPF hybrid 
approach aided by a Kalman gain to reassess the particles likelihood used in an adaptive fitness function. 

The OKPS algorithm is described in the flowchart presented in Figure 4 and the implementation details are 
given in the following: 
 

 
Figure 4. OKPS algorithm.                                                                                        
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3.1.1. Initialization 
OKPS particles, in addition to all SPF particles attributes, are fitted with a probability matrix i

kP . This matrix is 
initialized as an EKF variance confidence matrix. 

The parameters to be fixed are the number of particles N, the inertia weight W and the resampling factor α . 
The initial collected data are used to define the initial position, calculated with an initial sensors data set giving 

0X̂ , 0P , 0Q  and 0R  values (calculation described in Equation (1)). The swarm is initialized following the 
initialization formulation noted in 2.3. 

The initial OKPS particles attributes are: ( )0ix  which represents a positioning vector [ ]Tinit init init initX x y θ= , 

( )0 0i =v  represents the initial value of the particle speed of evolution, 0 0
iP P=  the particle initial uncertainty 

matrix. The particles initial (weights) fitness score value is noted 0 1iw N= , it will be updated for every avail- 

able GPS data using Equation (13), and ( )0i
bG  gives the global best among neighborhood initial solutions. 

3.1.2. Prediction 
Particles predict the vehicle state using proprioceptive data and the bicycle vehicle model. In addition to the 
state prediction, a prediction likelihood is calculated with | 1

i
k kP −  according to the EKF prediction Equation (3). 

A predicted vehicle state vector can be determined by the fusion of the predicted particles states vectors 
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following the Equation (11).  

| 1 | 1 | 1
1

ˆ ˆ
N

i i
k k k k k k

i
X X w− − −

=

= ∗∑                                  (11) 

3.1.3. Updating Scores 
Before the scores evaluation, the particle uncertainty | 1

i
k kP −  and the measure uncertainty kR  matrices are up- 

dated. The first one is updated using a Kalman gain to be as representative as possible of the particle i uncer- 
tainty, see Equation (12). The second uncertainty matrix kR  is updated by the GPS quality data acquisition. 

The updated |
i

k kP  is made according to Equation (12). 

( )

1T T
| 1 | 1

| | 1

i i i i i i
k k k k k k k k k

i i i i
k k k k k k

K P H H P H R

P I K H P

−

− −

−

 = + 

= −
                            (12) 

Then, the score for each particle is calculated with the Fitness function. The Fitness function is a minimization 
or maximization criterion representing one or a compromise of multiple goals, the selection of this function 
depends on the application and the desired result [22] [25] [27]. 

The OKPS fitness Function (13) is a maximization criterion. The calculated fitness score considers two 
information sources: the GPS corrective source and the particle prediction source. The compromise between 
these two sources will be done by a weighted average of their respective quadratic errors relatively to their 
respective uncertainties.  

( ) [ ] ( ) ( ) ( )T T 11
| 1 | 1 | | 1 | 1

1 ˆ ˆ ˆ ˆ ˆ ˆexp
2

i i i i i i
k k k k k k k k k k k k k k k kw Y Y R Y Y X X P X X

−−
− − − −

   = − − − + − −     
     (13) 

[ ]T| 1
ˆ ˆi
k k k kY H X X Y−= =  is the observation (predicted measure). 

T
k x yY GPS GPS =    is the GPS measure, 

kR  represents the GPS uncertainty and |
i

k kP  the updated estimation uncertainty. | 1
ˆ

k kX −  is the predicted 
vehicle state and The bG  is determined by comparing the particles scores. The best particle bG  is the particle 
with highest score after scores normalization. 

3.1.4. Evolution 
In this step, each particle will optimize its estimation by evolving in the search space. This evolution is done by 
following Equation (10) and applying the Gaussian PSO motion principle [34] adapted to a dynamic environ-  
ment [35]. The particle merges its inertia and its attraction to the bG  in order to move toward a region of 

interest. This will give a new updated position |
ˆ i

k kX  of each particle. Thus, the swarm distribution will be opti-  
mized and concentrated on the region maximizing the fitness values. The benefit of this evolution compared to 
the SPF evolution is that the bG  is defined with an adaptive fitness function. Instead of SPF particles weight- 
ing which is only relative to the GPS position, this new adaptive weighting allows inertial behavior avoiding 
particles sticking to GPS. This adaptive evolution make the filter more robust to GPS outliers giving more 
smooth positioning. 

3.1.5. Estimation 
The particles results after evolution are fused in order to have a new ego-vehicle position estimation |

ˆ
k kX . 

Particles estimations |
ˆ i

k kX  are fused using standardized weights which are the updated standardized fitness 
scores. The fusion for the global estimation is made with the following equation. 

| |
1

ˆ ˆ
N

i i
k k k k k

i
X X w

=

= ∗∑  

3.1.6. Resampling 
The resampling algorithm and criterion are the same used for the previously described approaches, the algorithm 
is the systematic one and the criterion is the Kong effective particles number. 
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In the same conditions of resampling threshold thN  and processed data, the resampling triggering for OKPS 
occurs less than for the SPF because of the adaptive optimization that makes the particles more reactive and con- 
sequently rises the number of effective particles. The resampling process is still a heavy computational process 
and avoiding useless resampling is advantageous. Moreover, the less the particle population is resampled the 
more the estimation dynamic characteristics are preserved. 

4. Results Analysis 
In this section, the filters: EKF, PF, SPF and OKPS are tested in an ego-vehicle localization application. 
Different scenarios with different data qualities and noises conditions are studied. The filters will be ranked in 
terms of accuracy and robustness. The main criteria of comparison are: the Root Mean Square Error (RMSE), 
the Average Euclidean Error (AEE) and the Geometric Average Error (GAE) for the category of average errors. 
The RMSE is the mostly used natural approximation of the mean standard deviation of the differences between 
predicted values and observed values (estimation error). RMSE represents a good measure of accuracy. 
However, as it has not a simple physical interpretation and is scale-dependent. It is generally used for proba- 
bilistic analysis. Taken from the Euclidean distance concept, the AEE represents the average of instantaneous  

errors 
2 tE X E X X   =      

    while the RMSE is an approximation of the standard error ( )tE X X  . The  

RMSE and AEE are analysis criteria of average errors based on the concept of the arithmetic mean. The dis- 
advantage of this concept is that it is very sensitive to large outliers. To overcome this criteria weakness, the 
Geometric Average Error (GAE) is more robust to large outliers. Theoretically, the GAE is never greater than 
the AEE which is never even higher than the RMSE value ( GAE AEE RMSE≤ ≤ ). Thus, the impact of impor- 
tant errors is larger on RMSE and smaller on GAE. The main interest of using GAE is to be less influenced by 
the large errors values and remaining close to the AEE value. GAE AEE=  only when the number of samples 
is limited to one. Moreover, the gap between the GAE, AEE and RMSE can be used to detect the presence of 
temporary high outliers. The more this three average criteria are close the more the mistakes were homogeneous 
(no error peaks). When GAE AEE RMSE= = , there has been no errors fluctuation and the error can be con- 
sidered as a bias. Then, this bias can be counterbalanced. 

In order to evaluate the instantaneous filters performance, complementary criteria to the average errors are 
taken into consideration, such as the instantaneous Euclidean Error (EE), axial errors, mean axial errors and 
mean axial standard deviations. To also evaluate filters robustness and sensitivity, the relationship between the 
average and instantaneous criteria is used. 

To perform an even-handed experimental comparison, real word data are collected during a driving scenario 
on the urban area of the Satory test track (see Figure 5). Data collecting is done using a vehicle of the 
IFSTTAR/LIVIC laboratory equipped with embedded sensors and dedicated software. The vehicle is equipped 
with a steering wheel angle encoder, a gyrometer, an odometer and a low cost AG132 GPS running in degraded 
mode. Using a real data base is the best way to guarantee a real positioning tests (Data, conditions and noise 
similarity). The tests are then stated in the same conditions with the same data and with the same computational 
resources. For multi-hypothesis approaches (particular methods), the particles number is fixed to 500. The 
effectiveness threshold thN  for particles resampling is set to a minimum of 50% of effective particles. As said 
before, to avoid the SPF divergence caused by the swarm concentration around the GPS data, a percentage of 
communicative particles is attributed to this filter. The communicative-evolutionary SPF particles will then 
represent 10% of the swarm. For OKPS and SPF evolving particles, the inertia weight W is set to 0.2 to 
guarantee a minimum consideration of the vehicle inertia. The reference for positioning errors calculation is the 
centimetric differential GPS RTK. Tests are carried out in the same scenario with three different conditions. The 
vehicle is driven from right to left along the course delimited by flags on the Satory test track (Figure 5). 

The filters performance shown by axial errors and Euclidean error graphics describe the filters instantaneous 
behavior at each step of the test. The tables of mean axial errors and standard deviations resume the global 
performance by mean values giving an idea of the average performance. The accuracy will be stated by 
analyzing the average errors and the robustness will be an analysis of the axial standard deviation relation with 
axial errors. 

The first test is done using the synchronized data base. As data are synchronized, the data of slower sensors 
are interpolated. The localization process will perform both prediction and correction at each time step. This 
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kind of situation are possible when the sensors are fast or when the vehicle moves slowly (parking maneuver). 
The problem with this data base is that the full data availability makes the filters very confident and optimist. 
The uncertainty ellipses and values will be smaller than normal and the challenge is to be capable of detecting 
outliers in spite of the confidence in the measurement. This data base is characterized by a bias and a high level 
of noise caused by the synchronization step. The filters have to be robust and precise at the same time. As said 
before, the difficulty is to filter outliers and not to be fully optimistic about data quality. 

The results of the AG132 synchronous test are shown in Figure 6 and Table 1 and Table 2. Figure 6 
describes according to the subfigures from left to right and from top to bottom the following criteria: the 
Euclidean Error, the RMSE, the AEE, the GAE, the longitudinal X axial error and the lateral Y axial error. 
Table 2 gives the axial mean errors for each filter in comparison with the GPS one and gives also the axial 
standard deviations. Table 1 compares the average errors rating the errors fluctuation using the gap between the 
GAE, AEE and RMSE. As noted in Table 1 the gap between the average errors criteria is significant which 
supports mathematically the presence of fluctuations (presence of temporary high outliers). The variations are 
also visible in the GPS Euclidean error results. The global results show that all the filters correct the errors and 
perform an acceptable ego-vehicle positioning. However, the filters remain more attracted by the biased GPS 
data. Here the OKPS outperforms the other filters by always keeping particles reactive and cooperative. To 
achieve this result, the OKPS gives an adequate likelihood value to each particle at each time step using the 
adaptive fitness function. Then, these values of particles likelihood (scores) are used to give a global estimation 
value for the ego-vehicle localization. The OKPS is finally more accurate and more robust to strong noises and 
bias. The filters axial standard deviations noted in Table 2 show that the OKPS did not become more optimistic 
than necessary which allows it to filter more effectively GPS outliers. According to the axial mean errors and 
standard deviation relationship the OKPS is 11.7% more accurate than the EKF and 11.4% than the PF, the 
OKPS is also 7.8% more robust than the EKF and 6.8% less sensitive than the PF. 

 

 
Figure 5. Satory test track-urban area.                                                    

 
Table 1. RMSE, AEE and GAE final values for the synchronized AG132 test.                                              

Test AG132 EKF PF SPF OKPS GPS 

RMSE 4.37 4.37 4.35 3.89 5.87 

AEE 4.28 4.27 4.28 3.76 5.29 

GAE 4.18 4.16 4.22 3.60 4.38 

 
Table 2. Axis mean errors and standard deviations (m) for the synchronized AG132 test.                                        

Test AG132 EKF PF SPF OKPS GPS 

meanX  −1.87 1.82 −0.191 −1.77 −2.86 

Xσ  0.49 0.52 0.37 0.71 2.48 

meanY  3.82 3.83 3.79 3.22 4.01 

Yσ  0.90 0.92 0.82 1.06 2.01 
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Figure 6. AG132 synchronized data test.                                                                              

 
The OKPS merges both information from prediction and correction, the adaptive weighting mechanism 

(fitness) and the particles self-diagnose (uncertainty matrix) allow to get the best estimation of the vehicle 
position. However, these results which are obtained by a GPS information penalization because of their strongly 
degraded and noisy character, seems to hide an OKPS divergence. 

To test our filter consistency and to ensure its integrity, further tests are carried out. First, the sensors data will 
be taken in their raw version (no signal pre-processing and no synchronization). This test will give an idea about 
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the approaches performance in a localization application for a standard vehicle equipped with low cost sensors. 
After that, a GPS disturbance is generated and included to the GPS measures. The generated GPS degradation 
simulates the effect of GPS multi-reflexion in urban canyons. This final test will test the ego-vehicle localization 
performance for an urban driving scenario. 

The results of the second test done with the raw asynchronous GPS data are shown in Figure 7, Table 3 and 
Table 4. The graphics shows that the OKPS is still performing good ego-vehicle localization in normal signal 
conditions. This result ensures the OKPS efficiency for different scenarios and supports the OKPS integrity. 
From axial errors analysis and standard deviations, we can say that the OKPS is 3.6% more accurate than the 
SPF and 1.2% more robust than the PF. For this test, the SPF an PF particles have the same behavior, the SPF 
outperforms the PF because of the SPF evolutionary capacity (optimization) which is not possible for the PF 
particles. 

In order to test the filters reactivity and sensitivity in another situation, this third and last test is carried out. 
The results of the urban canyon driving scenario are synthesized in Figure 8, Table 5 and Table 6. The OKPS 
is designed to deal with this kind of situations, that is why it performs the best localization results. In this test, 
the GPS data are punctually disturbed by a multipath noise. These disturbances are shown by the peaks in 
graphics, especially in instantaneous criteria such as Euclidean Error and axial errors. The filters estimations are 
almost influenced by the peaks but the OKPS remains the less sensitive one. In a city with urban canyons where 
GPS systems generally suffers from multipath, multireflexion and outage problems, the OKPS will be the most 
appropriate localization approach. It is 18.4% more accurate than the EKF and 17.9% more than the PF. It is 
also 7.3% more robust than the SPF to multipath. The gap between RMSE, AEE, and GAE is more important 
than for the two previous tests which confirms the presence of important punctual disturbances. 
 
Table 3. Axis mean errors and standard deviations (m) for AG132 asynchronous data test.                                   

Test AG132 EKF PF SPF OKPS GPS 

meanX  −1.26 −1.29 −1.54 −1.30 −6.66 

Xσ  1.43 1.50 1.38 1.28 8.96 

meanY  3.76 3.88 3.89 3.66 4.82 

Yσ  0.69 0.66 0.63 0.78 6.41 

 
Table 4. RMSE, AEE and GAE final values for AG132 asynchronous data test.                                           

Test AG132 EKF PF SPF OKPS GPS 

RMSE 4.28 4.40 4.45 4.17 13.72 

AEE 4.19 4.33 4.38 4.08 13.13 

GAE 4.10 4.25 4.31 3.98 12.46 

 
Table 5. Axis mean errors and standard deviations (m) for AG132 asynchronous data with multipaths.                           

Test AG132 EKF PF SPF OKPS GPS 

meanX  −1.44 −1.43 −0.65 −1.12 −7.67 

Xσ  1.45 1.28 2.26 1.03 8.79 

meanY  4.18 4.13 4.56 2.44 5.43 

Yσ  1.51 1.49 2.33 2.08 9.11 

 
Table 6. RMSE, AEE and GAE final values for AG132 asynchronous data with multipaths.                                    

Test AG132 EKF PF SPF OKPS GPS 

RMSE 4.89 4.79 5.63 3.55 15.73 

AEE 4.64 4.56 5.12 3.20 14.70 

GAE 4.43 4.37 4.70 2.91 13.69 
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Figure 7. AG132 asynchronous data test.                                                                            

 
The OKPS outcompetes the other approaches especially in signal multireflexion cases. It also remains less 

sensitive to the GPS positioning outliers and vehicle dynamic changes than the EKF, PF and SPF filters. The 
OKPS performs a better positioning with a higher accuracy in different signal and driving situations. These tests 
conclude that the OKPS is better overall the three scenarios and overtakes the other filters especially in case of 
GPS multipaths and sensors data disturbance. 

5. Conclusions 
This paper shows the Optimized Kalman Particle Swarm theoretical formulation and experimental performance.  
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Figure 8. AG132 Asynchronous data with multipaths test.                                                             

 
It highlights the cooperative reactive aspect of the OKPS which performs accurate ego-vehicle localization in 
degraded conditions (noises and multireflexions). Our OKPS fits the particles with an uncertainty matrix. The 
covariance uncertainty matrix represents the capacity of auto-diagnose of the particles which are incorporated to 
the adaptive weighting system (fitness function). Thanks to the added covariance matrix, the particles of the 
OKPS become more reactive to abrupt dynamic changes and more robust to noises. 

The advantage of the OKPS positioning is stated during a driving scenario test. The OKPS outperforms the 
other filters using its reactivity and cooperative particles. More explicitly, the adaptive multi-objective fitness 
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function allows the swarm to evolve to high scores regions. Each particle merges its self-diagnose with the GPS 
data. The described cooperative process makes the OKPS effective in high dynamic on-road ego-vehicle locali- 
zation applications. The OKPS performs the best ego-vehicle positioning especially for the urban driving scena- 
rio with GPS multipaths: it out-competes the EKF, PF and SPF for ego-vehicle localization application. Even 
though the OKPS is more computationally complex and more time consuming, its promising results make it one 
of the most suitable localization methods. The OKPS needs less tuning parameters than the metaheuristic hybrid 
localization approaches. An auto-attraction-repulsion mechanism insures the swarm homogeneity, diversifica- 
tion and effectiveness. This mechanism prevents the swarm premature convergence for a full connected neigh- 
borhood topology.  

In future works, the OKPS will be tested in more diverse driving scenarios (for example stop and go, parking 
and strong braking and acceleration scenarios) with additional sensors which will improve the OKPS localiza- 
tion accuracy and integrity. This approach will then be tested in comparison with the Interacting Multi-Model 
Filter developed by the LIVIC laboratory for autonomous vehicle localization applications. Next, we intend to 
add nice properties of the IMM in the OKPS. 
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