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Abstract 
This study elaborates on the application and unique contributions of zinc sul-
fide quantum dots (ZnS QDs) in tumor imaging, highlighting their significant 
potential in the field of nanomedicine, particularly in tumor imaging tech-
niques. Zinc sulfide quantum dots are distinguished by their superior optical 
properties, chemical stability, and excellent biocompatibility. Our research 
focuses on the customization of ZnS QDs through integration with biocom-
patible compounds, and the use of covalent bonding and self-assembly tech-
niques to incorporate fluorescent and bioactive groups. This significantly en-
hances imaging precision and efficiency for specific tumor markers. Fur-
thermore, we explore zinc sulfide quantum dots with multimodal imaging 
capabilities, such as manganese-doped CdS quantum dots (Mn:CdS QDs). 
This novel discovery paves the way for precise tumor detection, localization, 
and treatment. Despite the promising applications of zinc sulfide quantum 
dots, challenges including toxicity, stability, and biocompatibility issues must 
be addressed in their clinical translation. Thus, this paper calls for future re-
search to focus on developing safer and more efficient new fluorescent probes 
and to delve deeper into the stability and drug release characteristics of 
quantum dots to facilitate their use in clinical tumor diagnosis and treatment. 
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1. Overview of Quantum Dots 

Quantum dots, as zero-dimensional semiconductor nanocrystals, [1] are unique 
not only for their nanoscale dimensions and material diversity, such as II - VI 
(CdTe, CdSe), III - V (InP, GaN), or IV - VI (PbSe) semiconductors, but also for 
their extraordinary optical and electronic properties. These nanocrystals, typi-
cally ranging in diameter from 1 to 12 nanometers, exhibit strong quantum con-
finement effects due to their size being close to or smaller than the material’s ex-
citon Bohr radius. This results in optical and electrical properties that are signif-
icantly different from those of bulk materials. In particular, quantum dots have 
high quantum yields, noticeable Stokes shifts, and size-tunable emission wave-
lengths with narrow emission spectra, making them ideal fluorescent markers 
[2]. Moreover, the chemical stability of quantum dots and the potential to adjust 
their biocompatibility make them highly attractive candidates for biological im-
aging, especially in tumor detection and imaging. The biocompatibility and tar-
geted imaging capabilities of quantum dots are significantly enhanced through 
surface modification and functionalization strategies, such as encapsulation with 
biocompatible polymers or targeted modification with biological binding mole-
cules (e.g., antibodies or peptides). These strategies not only address the poten-
tial toxicity issues associated with the original quantum dots in biological sys-
tems but also expand their applications in precise tumor localization, multimod-
al imaging, and therapy monitoring. The pioneering work of Alivisatos et al. in 
1996 and subsequent studies have demonstrated the immense potential of 
quantum dots in the fields of biological labeling and imaging [3]. With a deeper 
understanding of the tunable optical properties of quantum dots and continuous 
improvements in their biocompatibility, the application of quantum dots in 
biomedical research has expanded from basic scientific studies to actual clinical 
applications, especially in early tumor diagnosis and monitoring treatment effi-
cacy, demonstrating unprecedented value. 

Despite the relatively short history of quantum dots in biological and medical 
applications, they, particularly zinc sulfide quantum dots, have shown tremend-
ous potential, especially in biomolecular labeling, cell labeling, in vivo imaging, 
and cellular immunoassays. Since quantum dots were first successfully used as 
biological probes in living cells in 1998, researchers have delved into techniques 
for binding quantum dots to biomolecules through surface functionalization. 
Zinc sulfide quantum dots (ZnS QDs), with their excellent photostability and re-
sistance to photobleaching, perform exceptionally well in continuous and exten-
sive nanocrystal laser spectra distributions, making them an ideal choice for flu-
orescent markers. 

Compared to other quantum dots, zinc sulfide quantum dots exhibit signifi-
cant advantages in toxicity and biocompatibility. They can enter cell membranes 
or cytoplasm more safely and be specifically recognized, allowing for rapid and 
sensitive detection of specific components in biological systems. This characte-
ristic makes zinc sulfide quantum dots particularly important in tumor imaging, 
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as they can provide deep insights into the tumor microenvironment with mi-
nimal toxic response in surrounding healthy tissues. Another advantage of sem-
iconductor quantum dots is their ability to absorb a broader range of light wave-
lengths than most organic dyes while providing a narrower range of emission 
wavelengths. The unique properties of zinc sulfide quantum dots, combined 
with their low toxicity, make them highly favored in interdisciplinary research, 
especially in fields such as biology (e.g., fluorescent labeling and cell imaging), 
analytics (e.g., detection of small molecular compounds and large protein mole-
cules), energy, sensing technologies, and optoelectronic devices, demonstrating 
significant research and application potential. 

2. Overview of Zinc Sulfide Quantum Dots 

Zinc sulfide (ZnS) is a key member of the II - VI semiconductor family and one 
of the earliest discovered semiconductors. It exists in two structural phases, each 
with its unique stacking arrangement: cubic phase (C-ZnS) with a sphalerite 
structure, and hexagonal phase (H-ZnS) with a wurtzite structure. The cubic 
sphalerite structure is composed of tetrahedral zinc and sulfur atoms arranged in 
an ABC ABC ABC stacking sequence, while the hexagonal wurtzite structure ex-
hibits an AB AB AB type of close packing. The distinctive arrangements of these 
crystal structures not only affect their electronic structure and bandgap models 
but also determine their photoluminescence properties, which are crucial for 
tumor imaging applications. In tumor imaging, these structural characteristics 
mean that zinc sulfide quantum dots can optimize their optical properties, such 
as bandgap width and emission wavelength, by adjusting size and phase struc-
ture. The cubic ZnS is more stable at low temperatures, while the transition 
temperature to the hexagonal phase can be reduced by decreasing particle size, 
which is particularly important for synthesizing quantum dots with specific opt-
ical properties at low temperatures. Moreover, the bandgaps of zinc sulfide 
quantum dots are 3.72 eV (cubic phase) and 3.77 eV (hexagonal phase), respec-
tively, [4] and both structures have large defect bands and exhibit numerous 
dislocations when the system is in a critical state. Under normal pressure, cubic 
sphalerite ZnS shows higher stability in low-temperature environments and only 
transitions to hexagonal wurtzite ZnS at temperatures greater than or equal to 
1023˚C, making it quite challenging to obtain hexagonal wurtzite ZnS under 
low-temperature conditions [5]. However, the transition temperature is not 
constant. Studies have shown that cubic wurtzite ZnS can be obtained through a 
phase transition from cubic sphalerite ZnS at a temperature of 400˚C [6], indi-
cating that the phase transition temperature of sphalerite and wurtzite decreases 
with the reduction in particle size [7]. Additionally, its lower lattice constant 
makes its band structure relatively complex and varied, which determines its 
unique optical and electrical properties. Therefore, by precisely controlling the 
structure and size of zinc sulfide quantum dots, researchers can develop new 
probes with optimized optical properties that improve the accuracy and effi-
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ciency of tumor imaging. With a deeper understanding of the relationship be-
tween the structure and optical performance of zinc sulfide quantum dots, we 
can better exploit the tremendous potential of these nanomaterials in early di-
agnosis and therapeutic monitoring. 

As research on quantum dots progresses, scientists are increasingly focusing 
on developing low-toxicity, high-stability, and cost-effective nanomaterials, par-
ticularly non-cadmium-based quantum dots, among which ZnS quantum dots 
are widely used in various fields due to their exceptional optoelectronic proper-
ties. Compared to traditional cadmium-based quantum dots, zinc sulfide quan-
tum dots not only exhibit higher luminescence efficiency but also have lower bi-
ological toxicity, making them particularly important in the biomedical field, 
especially in tumor imaging [8]. However, pure ZnS quantum dots have limita-
tions in terms of luminescence efficiency, resistivity, ease of use, optical cover-
age, and stability, restricting their further application [9]. Under certain specific 
environmental conditions, these QDs may decompose to produce harmful gases, 
causing damage and pollution to people and the atmosphere [10]. To address 
these challenges, the performance of ZnS quantum dots has been optimized 
through metal doping strategies. Specifically, ZnS quantum dots doped with 
manganese (Mn) and copper (Cu) have received widespread attention for their 
improved chemical inertness and biocompatibility. This doping not only ex-
pands the absorption and emission range of quantum dots, producing a variety 
of fluorescent effects, but also significantly improves their photoresponse effi-
ciency and stability. Particularly in tumor imaging, doped ZnS quantum dots of-
fer high sensitivity and specificity in recognizing tumor markers, facilitating 
early diagnosis and disease monitoring. For instance, Mn-doped ZnS quantum 
dots have been successfully applied in multimodal tumor imaging, where their 
unique fluorescent and magnetic properties enable them to serve as fluorescent 
probes for high-resolution imaging and also be used in Magnetic Resonance 
Imaging (MRI), providing an efficient integrated imaging solution. Further-
more, Cu-doped ZnS quantum dots have shown great potential in visual detec-
tion of specific tumor markers due to their efficient photoresponse at specific 
wavelengths. These advancements demonstrate the significant role of doped ZnS 
quantum dots in enhancing tumor imaging technology, not only greatly opti-
mizing the performance of fluorescent probes but also facilitating revolutionary 
progress in early tumor diagnosis and treatment efficacy evaluation. Through 
these doping strategies, zinc sulfide quantum dots have emerged as a highly 
promising research direction in the field of tumor imaging, showcasing their 
immense potential in reducing environmental pollution and enhancing biomed-
ical applications. 

3. Application of Zinc Sulfide Quantum Dots in Tumor 
Imaging 

By combining biocompatible compounds with the surface of quantum dots, 
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these particles are endowed with the potential for intracellular imaging. The fix-
ation of biocompatible molecules on quantum dots through interactions such as 
covalent and hydrogen bonds, followed by their application as probes in the im-
aging of tumor tissues and organs, demonstrates this potential [11]. When these 
biocompatible compounds interact specifically with biomolecules in a certain 
region within the cell, quantum dots are capable of internalization and imaging 
within that specific area [12]. However, despite these strategies significantly en-
hancing the application potential of zinc sulfide quantum dots in biological im-
aging and tumor treatment, the specific interaction mechanisms and their im-
pact on tumor imaging efficacy require further clarification. For instance, in 
2003, Chen et al. demonstrated the application of quantum dots in tumor labe-
ling by combining charged CdSe@ZnS quantum dots with luminescent dextran 
nanospheres, where the strong adhesion between glycan residues and proteins 
offered an effective method for studying protein-glycan interactions [13]. In 
2009, Wei et al.’s successful preparation of CdSe@ZnS quantum dots with tran-
scription-activating protein (TAT) functionality further evidenced the potential 
of surface-modified quantum dots for targeted tumor therapy and controlled 
drug release [14]. Nonetheless, zinc sulfide quantum dots still face a series of 
challenges in tumor imaging applications, such as optimization of cytotoxicity, 
stability, and biodistribution. The size, surface modification, and charge charac-
teristics of quantum dots significantly influence their behavior and efficacy in 
biological systems. For example, variations in particle size not only affect their 
biocompatibility but also determine their distribution within cells, with smaller 
particles tending to concentrate around the cell nucleus, whereas larger particles 
are more distributed between the nucleus and lysosomes. Thus, precise engi-
neering of quantum dots is key to their application in clinical tumor imaging. 
Facing these challenges, future research should focus on developing new strate-
gies to improve the surface engineering of zinc sulfide quantum dots, enhancing 
their biocompatibility and targeting capabilities while reducing potential toxici-
ty. With a deeper understanding of the interactions between quantum dots and 
biological systems, we can better design and optimize quantum dot systems for 
tumor imaging, driving the field towards safer and more effective directions. 

Due to the outstanding luminescent properties of zinc sulfide quantum dots, 
they have become an important tool for high-definition cell imaging, long-term 
in vivo cell tracking, and tumor localization studies [15]. For instance, in 1999, 
Kang et al. conducted detailed imaging studies on HepG2 cells by combining 
Mn:ZnSe quantum dots with chitosan. They discovered that Mn:ZnS quantum 
dots, modified with mannose, exhibited unique and specific characteristics in 
cell labeling. However, the larger particle size of mannose and chitosan limited 
their application from a fluid dynamics perspective, highlighting the importance 
of optimizing particle size and surface properties when designing nanomaterials 
for biomedical applications [16]. In 2005, Santra demonstrated the application of 
Mn:CdS quantum dots in in vivo imaging, especially how these quantum dots, 
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when combined with the tetanus toxoid peptide (TAT), achieved a breakthrough 
in targeted fluorescence labeling [17]. This combination took advantage of 
TAT’s specific transmembrane capability, allowing quantum dots to seamlessly 
cross the blood-brain barrier and selectively label cerebral vessels, which is of 
significant importance for research in neuroscience and oncology. Moreover, the 
successful preparation of water-soluble quantum dots through the encapsulation 
with chitosan/polystyrene nanoparticles opened new avenues for fluorescence 
detection of intravascular tumor markers. These applications not only highlight 
the extensive application potential of zinc sulfide quantum dots in the field of 
tumor imaging but also underscore the importance of further developing these 
technologies. Using polysaccharides for encapsulation in the cellular environ-
ment is an effective way to improve the biocompatibility of quantum dots, also 
offering a strategy to enhance their performance in clinical applications. Future 
research should further explore how to optimize their biodistribution, stability, 
and targeting by refining the surface modifications and structural design of 
quantum dots, to fully harness their great potential in tumor diagnosis and 
treatment. 

As an innovative imaging approach, multichannel imaging has garnered 
widespread attention in the scientific community for its ability to provide com-
prehensive biological data beyond traditional single-mode methods. Particularly, 
nanoscale multichannel imaging probes that combine Magnetic Resonance Im-
aging (MRI) with optical imaging have shown great application prospects. In re-
cent years, researchers have developed various nanomaterials with unique func-
tionalities, including metal-organic compounds, semiconductors, graphene, and 
other inorganic nanoparticles, to meet the complex needs of clinical diagnostics. 
In 2006, Yang et al. successfully synthesized Mn:CdS quantum dots with dual 
MRI and fluorescence imaging functionalities, opening a new chapter in multi-
modal imaging techniques [18]. Building on this, a novel type of quantum dot 
was further designed and prepared, which not only incorporates nuclear mag-
netic resonance and fluorescence imaging but also adds photoacoustic imaging 
capabilities, significantly expanding its application range. These quantum dots 
were first coated with silica oxide, then captured $Gd3+. $ through functiona-
lized polymers. This structure not only ensured that the fluorescent nanopar-
ticles produced strong optical signals when activated but also triggered a series 
of biochemical reactions targeting the tissue, effectively improving the accuracy 
and efficiency of imaging. Due to their significant proton relaxation effects, 
$Gd3 ± Mn-CdS $QDs demonstrated potential as live-cell MRI contrast agents, 
becoming an excellent molecular probe for magnetic resonance. This multifunc-
tional imaging probe, combining the deep penetration ability of MRI with the 
high resolution of fluorescence and photoacoustic imaging, offers a new efficient 
and precise tool for future biomedical research and clinical applications. 

CdSe@ZnS quantum dots, through covalent bonding with so-called “photo-
sensitizer” molecules acting as electron donors, possess the capability to oxidize 
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or reduce oxygen, especially at the molecular edges of molecular oxygen and 
water. This property enables them to generate reactive oxygen species (ROS) and 
phototoxicity, offering a potential pathway for photodynamic therapy. In 2009, 
Mei demonstrated a method for preparing quantum dots and gold nanoparticles 
coupled via PEG, which not only enhanced their resistance to environmental 
changes but also facilitated their application in bioanalysis and live cell imaging 
[19]. Additionally, in 2009, Susumu showcased the role of ligand exchange tech-
niques in enhancing the water solubility and biocompatibility of quantum dots 
by preparing DHLA-PEG ligands with terminal functional groups [20]. Cooper 
in 2010, using dopamine as a photosensitizer, studied the generation of ROS in 
solution and within cells, providing important foundational data for the applica-
tion of quantum dots in photodynamic therapy [21]. In 2011, Wang and col-
leagues introduced $Mn2+ in $CdSe@Mn-doped ZnS QDs successfully com-
bining the optical properties of quantum dots with magnetic resonance imaging 
capabilities for multimodal imaging [22]. These quantum dots could not only 
visually mark macrophages through fluorescence imaging but also facilitate con-
trast imaging using MRI technology, demonstrating their potential in tumor di-
agnosis and therapy. Furthermore, the introduction of Fe3O4 nanoparticles ex-
panded the application of quantum dots in intracellular drug transport imaging 
[23]. These advancements not only reveal the broad application prospects of 
quantum dots in the field of tumor therapy but also show that through function-
al doping, such as the introduction of cancer inhibitors, folic acid, and polyethy-
lene glycol, it is possible to prepare nanoprobes that possess both optical and 
MRI imaging capabilities and can achieve targeted drug release. These probes 
provide new tools for precise diagnosis and treatment of tumors, showcasing the 
continuously expanding potential of quantum dots in the biomedical field. 

The potential toxicity of quantum dots is a major barrier to their clinical ap-
plication. Therefore, developing new fluorescent probes that are both low in 
toxicity and highly efficient is particularly crucial for tumor imaging. In this 
context, Mn:ZnS and Mn:ZnSe quantum dots are considered promising candi-
dates in the field of biological imaging due to their relatively low cytotoxicity. In 
vitro experiments have shown that even at a concentration of 100 mM for 48 
hours, Mn:ZnS quantum dots exhibit no significant toxicity to cells, a characte-
ristic that may originate from their inherent good water solubility. Furthermore, 
after treating cells with SiO2-S-Mn-ZnS quantum dots, the morphology and vi-
tality of the cells remained essentially unchanged, further indicating that the 
toxic effects of these quantum dots are negligible. Recent studies, using Mn:ZnSe 
quantum dots for imaging human prostate cancer cells, have shown that these 
quantum dots have relatively low toxicity to cells, suggesting their potential for 
tumor targeting. Due to the low cytotoxicity, bright multicolor luminescence, 
high specificity to cancer cells, and excitability by biologically friendly visible 
light of Mn:ZnS quantum dots, they have become a highly regarded biological 
probe in the field of cancer cell imaging. Given the low cytotoxicity of ZnS or 
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ZnSe quantum dots themselves, transition metal-doped ZnS quantum dots have 
shown great application potential in areas such as drug transport. In 2011, Xu 
and colleagues demonstrated the multifunctionality and broad potential of these 
materials in medical applications by using a mixture of manganese and ZnS 
quantum dots modified with glycopeptides for the loading and release of ibu-
profen [24]. 

Multimodal imaging contrast agents, possessing unique magnetic resonance 
and optical imaging functions, demonstrate vast potential in disease detection 
and treatment. In 2008, Chen combined alpha-fetoprotein (AFP) monoclonal 
antibodies (Ab) with CdSe@ZnS quantum dots (QDs-AFP-Ab) aiming to detect 
AFP levels in human liver cancer cell lines (HCC LM6). Both in vivo and in vitro 
studies confirmed that QDs-AFP-Ab exhibited high stability, specificity, and bio-
compatibility in the liver cancer model system for ultrasensitive fluorescence im-
aging of molecular targets [25]. Currently, quantum dots that are water-soluble, 
biocompatible, and chemically stable are considered unsuitable for subcellular 
component labeling or staining due to their large size. In 2011, Lim developed a 
dual-mode contrast agent called perfluorodecalin (PFD)/InGaP@ZnS nanocom-
posite microemulsions, which possess F magnetic resonance imaging characte-
ristics [26]. Studies showed that this dual-mode contrast agent could easily be 
transported into both phagocytic and non-phagocytic immune cells. The multi-
functional PFD/InGaP@ZnS nanomicroemulsions can be absorbed into immune 
therapeutic cells, allowing marked cells to be imaged by magnetic resonance or 
fluorescence imaging with relatively minimal impact on cell survival and func-
tion. 

Transferrin and anti-Claudin-4 labeled CdSe@ZnS quantum dots can serve as 
optical contrast agents for in vitro pancreatic cancer cell imaging. Besides in vi-
tro confocal microscopy, cell-free co-precipitation analysis also verified the 
transferrin-mediated labeling, and the use of monoclonal anti-Claudin-4 dem-
onstrated the specific extraction of pancreatic cancer. Furthermore, it was found 
that quantum dots themselves do not affect the proliferative activity of cancer 
cells but can enhance the tumor tissue’s sensitivity to chemotherapeutic drugs, 
thereby increasing therapeutic efficacy. Semiconductor quantum dots, due to 
their photophysical superiority over organic dyes, are considered high-quality 
markers in biomedical applications. Since quantum dots inherently lack immu-
nogenicity and tumor selectivity, they have unique advantages in targeted therapy. 
Folic acid (FA), a common receptor on cancer cells, has been linked to Mn:ZnS 
QDs. By specifically recognizing the high expression of folate receptors on tumor 
cell surfaces, precise quantification of cancer cells was successfully achieved [27]. 
Manzoor utilized doping quantum dots, harmless to cells and biocompatible 
under visible light excitation, to successfully detect folate receptor-positive hu-
man oral epidermoid carcinoma cells (KB). Given the multiple crucial roles of 
Zn2+ in biological systems, the detection of intracellular Zn2+ has attracted wide-
spread attention. In 2009, Ren and others successfully assembled Mn:ZnS QDs 
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modified with SiO2 containing S2− and imaged intracellular Zn2+ [28]. 

4. Conclusions 

Zinc sulfide quantum dots, as materials with nanoscale structures, have shown 
great potential and promising prospects in tumor in vivo imaging. Their unique 
optical properties, excellent chemical stability, and good biocompatibility make 
them one of the most promising nanomaterials in the current development of 
the biomedical field. Particularly in the realm of tumor imaging, quantum dots 
have been endowed with the ability to image specific biological markers through 
the combination of biocompatible compounds with their surface. Researchers 
have utilized this technology to successfully study the functional status of tumor 
tissues, drug delivery mechanisms, and treatment effects, achieving significant 
milestones by covalently binding or using self-assembly techniques to combine 
quantum dots with specific bioactive groups or fluorescent groups. 

Furthermore, quantum dots with multimodal imaging capabilities have been 
developed, such as Mn:CdS quantum dots that combine MRI and fluorescence 
imaging characteristics, and multimodal imaging contrast agents with both 
magnetic resonance and optical imaging functions. These advanced multimodal 
imaging techniques offer more choices and possibilities for tumor diagnosis and 
treatment, and are expected to play an important role in future clinical applica-
tions. However, despite the significant potential of zinc sulfide quantum dots in 
the field of tumor imaging, their application still faces several challenges and li-
mitations. Among them, toxicity issues related to quantum dots are a major ob-
stacle, limiting their widespread use in clinical settings. Therefore, future research 
efforts need to focus on developing new types of low-toxicity, high-efficiency fluo-
rescent markers to address this critical issue. Moreover, further research on the 
stability, biocompatibility, and drug release characteristics of quantum dots will 
provide a more solid scientific foundation and technical support for their clinical 
application in tumor therapy and imaging. 
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