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ABSTRACT 

The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on 
floating neighborhoods. Each yield map value is determined by the fit of such a cone on an elliptical neighborhood that 
is wider across the harvest tracks than it is along them. The coefficients of regression for modeling the paraboloid con-
es and the scale parameter are estimated using robust weighted M-estimators where the weights decrease quadratically 
from 1 in the middle to zero at the border of the selected neighborhood. The robust way of estimating the model pa-
rameters supersedes a procedure for detecting outliers. For a given neighborhood shape, this yield mapping method is 
implemented by the Fortran program paraboloidmapping.exe, which can be downloaded from the web. The size of the 
selected neighborhood is considered appropriate if the variance of the yield map values equals the variance of the true 
yields, which is the difference between the variance of the raw yield data and the error variance of the yield monitor. It 
is estimated using a robust variogram on data that have not had the trend removed. 
 
Keywords: Precision Agriculture, Yield Mapping, GPS, Elliptical Neighborhood, Paraboloid, Weighted Regression, 

Redescending M-estimate, Robust Variogram 

1. Introduction 

The yield mapping method I extensively describe here 
follows Bachmaier [1] in many parts. It does not use fil-
tering techniques to remove outlying yield measurements 
that are caused mainly by the monitoring process. Ac-
cording to Simbahan et al. [2], such errors include grain 
flow and other sensor errors (moisture, speed, swath 
width), errors due to geo-referencing and combine move-
ment, operator errors and data processing errors (Shearer 
et al. [3], Blackmore and Moore [4]; Arslan and Colvin 
[5]). Steinmayr [6] gives a concise review of possible 
sources of error, their cause and impact and the corre-
sponding filtering techniques (e.g. Thylén et al. [7,8], 
Noack et al. [9]). 

The yield map values determined by my method 
does not depend on the removal of outliers, but from 
fitting the yield surface of the raw data using parabol-
oid cones on floating neighborhoods. By choosing these 

neighborhoods across the tracks wider than along them, 
the yield map can be adapted better to changes in yield 
along the tracks than across them. This is an advantage 
over other methods that often do not smooth suffi-
ciently across the tracks. The parameters for modeling 
a paraboloid cone are estimated by robust weighted 
M-estimators (cf. Hampel et al. [10], Section 6.3) so 
that the influence of outliers is automatically restricted 
or completely annihilated. Therefore, discarding or 
downweighting values that deviate too much from a 
paraboloid yield surface around a neighborhood, as 
done by Bachmaier and Auernhammer [11], is not 
necessary. However, measurements that are wrong for 
technical reasons, such as values where the combine 
enters the harvest tracks, are assigned zero weight, 
which corresponds to removing them. The use of 
weights has the additional advantage that, contrary to 
all other filtering techniques in the literature mentioned 
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above, there is no need to decide whether a measure-
ment should be removed (weight 0) or not (weight 1). 
A measurement can be assigned any weight between 0 
and 1, so the weights indicate how likely it is that the 
measurement is correct. In particular, there is no need 
to define limits for speed, moisture or swath width out-
side which the corresponding yield measurements 
should be discarded. The influence of a measurement 
on the yield map is greater, the greater its weight is. 
Only a measurement with weight zero has no influence 
at all, which corresponds to its being canceled. 

The example in this paper uses a data set where the 
yields have been converted to dry matter yields. Time 
and header status were not measured. Therefore for every 
measurement the distance to preceding harvest paths was 
calculated. A distance that is considerably smaller than 
the cutting width of the combine indicates that the meas-
urement cannot have come from a full swath, so it might 
be incorrect. The distance to preceding paths also down-
weights measurements because of end-path delays if the 
combine driver did not lift the header after harvesting a 
path. The GPS-points of the following low yield meas-
urements are usually close to other harvest paths around 
the boundary of the field. I applied a smooth method of 
weighting to reduce the effect of such dubious measure-
ments. 

2. The Yield Mapping Method 

2.1. Modeling Planes and Paraboloid Cones 

A paraboloid cone (Figure 1) is modeled for determining 
a yield map value at 0 0( , )x y  on a neighborhood around 

0 0( , )x y  where only a measurement on 0 0( , )x y  can 
have full weight. The weights of other points within the 
selected neighborhood decrease smoothly to zero at the 
border of the selected neighborhood. These weights are 
called local weights, whereas those for downweighting 
dubious values are global weights. 
Fitting paraboloid cones is only meaningful if one as-
sumes that the true unknown yield surface is smooth. 
From a mathematical point of view, it should be a twice 
continuously differentiable function of the Gauss-Krüger 
coordinates. Fields where any rectangles were cut out, as 
often occurs in agricultural trials, are to be excluded from 
consideration. 

But what is the true yield at a point of the field? Imag-
ine a point as a 1 cm   1 cm square. One could say that 
if there is a wheat ear at this point, the yield (in Mg ha-1) 
is tremendously large (as the area of 1 cm2 is so small), 
whereas the yield is zero if there is no ear. Such a yield 
map would have a huge microscale variation, and that is 
not desirable. It is sensible that the true yield denotes the  

 

Figure 1. Planes and paraboloid cones obtained by the 
moldels in (3) and (1). 

 
true average yield of a rectangle around this point, the 
rectangle to be harvested for measuring its yield with the 
monitoring process. Thus, the true yield surface is con-
tinuous. It has no microscale variation because points 
close to each other refer to almost the same area. 

Every continuously differentiable function defined on 
a two-dimensional area can be approximated by a skewed 
plane if it is confined to a small environment. A parabol-
oid cone, however, approximates a twice continuously 
differentiable function better as it can also take account 
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of hilltops or depressions. This allows a neighborhood 
that is considerably larger. Paraboloid cones arise from 
approximating smooth functions by a two-dimensional 
Taylor series that includes only linear and quadratic terms. 
Figure 1 shows some examples of what a paraboloid 
cone can look like. 

The two-dimensional quadratic model for fitting para- 
boloid cones is 

2 2
1 2 3 4 5 6=i i i i i i i iz x y x y x y e            

( = 1, , )i n                                 (1) 

where zi is the measured yield at the ith site ( , )i ix y . 
For reasons of numeric stability, the coordinates xi and yi 
should be the mean adjusted Gauss-Krüger coordinates 
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           (2) 

where GKx  and GKy  are the means of the 
Gauss-Krüger coordinates ,GKix  and ,GKiy  over all 
points used for fitting the cone. The random variables ie  
in (1) denote the errors, which should be around zero. 

In extrapolation or where there are few valid meas-
urements around a point 0 0( , )x y , the yield value should 
be obtained using a skewed plane rather than a parabol-
oid cone because the latter can lead to exaggerated values. 
A skewed plane is modeled by 

1 2 3=      ( = 1, , )i i i iz x y e i n          (3) 

Such a plane is horizontal if 2 3= = 0  . 

2.2. Estimating the Coefficients of Regression by 
Redescending M-estimates 

The regression coefficients are not estimated by classical 
least-squares because this method is not robust against 
outliers, which often occur in raw yield data. Instead, 
M-estimates are used. 

2.2.1 The Concept of an M-estimate 
To understand the concept of an M-estimate, consider 
first the simplest case of estimating a location parameter. 
A property of the mean z  is that the sum of deviations 
from it is zero: ( ) = 0iz z . This is demonstrated in 
Figure 2, where the bisecting line was moved back and 
forth until its deviations from the data points summed up 
to zero. Its intersection with the abscissa is the mean. 
Figure 2 shows that the outlier to the right causes the 
mean to move to the right. 

This effect can be avoided by bounding the bisecting 
line, so that the influence of any outlier is also bounded. 
This is illustrated in Figure 3, where the bisector is re-
placed by a bounded function, ψ. 

The influence of the outlier is reduced when solving  

 

Figure 2. Deviations from the mean. 
 

 

Figure 3.  -values of deviations from an M-estimate ̂ . 

 
ˆ( ) = 0iz  . The solution of this equation, ̂ , which 

is the intersection of the ψ-function and the abszissa, is 
called an M-estimate. Figure 3 shows that if the largest 
value were shifted further to the right, it would have no 
influence, whereas the smallest value, which is not an 
outlier, retains its influence on the estimate. The latter 
would not apply if one computed a trimmed mean. An 
M-estimate whose ψ-function redescends to zero is called 
a redescending M-estimate, which removes the effect of 
large outliers completely. 

Since the dispersion of the data is usually unknown, an 
M-estimate should be scale-invariant, which is so when a 
scale estimate is incorporated into the equation to be 
solved. The M-estimate for the location parameter is then 
defined by ˆ ˆ([ ] / ) = 0iz   . The scale estimate ̂  
can also be determined as an M-estimate for scale if one 
simultaneously solves an additional equation for ̂ . This 
will be done in the following, where M-estimates are 
expanded to a regression model. 

2.2.2. Weighted M-estimates in the Regression Model 
The objective is to estimate simultaneously the regres-
sion coefficients j  and the scale parameter   in (1) 
and (3) by robust weighted M-estimators. Thus, 1p   
equations have to be solved, where p  is the number of 
regression coefficients ( = 3p  if a skewed plane is mod-
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eled, = 6p  if a paraboloid cone is modeled). The solu-
tions ˆ

j , = 1, ,j p , and ̂  are the M-estimates for 
the unknown parameters j  and  . Following Huber 
[12] with slight changes for the scale estimate, the fol-
lowing system of equations is solved: 

=1 =1

2

=1 =1

2

=1 =1

=1

ˆ ˆ
= 0 = 0

ˆ ˆ

ˆ ˆ
= 0 = 0

ˆ ˆ

ˆ ˆ
= 0 = 0

ˆ ˆ

ˆ
= 0,

ˆ

n n
i i

i i i i
i i

n n
i i

i i i i
i i

n n
i i

i i i i
i i

n
i

i
i

e e
w w x y

e e
w x w x

e e
w y w y

e
w

n p

n

 
 

 
 

 
 




   
   
   
   
   
   
   
   
   
 
 
 
 
 
 

 

 

 

 


 

                                           (4) 

where the three equations of the right column in (4) are 
omitted for skewed planes ( = 3p ), and the residuals îe  
result as: 

1 2 3
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                                           (5) 

the weights iw  will be defined in (23). The number 
2
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1 2
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         (6) 

(Satterthwaite [13]) in the last line of (4) refers to them. I 
call it the effective number of data points. The idea be-
hind this can simply be explained for the mean as a spe-
cial case of linear regression. The variance of the mean 
of independent random variables iZ  with identical va-
riance 2 is given by 2 / n , but the variance of a 
weighted mean, * *

1 1 n nw Z w Z  , where 

*

1 2

= i
i

n

w
w

w w w  
          (7) 

results in 2 / n  . Thus, n  data weighted according to 

iw  lead to the same variance reduction as n  un-
weighted data. If all weights were equal, =n n . The ef-
fective number n  is greater the more the weights iw  
equal each other. It is never greater than n . Data points 
with a low weight, iw , such as those close to the border 
of the selected neighborhood, barely enlarge n , unless 
there are no data points close to the point to be mapped. 

The weighted M-estimates used for the regression and  

 
Figure 4. Redescending  -function. 

 

 

Figure 5. Bounded χ -function monotone in | x | . 
 
coefficients, j , are based on the  -function in (8) and 
the  -function in (9). Illustrated are these functions in 
Figure 4 and Figure 5. Both   and   consist of 
lines and parabolae only.   is defined as 
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                                           (8) 
and   is defined as 

0 0 0( ) = ( ) = ( ) 0.7102x x E x        (9) 
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                                          (10) 

0 0= = 0.7102E d    is the expected value of 0 ( )Z  
for an (0,1)N  distributed random variable Z , thus 
providing the scale parameter = 1  for the standard 
normal distribution. 

2.2.3 An Iterative Procedure to Obtain Regression 
Coefficients and Scale Estimate 
To obtain the regression coefficients ˆ

j , = 1, ,j p , 
and the scale estimate ̂ , the equation system in (4) is 
solved in the following three successive steps: 
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First step: starting values 
The starting value for the column vector of regression 

coefficients is obtained with the method of weighted 
least-squares: 

 1
L = ( )T T

S X WX X W z         (11) 

where 1= ( , , )T
nz zz is a column vector and the 

( )n p -matrix 
(1)

11 12 1

(2)
21 22 2

( )
1 2

= =

p

p

n
n n np

x x x

x x x
X

x x x

  
  
  
  
     

   




   


x

x

x

  (12) 

is the design matrix whose ith line ( = 1, ,i n ) consists 
of the line vector. 
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                                          (13) 

which is based on the mean adjusted Gauss-Krüger coor-
dinates xi and yi in (2). The weight matrix W = diag(w) is 
a diagonal matrix, i.e. ( ) =ii iW w  and ( ) = 0ijW  for 
i j . 

The starting value for the scale solution is 

 2
* ( )

L
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=
n

i
Si i

i

n
s w z

n p
   




x   (14) 

with *
iw  according to (7). n , which has been defined in 

(6), should be considerably greater than p . Since s  is 
based on squared deviations, it is subject to outliers, so 
that the robustly defined   might be overestimated. 
However, large starting values for scale should be pre-
ferred as they counteract the danger of scale implosion 
(Huber [14]). 

Second step: iteration based on moψ  and χ  
The classical starting values obtained in the first step, 
 (0)

L= S   in (11) and (0)ˆ = s  in (14), serve as the 
results of the iteration = 0m  in the second step. 

To avoid solutions that could abduct us from the bulk 
of the data, redescending M-estimates are not yet applied 
in the second step when running the iteration procedure, 
which will be described soon. Instead, the  -function 
  in (8) is made monotone by replacing its redescend-
ing parts by horizontal lines: 

mo

( ) for | | < 1.4
( ) =

1.15sgn( ) for | | 1.4

x x
x

x x





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  (15) 

The  -function remains unchanged, as it is already 
monotone in | |x . 

Third step: iteration based on   and   
Finally, the same iteration procedure is run again, us-

ing the results of the second step as starting values (itera-
tion = 0m ) and applying the redescending  -function 
  in (8) instead of the monotone one in (15). The re-
sults of the last iteration,  ( 1)m  and ( 1)ˆ m  , are the 
numerical solutions,   and ̂ , of the equation system 
in (4). 

The iteration procedure 
The iteration procedure follows Huber [14] or Huber 

[12], Section 7.8. However, contrary to Huber, the 
M-estimates ˆ

j , = 1, ,j p , and ̂  in (4) are weighted, 
and the definition of ̂  slightly differs from that of 
Huber. Therefore, the pocedure needs to be changed ac-
cordingly.  

It suffices to describe the (m + 1)th iteration on the ba-
sis of the results of the mth iteration ( 0m  ): 

Based on the vector of regression coefficients ( )ˆ m
j  

of the mth iteration, the residuals are computed first: 
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                                          (17) 

with *
iw  according to (7). Now, the residuals ( )ˆ m

ie  are 
used to compute the so-called Winsorized residuals: 

( )
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ˆ
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e
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
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
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         (18) 

where (mo) mo=   in (15) if the iteration refers to the 
second step, and (mo) =   in (8) if it concerns the third 
step. 

Using the vector of these Winsorized residuals, 
* * *

1̂ ˆ= ( , , )T
ne e e , the difference vector 

 1 *
1̂ ˆ= ( , , ) = ( )T T T

p X WX X W    e    (19) 

is calculated by weighted least-squares and used to com-
pute the new vector of coefficients of regression: 

  ( 1) ( )=m m q                (20) 

According to Huber [12], p. 183, theoretical consid-
erations suggest (mo)= 1/ ( ( / ))iq E ' e  . For (0,1)N  
distributed /ie  , this yields = 1.34q  if (mo) mo=  , 
and = 1.54q  if (mo) =  . Empirical results showed 
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that the factor q  could be relaxed, but only because the 
 -functions used are normed such that (mo) ( ) = 1' x  on 
a large area around 0. 

The iteration procedure ends if 

( 1) 1ˆ ˆ| |< (( ) )   for all = 1, ,m T
j jjX WX j p      

( 1) ( ) ( 1)ˆ ˆ ˆand  | |< /m m m n                    (21) 

for a small > 0 , e.g., 2= 10   in the second and 
3= 10   in the third step; 1(( ) )T

jjX WX   is the j 

th di-
agonal element of 1( )TX WX  . 

2.3. Weights 

2.3.1. Global weights 

The most important reason for omitting yield monitor 
data concerns start-path delays (see e.g. Thylén et al. [7], 
Simbahan et al. [2]). The first m  measurements are 
given the global weight zero, which discards them; the 
(m + 1)th measured value is downweighted by a factor of 
0.5 because of uncertainty as to whether this value is 
correct. The other values are then weighted fully in the 
context of delays. The size of m  depends on the yield 
monitor. For the Claas Agrocom Quantimeter, which was 
used in the trial described here, = 5m  proved adequate. 

Another reason for downweighting values is if the 
GPS points of the current swath are close to a preceding 
neighboring swath. Such a small distance might arise 
from GPS errors or inaccuracies, but it can also be the 
consequence of a smaller current swath width. If the 
minimum distance to the preceding harvest tracks, D , is 
small, it is less likely that the measured yield comes from 
a full swath width. At present, a raw yield value is 
weighted fully (weight 1) only if sw 0.5 mD   , whe-
reby sw means the “full” swath width, which is some-
what smaller than the combine’s cutting width, cw, when 
the combine is steered by a man. If sw 2.5 mD   , the 
raw yield value gets weight zero. The weights in between 
are obtained by linear interpolation. This is illustrated in 
Figure 6. 

In Bachmaier [1], the interpolation interval was 
(0.5 sw, 0.9 sw)  instead of (sw 2.5 m, sw 0.5 m)  , 
whereby I was influenced by researchers who discarded 
yield measurements with 0.5 swD  . I no longer de-
fend this because the positioning system’s accuracy, 
which is the main source of variation of D , does not de-
pend on the combine’s cutting width, cw, to which the 
full width of a swath, sw, is closely related. However, if 
positioning errors can be assumed to be approximately 
normally dis tributed, the left half of a Gaussian bell 
curve, 1 2exp( [( sw)m ] )D C D   , could give a still 
more suitable downweight function for swD  . For, 

 

Figure 6. A weight factor W  as a function of the mini-
mum distance D  to the preceding harvest tracks. 
 

= 0.3C , it comes close to the function in Figure 6. 
The global weight, iW , is the product of the single 

weight factors. For example, if the measurement is the 
t( 1) hm   value of a harvest track, it is downweighted by 

a factor of 0.5, as mentioned above, and if its minimal 
distance from neighboring tracks, D , is sw 1 m , it 
results in a weight factor of 0.75 (Figure 6). Finally, the 
yield at this point is given the global weight 

= 0.5 0.75 = 0.375iW  . 
Other sources of error that result in dubious measure-

ments, e.g. unusual values for moisture or speed, could 
be dealt with similarly. The greater the likelihood that the 
measurement is erroneous, the lower its weight is. 

2.3.2. Local Weights Based an Elliptical Distance 
from 0 0( , )x y  

To estimate the regression coefficients for the parabo-
loid cone or the plane at the point 0 0( , )x y , all points 
( , )i ix y  within an elliptical neighborhood see Figure 7 
are considered. The local weight 1 holds only at 0 0( , )x y , 
whereas the weight is zero at the boundary of the se-
lected neighborhood. The transition in between is ob-
tained by quadratic interpolation, because a local devia-
tion corresponds to a position error, and errors are usually 
quadratically considered. In particular, the local weight 
function is defined as 

2

elliptic
elliptic

across

( ) = max  0, 1  
d

w d
r

     
   

       (22) 

where across=r r  denotes the radius of the neighborhood 
across the tracks and ellipticd  is a distance measure be-
tween ( , )i ix y  and 0 0( , )x y  on the basis of an elliptical 
metric, which will be defined in (24). The weights 

elliptic( )w d  are local because they depend on the distance 
from the fixed point 0 0( , )x y , and they change if this 
point changes. 

The global weights, iW , do not depend on 0 0( , )x y . 
The final weights, iw , of the yield measurements at the 
points ( , )i ix y  within the neighborhood for determining 
the regression coefficients in (4) are the products of the 
global and local weights, so they also depend on 0 0( , )x y : 
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Figure 7. Local weight functions w  and v  for re-
gression coefficients and scale according to (4). 
 

elliptic 0 0= ( (( , ), ( , )))i i i iw W w d x y x y      (23) 

In Bachmaier [1] I used different local weight func- 
tions, w  and v , and thus, different weights, iw  and iv , 
in the equation system in (4), where the former served to 
estimate the regression coefficients j  by means of the 
 -function, and the latter were used to estimate   by 
means of the  -function. The weight function w  de-
creased linearly from 1 to 0, whereas v  downweighted 
more slowly (with the fourth power) to increase the ef-
fective number of data points with respect to the scale 
estimate, because higher moments — the scale estimate 
is a second moment — require more data to be efficient 
enough. However, since the weights iw , which were 
used to estimate the regression coefficients, decreased 
faster to 0, the paraboloid cone was less forced to adapt  

to yield values close to the neighborhood’s border, and 
hence, larger residuals could arise that distort the scale 
estimate. Therefore, and for the sake of simplicity, I now 
use the same local weight function, the quadratically de-
creasing w  in (22) (Figure 7), and thus the same weights 

iw  for estimating both j , = 1, ,j p , and  . 

2.4. An Elliptical Neighborhood 

Raw yield data often show surface textures along the 
harvest tracks that remain when the data are amended. In 
Bachmaier and Auernhammer [15] I showed that ordi-
nary kriging of amended data did not smooth out the 
harvest tracks sufficiently. Therefore, the neighborhood 
on which the paraboloid yield surface is fitted should be 
wider across the harvest tracks than it is along them. This 
can be achieved by an elliptical neighborhood (Figure 8). 

The butterfly neighborhood I used in Bachmaier [1] is 
more appropriate as a filtering technique (Bachmaier and 
Auernhammer [11]), because its length along the tracks 
is a little shorter at the current track than it is at the two 
adjacent tracks, and the assessment of a yield value (cor-
rect or not) should less be affected by values of the same 
track; they could be erroneous as well, for example if the 
swath has not its full width. 

A single swath of wrong values can also distort a yield 
estimate if its influence on the paraboloid regression is  

 

 

Figure 8. Contour lines of the weight function w  in (22) on a map point’s elliptical neighborhood with across 10swr =  and 

along 5swr = , i.e. across along 2a = r / r = , at a quadratic pattern of measuring-points. 
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too large. To avoid this, the neighborhood must be cho-
sen large enough, and the tracks in the mid should have 
nearly the same sum of weights iw . This is a further 
reason why the chosen local weight function w  defined 
on an elliptical neighborhood downweights more slowly 
than linearly. 

The ‘elliptical metric’, ellipticd , is based on the ratio, 

a , of the ‘radius’ (half diameter) of the ellipse across the 
harvest track and the ‘radius’ along it: 

2 2 2
elliptic 0 0 across along(( , ), ( , )) =i id x y x y c a c       (24) 

The components of the difference vector  

0 0( , ) ( , )i ix y x y  along and across the harvest tracks, 

alongc  and acrossc , can be calculated from neighboring 
GPS points on the same harvest tracks as follows: 

0 1 1 0 1 1
along 2 2

1 1 1 1

( )( ) ( )( )
=

( ) ( )

i i i i i i

i i i i

x x x x y y y y
c

x x y y

   

   

    

  

 

0 1 1 0 1 1
across 2 2

1 1 1 1

( )( ) ( )( )
=

( ) ( )

i i i i i i

i i i i

x x y y y y x x
c

x x y y

   

   

    

  

 

                                          (25) 

2.5. Rules for Deciding on the Model and the El-
liptical Neighborhood’s Size and Shape 

2.5.1. Advantages and Disadvantages of Modeling 
Planes and Paraboloid Cones 
The main advantage of modeling paraboloid cones over 
planes relates to yield peaks or depressions (see Figure 
1). If the yield is fitted by planes, a depression is overes-
timated and a peak is underestimated, whereas a parabol-
oid cone fits optimally provided that the neighborhood is 
not too large. Nevertheless, modeling paraboloid cones 
can lead to exaggerated results in the case of extrapola-
tion. This can occur at the beginning of a swath width 
and along the edges of a field, and extrapolation can be 
based on points far away from 0 0( , )x y . Therefore, where 
the extrapolation is over a distance or where there are 
few measurements near to 0 0( , )x y , the skewed plane 
should be used. 

2.5.2. The Measure earnf  
The choice of model can be based on the ratio of the sum 
of weights within a narrower neighborhood around 

0 0( , )x y  to the sum of weights within the entire neigh-
borhood. A small ratio indicates that there are only a few 
valid measurements close to 0 0( , )x y , so the desired fit is 
determined mainly by extrapolation. The paraboloid cone 
should be used only if this ratio exceeds a certain value. 

The considerations that lead to the choice of an elliptical 
neighborhood also depend on a sufficiently large share of 
valid measurements within the nearer environment. If it is 
too small, a circular neighborhood should be used. 

To ensure that the ratio changes smoothly, a function 
for a degree of membership in the narrower environment 
is used, which is 1 at the point 0 0( , )x y . Likewise to the 
local weight function w  in (22), it decreases quadrati-
cally to zero at the boundary of the neighborhood be-
cause the effect of a paraboloid extrapolation can also 
increase quadratically with the distance. This leads to the 
definition of the following ratio: 

2

=1 =1
near

=1 =1

elliptic 0 0

( ) [ ( )]
=

( )

where = (( , ), ( , ))

n n

i i i i
i i

n n

i i i
i i

i i i

w w d W w d
f

w W w d

d d x y x y


 

     (26) 

The sums relate to the weights of all points ( , )i ix y  
within an initial elliptic neighborhood of 0 0( , )x y . An 
increase of its size according to the rule in (30) does not 
involve a new computation of nearf . 

To form an idea of the limits at which to model para-
boloid yield surfaces or at which to use an elliptical 
neighborhood, the ratio of the expected values of the 
nominator and the denominator of nearf is helpful. Under 
the assumption of continuously and uniformly dispersed 
data points with global weight = 1iW , this ratio does not 
depend on the radii of the ellipse, so it can be calculated 
for a circle with radius 1: 

1
2 22

=1 =0
1

2

=1 =0

[1 ] 2 d[ ( )]
2

=  =
3

( ) [1 ]2 d

n

i
i d

n

i
i d

d d dE w d

E w d d d d





   
 
 

 
 

 

 
.    (27) 

2.5.3. Determining the Proportion of the Radii of the 
Elliptical Neighborhood 
Since monitor yield data often show surface textures 
along the harvest tracks, an elliptical neighborhood that 
is wider across the tracks than it is along them is pre-
ferred. The determination of an adequate radius propor-
tion, across along= /a r r , with statistical methods is not af-
forded in this article. Yield data obtained with the Claas 
Agrocom Quantimeter suggest that = 2a  could be a 
good choice. However, if there are few values in the 
nearer environment of 0 0( , )x y , so that nearf  in (26) is 
small, the neighborhood should not be shortened along 
the tracks, and a circular neighborhood, i.e. a local radius 
ratio of ( , )0 0

= 1x ya , should be used. Yet to determine 
this nearf , an initial neighborhood is already necessary. 
It is based on the `full' radius ratio, a , and on an initial 
radius across,minr , a proper value of which can be found 
using the method in Section 3. The initial radius along 
the tracks is then given by across,min /r a . Based on this 
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neighborhood, an initial measure, near,0 near=f f  in (26), 
is computed to determine the local radius ratio ( , )0 0x ya . 
For near,0 0.6f   it is assigned its maximum value, 

( , )0 0
=x ya a , because 0.6 is already close to the ratio, 

2 / 3 , of expected values in (27). A circular neighbor-
hood, i.e., ( , )0 0

= 1x ya , is only used if near,0 0.4f  , and 
for near0.4 < < 0.6f  the local radius ratio, ( , )0 0x ya , is 
defined as a linear interpolation between 1 and a . This 
is summarized in the following definition: 

near,0

near,0

( , )0 0

near,0

near,0

1 if   0.4

0.4
1 ( 1)

= 0.6 0.4
if   0.4 < < 0.6

if   0.6

x y

f

f
a

a
f

a f


   







       (28) 

Further computations of nearf  are based on a neigh-
borhood that already respects this local radius ratio, 

( , )0 0x ya . When deciding on the model, the radius 

across,minr  of the ellipse remains unchanged, whereas the 
radius along the tracks is adapted to it: 

along,min across,min ( , )0 0
= / x yr r a  .This can enlarge the neigh-

borhood, but it rarely occurs, unless corners of a field are 
harvested. The elliptical neighborhood with these radii, 

across,minr  and along,minr , also serves as the initial neigh-
borhood in (30), where the final neighborhood size is 
determined. Its shape, however, i.e., its radius ratio, 

( , )0 0x ya , remains unchanged, until the next point 0 0( , )x y  
is mapped. 

2.5.4. The Decision on the Model 
Paraboloid cones are preferred, therefore, the limit at 
which to model it should be less than the ratio in (27). 
The transition from planes to paraboloid cones should be 
smooth to obtain a continuous yield map. In Bachmaier 
[1], where both the local weight function and the degree 
of membership in the narrower environment decrease 
linearly, the ratio of expected values of nominator and 
denominator of nearf  resulted in 0.5, and a transition 
interval of (0.35,0.45) has proved adequate. Considering 
that this ratio has resulted in 2 / 3  for weight and 
membership quadratically decreasing, a transition area of 
(0.5,0.6) appears appropriate. This leads to the following 
model decision in (29): 

plane near,1

near,1 near,1
parab plane

near,1

parab near,1

fit if   0.5

0.5 0.6
 fit  fit

fit = 0.6 0.5 0.6 0.5
if   0.5 < < 0.6

fit if   0.6

f

f f

f

f


   

 





  (29) 

The measure near,1f , which it refers to, is based on the 
elliptical neighborhood with radii across,minr and 

along,min across,min ( , )0 0
= / x yr r a . 

Modeling only a horizontal plane (p = 1) for very 
small near,1f  has proved inadequate because areas with 
only a few measurements occur mainly at corners of a 
field, where the yield usually tends to become lower. 
Instead, the neighborhood size is increased until nearf  
reaches a minimum value of 0.30, so that there are 
enough data to fit an appropriate skewed plane. 

2.5.5. Determining the Neighborhood’s Size 
The neighborhood should also be enlarged if the effec-
tive number of data points, n , is less than a minimum 
effective number, minn . This often applies where the 
combine enters the harvest track because the corre-
sponding measurements have a global weight of zero. 
The rule for increasing the neighborhood's radii is as 
follows: 

across across,min

along along,min across,min ( , )0 0

min near

across along

min near

Start with an elliptical neighborhood

with radii =

and = = / .

If < or if < 0.3,

then multiply and by 1.01,

until and 0.3.

x y

r r

r r r a

n n f

r r

n n f 

 

 

  (30) 

The proportion, ( , )0 0x ya , of acrossr  to alongr , as well as 
the choice of model is no longer affected by this proce-
dure, as these decisions have already been made on the 
basis of near,0f  and near,1f . 

3. The Method of Finding an Adequate 
Neighborhood Size by Variance Com-
parison 

If the variance of the true unknown yields of the field 
were known, the yield map could be considered optimal 
if its variance equaled that of the true yields. If it is less 
than the variance of the true yields, the map is too 
smooth, if it is greater, the map is too detailed. The vari-
ance of the true yields is unknown. It needs to be esti-
mated in a way that does not depend on how the yield 
map has been generated. 

The variance of the measured yields comprises the va-
riance of the true yields and the error variance of the 
yield monitor. Hence, the required variance of the true 
unknown yields results in 

Var(true yields) = Var(measured yields)

Var(errors).
     (31) 



A Yield Mapping Procedure Based on Robust Fitting Paraboloid Cones on Moving Elliptical Neighborhoods 
 and the Determination of Their Size Using a Robust Variogram 

Copyright © 2010 SciRes.                                                                                  POS 

36 

The error variance, Var(errors) , can be estimated by 
the nugget component of a variogram. The reason is that 
there is no microscale variation in the yields because, as 
defined in the introduction, any yield at a field point re-
fers to the average yield on a rectangle to be harvested 
around it, so all the nugget effect arising in an empirical 
variogram reduces to the error variance, Var(errors) , of 
the yield monitor (Cressie [16], p. 59). However, outliers 
often distort the structure of a variogram, which makes 
the determination of this value by extrapolation impossi-
ble unless outliers are removed or the variances are esti-
mated robustly. Therefore, later I will switch to robust 
versions of variances and variograms. Nevertheless, for a 
better understanding it is desirable that the reader be fa-
miliar with the usual variogram, so I will introduce it 
first. 

3.1. The Variogram 

The empirical variance of measured values iz  can be 
given by the following two equivalent formualae; the 
latter is less well known. 

2

=1

2

all ( , )

 with 

1
Var(measured yields) = [ ]

1

1 1
= [ ] .

2

n

i
i

i j
i j

i j

z z
n

z z
N











    (32) 

= ( 1)N n n   is the number of summands in the latter 
formula, which expresses the variance as half the average 
of the squared differences between all pairs of values. 
Squared differences of yields usually increase if the spa-
tial distance between the data points increases. This is 
expressed by a variogram, which gives the variance as a 
function of the separation distance, h , which is also 
called the lag. Empirical variances, ˆ( )h , depicted in a 
variogram are restricted to pairs of values that are sepa-
rated by a given lag h , so they can be called variances 
of the yield data points at given separation distance h  
(Bachmaier and Backes [17]): 

      
( ) 2

=1

1 1
ˆ( ) = , ,

2 ( )

N h

i i i i i
i

h z x y z x y
N h

     h  

                                          (33) 

This writing is as usual as misleading. One must be 
aware that the index i  in this sum is not a counter of 
certain logged locations (mean adjusted GPS points), but 
a counter of pairs of such locations. A single location can 
occur in many pairs, so that, for example, the third 
logged location point, which was denoted by 3 3( , )x y  in 
Section 2, could now be indexed by 17 17( , ),x y 18 18( , ),x y …, 

25 25( , )x y . The index i  counts all pairs of those locations 

that are separated by a vector hi whose length, hi, is ap-
proximately equal to the target length h, i.e. 

[ , )
2 2i

c c
h h h   , where c  is the class width of dis-

tances used for computing a single variogram value 
( = 5c m in the variogram in Section 4). ( )N h  is the 

number of all these pairs. 
The total variance of the measured yields in (32) is 

split into variances at given separation distance in (33), 
which in turn can be used to obtain the total variance as a 
weighted mean of them: 

all 

all 

ˆ( ) ( )
Var(measured yields) = 

( )

k k
k

k
k

N h h

N h




    (34) 

where kh  correspond to the target distances h  in (33). 
They are the midpoints of the different classes, whereas 

kh  are the averages of all distances within class k , i.e.  

the averages of all ih  with [ , )
2 2i k k

c c
h h h   . An  

analogue of the formula in (34) is needed to compute the 
total variance robustly. 

3.2. A Robust Variogram for Estimating the 
Variance of the True Yields 

The variogram estimator ˆ( )h  in (33) is based on 
squared differences among data, so it is sensitive to out-
lying yield data points. A single outlying datum can dis-
tort the variogram estimates since it occurs in several 
paired comparisons over many or all lag intervals (Lark 
[18]). Moreover, the outlier does not affect the variogram 
values of all lag intervals equally; it can distort the shape 
of the variogram, which affects the determination of the 
nugget component by extrapolation. Such distortion can 
be diminished by robust estimates of the variogram. 
Robust variogram estimates have been introduced by 

several authors (Cressie and Hawkins [19], Dowd [20], 
Genton [21]). Lark [18] compared them with regard to 
robustness and efficiency. Since the formula of variance 
decomposition in (31) holds exactly only when referring 
to classical variances, I use a scale M-estimator whose 
 -function equals the classical one, 2( ) = 1x x  , if 

[ 2, 2]x   where about 95% of standard normally dis-
tributed data are located. This guarantees a high effi-
ciency for distributions close to normal (Bachmaier [22]). 
Outside the interval [ 2, 2]  the chosen -function be-
gins to deviate, and from | | 4x   it redescends until it 
reaches the value zero at | |= 7.5x  to exclude the effect 
of large outliers completely. It is illustrated in Figure 9 
and defined by parabolae and straight lines: 
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Figure 9. Redescending χ -function compared to the classical 

χ -function. 
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                                          (35) 

The robust variances, ˆ( )h , at a target separation dis-
tance, h , are then defined by the solution of 

    ( )

=1

, ,
= 0

ˆ2 ( )

N h
i i i i i

i

z x y z x y

h




  
 
 
 


h

    (36) 

with  as in Figure 9, where the index i  again counts 
pairs. Note that the solution of (36) would correspond 
exactly to the classical variogram estimate ˆ( )h  in Eq. 
(33) if one replaced the  -function in Figure 9 by the 
classical -function, 2( ) = 1x x  . 

To compute the robust variogram for the yield monitor 
data according to (36), it was necessary to omit sum-
mands related to pairs ( , )i jz z  that are close to each 
other on the same harvest track. This ensures near inde-
pendence of the remaining pairs ( , )i jz z . Pairs where 
either iz  or jz  has a global weight of zero were can-
celed also. Such a robust variogram is shown in Figure 
12. 

3.3. Estimating the Variance of the True Yields 

The desired classical variance of the true unknown yields 
is now, analogous to (31), computed as the following 
difference of robust variances: 

     
  

Var true yields Rob Var measured yields

RobVar errors




  (37) 

The robust error variance at separation distance zero, 

   RobVar(errors) 0         (38) 

which is the nugget component of the robust vario-
gram, is determined by a weighted cubic extrapolation 
(Bachmaier [23]). The weights decrease linearly with 
increasing separation distance; in particular: 

1ˆ( ( )) = 15w h , 2ˆ( ( )) = 14w h , 15ˆ( ( )) = 1w h , and 
ˆ( ( )) = 0kw h  for 16k  , where = 1k  represents the 

class [0 m,5 m) , = 2k  the class [5m,10 m) , and so on. 
Analogously to (34), the robust variance of all meas-

ured values, is estimated as a weighted mean of all values 
depicted in the robust variogram: 

 a

a

ˆ( ) ( )

(measured yields)
(

o
)

R bVar
k k

ll k

k
ll k

N h h

N h






.   (39) 

Thus, the variance estimation in (37) depends only on 
robust variogram values. They are barely affected by 
outliers, so they underestimate the theoretical classical 
variogram values a little, as these also include the vari-
ance of the yield monitor, which might be large because 
of the outliers. But since the underestimation of the ro-
bust variances affects all variances in the variogram si-
milarly, the difference in (37), which gives the desired 
variance of the true yields, is barely affected. Therefore, 
this estimation method worked well, as shown in the 
Monte Carlo results in Bachmaier [23]. 

 

4. Results for the Field Bandstauden in Zei-
litzheim 

In 2001 the winter wheat harvest of Bandstauden field in 
Zeilitzheim (Germany) was investigated. Using the 
measurements for moisture, the raw yield data measured 
by the Claas Agrocom Quantimeter with a data logging 
frequency of 0.2 Hz were converted to dry matter yields. 
Zero yields were omitted as were those with a missing 
value for moisture. Values with technical errors were 
assigned the global weight zero, which meant they were 
discarded also. 

Figure 10 shows the yield monitor data in Mg ha-1 and 
their global weights, iW , respectively. Weights less than 
1 arise from a small deviation from the preceding harvest 
path or from values at the beginning of a swath. Many 
neighboring swathes were harvested in the same direc-
tion, therefore, regions with invalid values are larger than 
usual. 

4.1. Yield Maps Generated Using Different 
Neighborhood Size 

Figure 11 shows three yield maps for different sizes of 
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an elliptical neighborhood with a radius ratio of 

across along= / = 2a r r . It decreases according to ( , )0 0x ya  in 
(28) if a point is mapped whose nearer environment does 
not contain enough valid data points. 
The larger the neighborhood size, the smoother the yield 
map is and the less is its variance. With a fine -textured 
yield map in Figure 11(a), there is a risk that it shows 
the errors of the yield monitor too clearly, whereas Fig-
ure 11(c) shows too much smoothing. To determine ap-
proximate degree of smoothness of the yield map, the 
variance of the true unknown yields must be obtained 
and compared with the variances given in Figure 11. 

4.2. The Adequate Smoothness of the Yield Map 

An adequate neighborhood size is obtained if the vari-
ance of the yield map equals that of the true yields. The 
 

 

Figure 10. Raw data iz  in Mg ha-1 and their global 

weights iW . 

 
Figure 11. Yield maps (in Mg ha-1) for different sizes of an 
elliptical neighborhood with = 2a . 
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variance estimation of the true yields is described from 
(36) to (39). It is based on the robust variogram in Fig-
ure 12, which clearly contains a trend component of the 
unknown yield map. Note that such a variogram would 
not be appropriate to determine kriging weights. For this, 
the variogram should be trend-adjusted. But a variogram 
that serves to determine the variance of the yield map 
must also contain the trend, as the trend is an essential 
part of it. The robust variogram in Figure 12 is drawn at 
the points kh , the mean of values ih  within class k . 

According to (37), the variance of the true yields is es-
timated by 

 


(true yields) (measured yields)

(errors)

=

Var Ro

1.21

bVa

0

r

Ro

.97

bVa

 = 24

r

 0.






  (40) 

where the robust error variance, (errors)RobVar = 0.97 , 
equals the nugget component, (0)̂ , which was obtained 
as the intercept on the ordinate of the extrapolated robust 
variogram in Figure 12. The robust variance of all 
measured values,(measured yields)RobVar = 1.21 , was 
computed as the weighted mean in (39), which refers to 
all values depicted in the robust variogram. 

Since the yield map is required to be as smooth as the 
true yields, Figure 11(b) should be chosen because its 
variance of 0.242 equals the estimated variance of the 
true unknown yields in (40). The elliptical neighborhood 
used to generate this yield map started with a minimum 

acrossr  of ten times the swath width (and, since 2=a ,  
 

 

Figure 12. Robust variogram with the redescending 
-function in (35). 

with a minimum alongr  of five times the swath width) 
and was increased until the minimum effective number 
of data reached min = 100n . This number needs to be 
adapted to the neighborhood size. It should approxi-
mately correspond to that n~  which is expected if most 
measurements of the neighborhood are valid. It depends 
on the data logging frequency, on the swath width, and, 
of course, on the neighborhood size. 

5. Discussion and Conclusions 

The yield mapping method proposed in this article is 
based mainly on modeling paraboloid cones on moving 
elliptical neighborhoods. The method of determining the 
parameters of the model is robust, so that the detection of 
outliers was not necessary. Besides, the method refers to 
weights that decrease, like a paraboloid cone opening 
downwards, to zero at the neighborhood’s border. This 
corresponds to a smooth transition from being fully con-
sidered to being not considered at all, so that a larger 
neighborhood is necessary, as the values close to the 
border do not have full weight. A robust variogram, 
computed independently of the yield mapping method, 
served to estimate the variance of the true unknown yield 
values. This provided a measure of how smooth the yield 
map would be if all values had been measured correctly. 
For an elliptical neighborhood with at least across = 10 swr , 

along = 5 swr  (i.e. 2=a ) and a minimum effective number 
of min = 100n  the estimated yield map had the same 
variance as the true unknown yield map. 

In 2004, an experiment was done on a part of the 
Lamprechtsfeld in Thalhausen (Germany) where meas-
ured reference values for yield data from two yield mon-
itors were obtained; Data Vision Flowcontrol and Ag-
Leader. The results based on butterfly neighborhoods 
suggest that, if one wants a yield map whose sum of 
squared deviations from the true unknown values is mi-
nimized, the neighborhood size should be greater than 
that of Figure 11(b). However, the yield map optimized 
under this criterion is much smoother than the map of the 
true reference values, i.e., its variance is too small. In 
Bachmaier et al. [24], where these results are published, 
the shape of the butterfly neighborhood was also opti-
mized. 

The method proposed in the present paper cannot be 
used to optimize the neighborhood’s shape, but it gets 
along with yield monitor data only. It could already be 
seen from Figure 9(a). in Bachmaier [1] that a circular 
neighborhood did not sufficiently smooth out the yield 
data across the tracks; these or other lines cannot be rec-
ognized in the present Figure 11, which is based on an 
elliptical neighborhood that is twice as long ( 2=a ) 
across the tracks than it is along them. Therefore, a ra-
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dius ratio of 2=a  might be a good choice. 
Currently, the proposed method is applied to a single 

yield monitor only (Claas Agrocom Quantimeter) with a 
data logging frequency of 0.2 Hz and one crop. It could 
also be applied to harvests from other crops or from 
combines equipped with other cutting widths and other 
yield monitors. This might lead to different results, 
however, the yield mapping rule proposed here would 
produce yield maps that are not too smooth, not too fine 
-textured and not subject to large outliers. The reason is 
that it requires at least a radius of across = 5 swr  and it 
does not depend on the swath width, sw, because the 
radii are expressed in multiples of it. This also guarantees 
robustness against exclusively erroneous measurements 
on one or two harvest tracks within the neighborhood. 
The method requires a minimum effective number of 
data, min = 100n . A yield monitor with a higher fre-
quency, such as the AgLeader monitor, provides more 
data, so min = 100n  would be reached within a smaller 
neighborhood. But these data are usually less accurate, so 
the neighborhood size should not decrease. What should 
be adapted to the yield monitor is the number, m , of zero 
-weights at the beginning of harvest tracks. It should in-
crease with the frequency of the system and be adapted 
to the intensity of its smoothing algorithm. In the Fortran 
program paraboloidmapping.exe (Bachmaier [25]), where 
the yield mapping method is implemented, I currently 
use m = 5 for Claas Agrocom, 6=m  for Data Vision 
Flowcontrol, which has a stronger smoothing algorithm, 
and 15=m  for AgLeader because of its high frequency 
of 1 Hz. 
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