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ABSTRACT 

In this paper, an innovative collaborative data fusion approach to ego-vehicle localization is presented. This approach 
called Optimized Kalman Swarm (OKS) is a data fusion and filtering method, fusing data from a low cost GPS, an INS, 
an Odometer and a Steering wheel angle encoder. The OKS is developed addressing the challenge of managing reactiv- 
ity and robustness during a real time ego-localization process. For ego-vehicle localization, especially for highly dy- 
namic on-road maneuvers, a filter needs to be robust and reactive at the same time. In these situations, the balance be- 
tween reactivity and robustness concepts is crucial. The OKS filter represents an intelligent cooperative-reactive local- 
ization algorithm inspired by dynamic Particle Swarm Optimization (PSO). It combines advantages coming from two 
filters: Particle Filter (PF) and Extended Kalman filter (EKF). The OKS is tested using real embedded sensors data col-
lected in the Satory’s test tracks. The OKS is also compared with both the well-known EKF and the Particle Filters (PF). 
The results show the efficiency of the OKS for a high dynamic driving scenario with damaged and low quality GPS 
data. 
 
Keywords: Localization; Mobile Robotic; Kalman Filter; EKF; Particle Swarm Optimization; PSO; Particle Filter;  
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1. Introduction 

Localization of vehicles is a research topic in perpetual 
evolution. Nowadays, the location information becomes 
very important and inevitable in large cities in order to 
move from point A to a desired point B. Developing the 
localization to produce new services increasing the driv- 
ers’ safety and autonomy becomes the logical continuity. 
Researchers aim to develop more accurate positioning 
than only the positioning obtained with natural global 
positioning system with the use of satellites constellation. 
This new type of positioning opens fields for new Intel- 
ligent Transport Systems applied to Road applications 
(ITS-R) and advanced systems for driving assistance 
(ADAS) such as parking valet, and copilot for autono- 
mous driving. However, the development of new services 
using an accurate localization should have a slight impact 
from an economic point of view. For this reason, re- 
search was directed toward hybrid fusion methods which 
consisted in using of onboard sensors or new low cost  

sensors. These sensors bring new information allowing 
better estimation of the vehicle position with a high con- 
fidence. There is a wide range of research works using 
the GPS data for ego-vehicle localization applications. 
Other sensors such as inertial navigation system (INS), 
Odometer, and wheel steering angle sensor are used for 
dead reckoning localization process development [1-3]. 
Estimating a vehicle location in Mobile Robotics consists 
of determining both vehicle position and orientation rela- 
tively to its environment. The vehicle localization prob- 
lem is considered in the mathematic-probabilistic field 
[4,5] as a state estimation problem. Accurate vehicles 
models are generally nonlinear. It is very difficult to use 
the Kalman Filter (KF) in practice, because it is an opti- 
mal filter only for linear systems [6]. Data fusion based 
filtering approaches are mostly non-linear Kalman vari- 
ants [3,7-9]. To bypass the model nonlinearity problem, 
the Extended Kalman Filter (EKF) based localization has 
been proposed for autonomous vehicles positioning such  
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as in [10-12]. Particle Swarm Optimization (PSO) is a 
metaheuristic optimization method attributed to Eberhart, 
Shi and Kennedy [13]. Improved for optimization issues 
[14-17], the PSO introduces social behaviors and cogni- 
tive concepts to the localization process. With these no- 
tions, particles are directed toward the high probability 
positioning region of the state space (sensor information). 
Samples move in the direction of their best neighbor (so- 
cial communication) to finally converge to local optima 
or global optimum. The development of localization ap- 
plications inspired by PSO has risen within the last years, 
inspiring hybrid approaches such as the Swarm particle 
filter (SPF) and PSO aided Kalman filter [1,18,19]. The 
SPF consists in an integration of the PSO to the Particle 
Filter. This integration allows applying the optimization 
technique to tracking and localizing applications. The 
SPF then represents an interesting approach to localiza- 
tion, but it still has premature convergence and parame- 
terization problems. The PSO also is used in [19] to tune 
Kalman process noise in order to avoid Kalman filter 
limitation for abrupt dynamic changes. The PSO aided 
Kalman filter becomes then too time-consuming and needs 
PSO parameters tuning. 

This paper presents a new localization approach. In- 
spired by the following localization and tracking research 
works [1,18,19], this vehicle localization method is called 
the Optimized Kalman Swarm (OKS). The OKS performs 
the positioning process considering a dynamic optimiza- 
tion problem. Explicitly, at each step, the OKS method 
tries to find the best possible vehicle position according 
to the GPS measure, the predicted vehicle state and the 
relayed information between particles. 

A comparison is made using the same real word ex- 
perimental data and noises for all approaches (EKF, PF 
and OKS). Filters performances are evaluated to rank 
them in terms of accuracy and robustness. A centimetric 
RTK GPS is used as a reference trajectory. Also, inves- 
tigations on the filters uncertainty ellipses areas are done 
to evaluate filters’ uncertainty. The tests will also com- 
pare the filters behavior depending on GPS quality in- 
formation cases (good, noisy, multi-path or missing sig- 
nal). 

The reminder of the article will be organized as fol- 
lows: Section 2 is dedicated to a background part; this 
item presents the theoretical and algorithmic foundations 
of the approaches inspiring the OKS. It begins by a pres- 
entation of the particles based approaches. Section 2.1 in- 
troduces the PSO algorithm and the Particle Filter giving 
details of their different algorithmic steps, while the EKF 
is detailed in Section 2.2. The OKS is then presented and 
detailed in Section 3, in order to carry out a theoretical 
and experimental filters comparison and analysis in Sec- 
tion 4. Conclusion about this work is given in Section 5. 
In the last section, some future works and improvement 

ways are proposed. 

2. Backgrounds 

This section provides an overview of the methods used as 
the foundation of the OKS on-road vehicle localization 
approach. 

We will start with an overview of the Particle Swarm 
Optimization. Then, we will present the Particle Filter 
(PF) approach. The Particles approaches represent a fa- 
mous alternative to the Bayesian ones with the advantage 
to be more resistant to noises. The third and last part will 
introduce a classic Bayesian method which is the Ex- 
tended Kalman Filter (EKF). This filter and its variants 
represent the mostly used Bayesian techniques in the lo- 
calization field. 

2.1. PSO and PF Overview 

2.1.1. Particle Swarm Optimization Basics (PSO) 
First intended for simulating social behaviour and origi- 
nally attributed to Eberhart, Shi and Kennedy [13]. The 
Particle Swarm Optimization is based on a set of samples 
called particles initially arranged randomly and homoge- 
neously in the search space. Each particle moves in the 
search space and represents a potential solution of the 
processed problem. Each particle is equipped with a mem- 
ory that allows it to know its best found solutions. More- 
over, each particle has the capability to communicate 
with its environment (neighborhood), that gives the posi- 
tion of the best solution ever found by its informants. 
Using this information, each particle is going to move by 
updating its evolution state vector. The evolution (motion) 
of a particle is affected by three behaviors: First, a ten- 
dency to keep its own way called selfish. The second 
tendency makes the particle reverting to its best found 
solution and is known as the Conservative behavior. Third 
and last one is the Herding (Social, Collective) behavior, 
which exhorts the particle to move towards the best in- 
formant (neighbor) which represents the best current so- 
lution found by its neighborhood. These tendencies (be- 
haviors) are illustrated in Figure 1. The selfish tendency 
is weighted by the inertia weight W, while the two re- 
maining tendencies can be weighted with learning factors, 
random weights or the both, depending on the PSO vari- 
ant. 

Particles have some attributes. At time t the particle 
(sample) i is caracterised by the following:  ix t


 is the 

position in the search space noted by a state vector. The 
state vector values depend on the processed system and 
the application. Here we use the same state vector for all 
approaches which is he position-orientation vector 

. 
t

 T

init init init initX x y    iv t


 is the partic  speed, it 
represents the displacement of a particle 

le
 iΔx t


.  bP t  

is the state vector of the best solution covered by the par- 
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Figure 1. PSO Particle motion. 
 

ticle, it is given by the best saved score that this particle 
has reached. And  represents the best neighbor- 
hood solution, it is a state vector given by scores com- 
parison among all the communicative neighbors (infor- 
mants). The communicative neighbors can represent all 
the swarm or selected particles from the swarm depend- 
ing on the neighborhood topology and size. The more the 
neighborhood is informative the more information is 
shared and convergence is enhanced. An example of a 
geographical neighborhood is shown in Figure 2. It is 
based on the nearby particles and must be calculated at 
each iteration, while Figure 3 presents some social 
neighborhood configurations. This kind of neighborhood 
is set at the beginning and does not require distance cal- 
culation to find the neighbors. In case of convergence, 
the social neighborhood tends to become geographical. 

 bG t

The optimization depends essentially on the evolution 
of particles. The evolution consists in changing position 
by the application of a calculated speed using the weighted 
three influencing tendencies: 

      

  

1 1

1

i i b i

Inertia PersonalInfluence

b i

SocialInfluence

v t W v t randn P x t

randn G x t

      

   



  











    (1) 

     1i i ix t x t v t  
  

            (2) 

Some variants of these evolution equations are avail- 
able in [13,18,20,21]. Each variant of the evolution equa- 
tions is designed to assist with the balance between ex- 
ploration and convergence during the optimization proc- 
ess, see [22,23] for evolution variants comparison. The 
Equations (1) and (2) are inspired by the Gaussian swarm 
variant which is based on the Gaussian distribution to 
improves the convergence ability of the PSO without the 
necessity of tuning factors [21]. 

From local optima, the swarm of particles will con- 

 

Figure 2. Diagram of a geographical neighborhood. 
 

 

Figure 3. Different configurations of social neighborhood 
(from top to bottom and from left to right): Star, ring, and 
circle. 

 
verge to a global optimal solution of the problem. The 
algorithm of a basic Particle Swarm Optimization proc- 
ess is stated in Figure 4. 

2.1.2. The Particle Filter (PF) 
The particle filter (sequential Monte-Carlo method (SMC)) 
is a numerical method to approximate the probability 
distribution of the state by means of the empirical distri- 
bution of particles. Each particle represents a possible 
configuration of the estimated state. A weight is affected 
to each particle in order to judge the consistency of the 
sample according to the conditional probability of the 
state while experiencing the observations. The particle 
filter can be faster than the Monte-Carlo Markov chains. 
It is often an alternative to the extended Kalman filter 
with the advantage that with sufficient samples, it ap- 
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Figure 4. Basic PSO Algorithm. 
 

proaches the optimal Bayesian estimate. The PF can be 
made more accurate than Kalman filters, it remains to do 
a compromise between computational time and accuracy. 

The EKF and PF approaches can be combined using 
the Extended Kalman filter to give a prior estimation 
(prediction) for the particle filter using an evolution 
model as an alternative of random evolutions by adding 
noises. To combine techniques assets, hybrid localization 
approaches are processed these last few years. 

The particle filter algorithm is detailed in the follow- 
ing: 

1) Initialization: 
In order to localize a vehicle during a driving test, we 

consider an initial position of the vehicle represented by 
the state vector . Then, the initial 
cloud of samples is drawn around this initial position by 
assigning each particle a state vector X and an initial 
weight w. The number N is the number of particles (sam- 
ples) and is to be determined by the user. The state vec- 
tors of the particles represent a Gaussian distribution 
centered on the initial position according to this model: 

 T

init init init initX x y  

i

At the initialization step each particle i has a state  

vector 

i
init x

i
init y

i
init

x
X y






 

 
 
  


  and a weight 0 1iw N



. 

The x y , ,i i i
  

0,

 are random variables, these errors 
are added to represent the initial state in the form of a 
gaussian cloud of particles scattered across the search 
space around the initial position according to its uncer- 
tainty. The centered normal laws of probability used in 
this case are  xN  ,  0, yN  , 0,N   where 
 , ,x y    are taken from the initial variance-covari- 
ance matrix of noise. 

2) Prediction: 
Here, from the last known position of the vehicle 

1| 1
i
k kX    and available data from proprioceptive sensors 

such as INS, wheel steering angle encoder and odometer, 
we calculate a predicted position of the vehicle | 1

ˆ i
k kX  . 

This position represents the vehicle condition assumed at 
this moment. It is calculated using a vehicle model in- 
corporating proprioceptive sensors data and their respec- 
tive uncertainties (the used model in all tests will be a 
bicycle vehicle model). The dynamic model of the vehi- 
cle (evolution matrix) is applied to each particle in order 
to obtain a new state vector | 1  (a predicted state 
vector). It is important to integrate to this prediction step 
the measurement errors and evolution errors. These noises 
allow each particle to move in a different way, this en- 
courages the exploration of the search space. If the noise 
is too low, the filter will not work well and particles will 
not represent enough noise condition or uncertainty around 
the predicted state for this case. If the noise is too high, 
the filter may diverge due to excessive scattering of par-
ticles on several consecutive steps. 

ˆ i
k kX 

3) Update: 
This step is performed to reassess (Update) the weights 

of particles using exteroceptive sensors data such as GPS, 
visual information, and/or mapping. For updating, we ad- 
just our prediction by revaluating the particles weights 
according to a new GPS data while taking into account 
the different uncertainties. This can be considered as con- 
ciliation between a predictive datum and a corrective one. 
The weights calculation is done following the Equation 
(3). 

   

 

     

1 1

1

1

1

2π

1 ˆ ˆexp
2

i i i i i i
k k k k k k k k

i i
k k

T
i i

k k k k

P P P y x w w P Y X

w w
R

Y Y R Y Y

 





   

  

     
 

 

(3) 

4) Normalization and Estimation: 
After updating weights, in order to keep the sum of the 

probabilities equal to 1, a normalization of the particles 
weights is performed according to the Equation (4). 

 
 1

i
k

N

i
k j

j k

w
w

w





              (4) 

After the normalization of weights, the vehicle posi-
tion is calculated with the fusion Equation (5): 

   1

N i
vehicle k ki

iX k X


w           (5) 

5) Resampling: 
Resampling is a critical step for the proper functioning 

of the swarm particle filter approach. It prevents the di- 
vergence and degeneracy of the filter by eliminating low 
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weight particles and duplicating those with interesting 
weights. 

There are a multitude of approaches for resampling as 
well as resampling criterions, see [24] for more details. 
The used algorithm is the systematic resampling one with 
the Kong criterion (6) for its enabling/disabling: 

 2

1

1

 
eff N i

kj

N
w






             (6) 

Where  is the standardized weight of the particle i 
at time k. 

i
kw

eff  tends to M when the distribution of the particles 
weights is efficient. 

N

eff  tends to 1 when the distribution of the particles 
weights is inefficient. 

N

The resampling is performed if eff  is under the de- 
fined threshold th . This threshold represents the min- 
imum of required effectiveness, it is generally a fixed 
value within this range  i.e. th

N
N

0 thN M N N   with 
N the number of particles and α a term representing the 
minimum desired percentage of consistent particles, for 
eg. α = 0.5 for 50% of minimum effective particles. After 
the resampling step, all particles weights are set to  

1i
kw

N
 . 

The Swarm Particle Filter (SPF) is a hybridization of 
the PF with an integration of the social influence of the 
PSO. An approach inspired by Particle filter hybridiza- 
tion with Particle Swarm Optimization (PSO) is expected 
to make use of the interactivity aspect in addition to the 
reactive aspect of the particle filter. Particles, as for a 
normal Particle Filter, go through all the particle filter 
steps. One stage is added. After the update stage, parti- 
cles exchange information (communicate) and evolve in 
order to optimize the swarm distribution (move toward 
the region where the best solutions are found) complying 
with PSO evolution concept. The SPF suffers generally 
from premature convergence or swarm explosion prob- 
lems. These problems are due to the parameters tuning 
by the user. 

2.2. Extended Kalman Filter (EKF) 

The Extended Kalman Filter (EKF) is the nonlinear ver- 
sion of the Kalman Filter (KF). In the case of well-de- 
fined models of evolution, EKF is the most widely used 
for state estimation for nonlinear navigation systems 
based on GPS. The Extended Kalman Filter is a recursive 
estimator. To estimate the current state, only the previous 
estimate and the current measurements are necessary. 
The filtered estimate is represented by two terms: |

ˆ
k kX  

is the state at time k and |k k  is the covariance matrix 
representing the estimation uncertainty (a measure of the 
accuracy of the estimated state). The Kalman filter has  

P

two distinct phases: Prediction and Update. The predic- 
tion uses the estimated state of the previous time to pro- 
duce an estimate of the current state. In the update step, 
the observations of the current time are used to correct 
the predicted state in order to obtain a more accurate es- 
timate. The EKF implementation begins with an initiali- 
zation step giving initial values to the following: X: State 
vector  Txy . U: Command vector. P: Variance/Co- 
variance confidence matrix. μ: Process noise. Q: Vari- 
ance/covariance matrix representing the process noise. v: 
Measurement noise. R: Variance/covariance matrix rep- 
resenting the Measurement noise. Y: Measures Vector. 

1) Initialization: 

 

  
  

  

0 0

0 0 0 0 0

0

0

ˆ

ˆ ˆ T

T

T

X E X

P E X X X X

Q E

R E v v v v

   



     

    

    

      (7) 

2) Jacobians: 
The Jacobian matrices are matrix of partial derivatives. 

A and H are derived respectively from f: the transition or 
evolution function and h: the observation function. The 
prediction is made using the evolution matrix A. Then, 
the update is made with the Kalman gain which is calcu- 
lated using the measurement matrix H to adjust the state 
X and reassess the uncertainty P. 

 

 
1| 1, 1

| 1

ˆ

ˆ

, ,

,

k k Uk

k k

xk x k X

k X

X

Xx

A f X u

H h X v


  







 

 
       (8) 

3) Prédiction: 

 | 1 1| 1 1

| 1 1| 1

ˆ ˆ ,k k k k k

T
k k xk k k xk k

f U

P A P A

X X  

  



Q



 
           (9) 

4) Update: 

 

1

| 1 | 1

| | 1 | 1

| | 1

ˆ ˆ

T T
k k k k k k k k k

k k k k k k k k k

k k k k k k

K P H H P H R

K Y H X

P I K H

X

P

X



 

 



   

  

 

      (10) 

3. The Optimized Kalman Swarm (OKS) 

The OKS is an evolved version of the SPF. This new 
filter integrates in addition to the social concept a cogni- 
tive one. This last concept is introduced by an adaptive 
weighting function, called fitness function. The fitness 
function is managed by the EKF gain in order to be as 
representative as possible of the particle current prob-
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ability. The OKS solves the SPF premature convergence 
problem using less user depending parameters. 

tainties. The OKS algorithm can be considered as an 
evolved SPF hybrid approach aided by a Kalman gain to 
reassess the likelihood used in an adaptive fitness func- 
tion. 3.1. OKS Implementation 

The algorithm follows the steps described in the flow- 
chart presented in Figure 5. 

The aim of this new approach is to combine the conven- 
iences of the presented techniques in background section, 
in order to perform an optimization-filtering approach 
capable of being reactive and cooperative. The coopera-
tive aspect comes out in the OKS with the information 
exchanging and interaction between particles. The reac- 
tive aspect can be found in the capacity of detecting 
changes in the vehicle’s dynamic. The OKS is then able 
to be reactive-cooperative. The idea is performed by en- 
hancing particles with a probability matrix (inspired by 

 of the EKF method) allowing to evaluate the likeli- 
hood of each sample. However, this matrix has to be sig- 
nificant and has to represent as well as possible the parti- 
cle positioning uncertainty. It is the reason why this ma- 
trix is managed (updated at each step) with the Extended 
Kalman filter gain K. During the tracking, particles in- 
teract and move following particle swarm optimization 
concept in order to obtain optimized results and uncer- 

i
kP

1) Initialization: 
This stage is performed in the same way as the PF ini- 

tialization. Note, that in addition to all PF particles at- 
tributes, a probability matrix is added to each particle and 
is initialized as an EKF variance confidence matrix. The 
resulting initialized swarm is done as the following: 

After parameters (number of particles M, inertia weight 
W and resampling factor α) fixing the initial position is 
calculated with the available data giving 0X̂ , P0, Q0 and 
R0 values (calculation described in 7). The swarm is then 
initialized following the PF intialization 2.1.2.a. 

An initial OKS particle has these attributes:  0ix


 
which is a state vector  integrating 
initial sensors and model noises.  is an initial 
speed value set to 0. 0 0

 T

init init init initX x y 
 0iv


iP P



  represents the particle ini- 
tial uncertainty matrix. And an initial score value  

 

 

Figure 5. OKS algorithme. 
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0 1iFitness N  which will be updated after using the 

fitness function (12).  and  are swarm at- 
tributes representing the initial best personal and global 
solutions. 

 0i
bP  0i

bG

2) Prediction: 
Each position sample (particle’s state vector) is passed 

through the vehicle bicycle evolution model by integrat- 
ing the system noise to the matrix  (the confidence 
variance-covariance matrix of a particle) according to the 
EKF prediction Equations (9),  and  

. 

i
kP

i
 | 1 | 1

ˆ i
k k k kP P 



| 1 | 1

A predicted vehicle state vector is then provided by the 
weighted mean of the predicted particles states vectors  

ˆ ˆi
k k k kX X 

  | 1 | 1
1

ˆ ˆ 
N

i i
vehicle k k k k

i

X k X w 


  . 

3) Updating Scores: 
For the scores evaluation, the matrix  is updated 

using a Kalman gain to be as representative as possible 
of the particle i uncertainty. Also the matrix R using the 
data of the GPS signal quality is updated with the new 
available data acquisition. The update of  is made 
according to the Equation (11): 

iP

iP |k k

 

1

| 1 | 1

| | 1

ˆ ˆ

ˆ

i i iT i i iT
k k k k k k k k k

i i i i
k k k k k k

PK H H H R

P I K H

P

P



 



  

 
    (11) 

The score for each particle is calculated with the Fit- 
ness function detailed in the following. 

The Fitness function is a minimization or maximiza- 
tion criterion reflecting one or multiple goals of our op- 
timization, the selection of this function depends on the 
application and the desired result [14,17, 23]. 

The developed fitness function 12 describes a score 
calculation representing a criterion to be maximized. The 
calculated score represents information squared errors 
respectively weighted with their uncertainties. This func- 
tion considers two information sources: the prediction 
information incorporating all proprioceptive sources (Steer- 
ing wheel angle sensor, Gyrometer and Odometer) and 
the GPS exteroceptive source. 
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4) Evolution: 
By using the evolution equations presented below, a 

new position |
i
k kX  (state vector) of each particle i is 

estimated following 13. 
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The choice of erasing memories of the particles is 
taken by considering the optimization in a dynamic en- 
vironment (  is set equal to the particle current posi- 
tion). Such as in the literature approaches addressing 
dynamic optimization problems [23]. The PSO equation 
of evolution (2) gives then the OKS evolution Equation 
(13). 

i
bP

In order to bypass the premature convergence problem, 
some particles are deprived of the neighborhood infor- 
mation in order to provide behavior diversity. For this, 
we can fix from the beginning the communicative parti- 
cles and the free ones or chose randomly at each step. 

5) Estimation: 
The estimation step is performed by fusing the parti- 

cles states calculating an estimated vehicle state noted as 
the weighted mean of particles. 

  |
1

N
i i

vehicle k k k
i

X k X


w   

Particles current weights are calculated using the Equa- 
tion (3) and normalized before the vehicle state estima- 
tion. 

6) Resampling: 
In this process, as for the PF, the resampling is per- 

formed using the criterion of Kong, conditioned by the 
minimum effectiveness threshold Nth. This condition meas- 
ures the ability of all particles to represent the true posi- 
tion with its posterior probability. 

The less the particles population is resampled the more 
the estimation characteristics of the system’s dynamic are 
preserved. As the environment is dynamic, the swarm 
tends to be inefficient from a step to the next one. But it 
conserves the dynamic of the vehicle (motion and uncer- 
tainties) and can become efficient and more informative 
in next steps. This is especially the case in areas with 
dynamic changes (ie. start and end of turns). For example, 
at the beginning of a turn, most of particles conserves 
straight driving dynamic and are not sufficiently efficient 
for a turn dynamic motion. After some moves (steps) in 
turn dynamic, the majority of particles will be tuned for 
turn estimation and become efficient for this dynamic. 
The swarm inefficiency will comes out at the straight 
driving recovery. Then, it is more interesting to have a 
resampling triggering in these cases (dynamic change) 
than in the same dynamic running cases. The advantage 
to preserve free non evolutive particles is then a good 

X Y
k xY GPS G 

ˆ
vehicle

is the predicted measure.  

y   is the GPS measure, k  repre- 
sents the GPS uncertainty and |  the estimation un- 
certainty. 

T
PS

 

 R
i

k kP
X k

G
 is the predicted vehicle state. The 

 is determined by comparing the particles’ scores. b
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solution to guarantee the swarm integrity and heteroge-
neity. 

4. Results Analysis 

The purpose of this section is to show strengths and 
weaknesses of the OKS new approach presented previ- 
ously. The targeted performances are the robustness and 
the accuracy. They will be studied in comparison with 
the EKF and PF. 

To achieve a fair-minded comparison, the tests are 
carried out with the same noises configuration and using 
the same real sensors data with the same initial configu- 
ration. Real data are collected using an equipped vehicle 
(embedded sensors and dedicated software) of the LIVIC/ 
IFSTTAR laboratory; the data are collected during real 
driving tests on the urban area of the Satory test track, 
see Figure 6. For particles based approaches, the same 
number of particles (500) is used. The errors calculation 
will be done by comparing the approaches estimations in 
comparison with a reference data from a centimetric 
RTK differential GPS. The inertia weight W is set to 0.2 
and the resampling threshold Neff is set to a minimum of 
50% effective particles while the average percentage of 
communicative particles is 10% of the swarm. To test the 
robustness, we use a database provided by an AG132 
GPS running in degraded mode. This database is charac- 
terized by a strong noise occasioned by multipaths and/or 
signal outage. For all tests, the filters variance is high at 
first (due to pessimist initialization stage) and decreases 
during the test progression (data accumulation with vehi- 
cle traveling) increasing the confidence until it is dis- 
turbed by GPS unavailability or an outlier, once the dis- 
turbance passes the variance starts to decline again. The 
studied filters will be compared in terms of accuracy and 
robustness. The filters performances will be stated by 
using the RMSE (Root Mean Squared Error) shown in 
graphics and the mean of axial standard deviations given 
in tables. The graphics will describe the filters behavior 
at each step of the test, while the tables will resume the 
general performance by mean values of axial errors and 
standard deviations. 

The first test is done with a synchronous acquisition of 
sensors data. The results of the AG132 synchronous test 
are shown in Figure 7 and Table 1. This figure describes  

 

 

Figure 6. Satory Test Track-Urban Area. 

 

Figure 7. RMSE for AG132 Synchronous data. 
 

Table 1. Axis Mean Errors and standard deviations (m) for 
AG132. 

 EKF PF OKS GPS 

Xmean 1.87 1.82 1.77 3.29 

σX 0.49 0.52 0.71 1.86 

Ymean 3.82 3.83 3.22 4.01 

σY 0.9 0.92 1.06 2.01 

 
clearly the degraded quality of the GPS signal. The filters 
RMSE given in Figure 7 shows that the EKF filter cor- 
rects the errors but remains attracted by the biased GPS 
corrective data. The three filters, for this test, have quite 
similar behaviors. The PF performs nearly the same lo- 
calization as the EKF while the OKS outperforms the 
two others making use of the cooperative and reactive 
aspects. To achieve such an accurate positioning, the 
OKS gives a set of adequate likelihood values to its es- 
timation at each time step. Table 1 gives the axial mean 
errors and standard deviations in positioning for the GPS 
data, the EKF, PF and OKS filters. These results confirm 
the OKS accuracy and robustness to strong noises and 
bias. These axial errors bounds are also given to show the 
filters errors ranges. According to the axial means errors, 
the OKS is then approximately 11% more accurate than 
the EKF and the PF along this entire first test. Also ac- 
cording to the axial standard deviations, the OKS is 9% 
less sensitive than the EKF and PF filters. 

The capability of the OKS filter to merge information 
coming from both the prediction and the correction stages 
using an adapted weighting (fitness) mechanism (taking 
into account their respective effect) allows to get a better 
estimation of the vehicle positioning. However, this ca- 
pacity, which can be a quasi-non consideration of correc- 
tion data due to their noise, seems to hide a divergence of 
the filter. To ensure the integrity of our filter, we decided 
to carry out further tests. In order to test the quality and 
the performances of the OKS approach in urban driving 
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situation, a GPS disturbance and degradation have been 
generated. This degradation is similar to the effect of the 
GPS signal multi-refection. 

The two following tests are done on real collected 
asynchronous AG132 GPS data. The first one will be 
carried out with the original data without any additional 
noise or degradation. The second one will integrate urban 
canyon multipaths to the GPS data in order to test the 
filters reactivity and sensitivity. 

The results of the raw asynchronous GPS data test on 
the Satory test track are shown in Figure 8 and Table 2. 
The RMSE graphic shows that the OKS still performs a 
good positioning, also for normal signal conditions. This 
performance ensures that the OKS can be efficient in 
plenty scenarios, not only for bad signal or outage situa-
tions. From the Table 2 which shows results of axial 
mean errors and axial standard deviations, we can con- 
clude that for the correct signal conditions test, the OKS 
is 1% more accurate and 2.4% more reactive than the 
other filters. 

In order to test the performances of our approach in 
another difficult situation, we carry out a supplementary 
test on the AG132 asynchronous data. This last test con- 
sists in simulating a driving situation on a city with urban  

 

 

Figure 8. RMSE for AG132 Asynchronous data. 
 

Table 2. Axis Mean Errors and standard deviations (m) for 
AG132 Asynchronous data. 

 EKF PF OKS GPS 

Xmean 1.50 1.55 1.54 10.59 

σX 1.18 1.22 0.97 3.46 

Ymean 3.76 3.88 3.66 7.13 

σY 0.69 0.66 0.78 3.64 

canyon where almost GPS systems suffer from multipath, 
multireflexion and outage problems. The multipath errors 
are simulated and added to the real GPS data used in the 
previous test. For this test, in Figure 9 the RMSE states 
that the OKS outcompetes the other approaches espe- 
cially in signal multireflexion zones. The OKS performs 
better positioning with a higher accuracy and remain less 
sensitive to the abrupt positioning changes (peaks in GPS 
RMSE) than the EKF and PF filters. The results noted in 
Table 3 prove that the OKS is 10% more precise and 
0.9% less sensitive than the other filters. Note that in the 
peaks zones (multipaths), all the filters are affected but 
the OKS filter remains more confidents on its estimation 
and the less sensitive to outliers. 

We can see that for all the tests performed the OKS 
shows better overall results and overtakes EKF general 
performances in case of noisy GPS data and multipaths. 

5. Conclusions 

This article highlights a new collaborative technique in- 
spired by Particle Swarm Optimization applied to on- 
road vehicle localization applications. The advantage of 
the OKS is an increased robustness in degraded condi- 
tions (noises, bias and multireflection). The presented ap- 
proach outperforms the EKF and the SPF precision and  

 

 

Figure 9. RMSE for AG132 Asynchronous data with mul-
tipaths. 

 
Table 3. Axis Mean Errors and standard deviations (m) for 
AG132 Asynchronous data with multipaths. 

 EKF PF OKS GPS 

Xmean 1.59 1.56 1.32 10.91 

σX 1.28 1.12 0.76 4.07 

Ymean 4.18 4.13 2.67 9.00 

σY 1.51 1.49 1.77 5.56 
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robustness in urban driving scenarios (multipath and sig- 
nal outage). The OKS reaches these performances mak- 
ing use of an adaptive multi-objective fitness function. In 
practice, the adaptive fitness function allows the swarm 
to evolve following high scores. These scores evaluate 
each particle’s likelihood, balancing between following 
the current momentum, the prediction or the GPS correc- 
tive data, according to their respective assigned or ac- 
quired (measured) uncertainties. This compromise makes 
the OKS method more efficient for on-road vehicle lo- 
calization applications and especially in urban driving 
situations. 

The EKF method is less time-consuming than the OKS 
which is similar with the PF when using the same num- 
ber of particles. Even though the OKS is more computa- 
tionally complex, the auspicious results given by this 
filter make it an interesting new localization method. 
Moreover, the OKS is simple to configure and it has few 
parameters to be fixed in comparison with some optimi- 
zation and hybrid localization techniques. 

New improving functionalities are studied such as a 
swarm auto attraction-repulsion mechanism (diversifica- 
tion) preventing the particles premature convergence in a 
full connected swarm topology. Also intended, a generic 
fitness function allowing the extension of the system is 
studied. A future work is to test the OKS performances in 
diverse driving scenarios such as unusual maneuvers like 
stop and go, strong braking and acceleration and parking. 
Also, additional sensors could be interesting to improve 
the accuracy and the integrity of the OKS approach. A 
new evolution function with no parameters, no random 
terms and including the repulsion mechanism is ongoing.  

Finally, new criteria of consistency and integrity will 
be defined in order to compare the OKS to the IMM ap- 
proach (Multi-Interaction Models) developed by LIVIC 
for autonomous vehicle localization applications. 
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