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Abstract 
This paper explores causal inference through cognitive psychology, focusing 
on the dual-processing theory of the mind, which includes fast (System 1) 
and slow (System 2) thinking. It explains that our fast thinking, geared to-
wards identifying causes, helps us survive but can also lead to incorrect causal 
inferences. The paper underscores the need for slow, deliberate thinking in 
accurately determining cause-and-effect, a challenging but essential ap-
proach. It outlines established methods for developing precise causal infe-
rence frameworks and highlights the need for a balanced approach in re-
search, utilizing both systems for creating effective causal diagrams. It pro-
poses using the “thinking, fast and slow” concept to combine System 1’s in-
tuitive reasoning with System 2’s thorough causal analysis, improving causal 
inference in everyday research. 
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1. Introduction 

This paper reviews The Book of Why by Judea Pearl and Dana Mackenzie [1], 
analyzing it from a cognitive psychology standpoint, specifically through the lens 
of the dual-processing theory of the mind [2]. It is a meta-review, examining the 
material from the perspective of how our minds process information. According 
to Simonyi’s law, named after the lead developer of Microsoft Word, “everything 
that can be done can be done meta.” The paper examines how our fast thinking 
(or System 1 thinking), evolved in the Paleolithic for identifying causes to ensure 
survival, frequently leads to incorrect causal inferences in today’s world. There-
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fore, for accurate cause-and-effect analysis, slow, deliberate thinking (or System 
2 thinking) is essential. However, implementing this approach in practice is 
challenging. 

Evidence-based medicine, which favors data-driven decisions over val-
ue-based ones, has outpaced eminence-based medicine. An empirical approach 
is crucial, though it does not imply that everything is solely contained in the data. 
However, in our mind’s automatic mode, we are susceptible to type I errors or 
false positives, perceiving patterns in randomness. This phenomenon, known as 
patternicity, often leads to attributing these random patterns to supernatural 
causes (agenticity). Hence, it is wise to combine empiricism with skepticism, 
necessitating slow, deliberate thinking. Nassim Taleb [3] advocates for empirical 
skepticism in The Black Swan, but he does not discuss its cognitive demands, a 
topic we explore here. 

Slow thinking can also lead to errors, such as type II errors or false negatives, 
by missing existing patterns. Scientists, who primarily use System 2 thinking, are 
less likely to be deceived by randomness due to their empirical skepticism. 
However, they remain susceptible to type II errors. Statistics, an essential tool in 
modern science, exemplifies this. Statistics show correlations, not causation, 
which can sometimes result in type II errors. Causation only occurs in statistics 
when two variables have a deterministic relationship, indicated by a correlation 
coefficient of either 1 or −1. 

A type I error, or a false positive, occurs when a true null hypothesis is incor-
rectly rejected [4]. It is an error of commission, involving the detection of 
non-existent patterns. Conversely, a type II error, or a false negative, happens 
when a false null hypothesis is not rejected [4]. This is an error of omission, 
where actual patterns are overlooked. 

Cognitive psychologists recognize the two mental processes, popularized by 
Daniel Kahneman as System 1 and System 2 [5] [6]. System 1, older in evolutio-
nary terms, consists of autonomous subsystems and is responsible for do-
main-specific processing. System 2, in contrast, allows for abstract reasoning and 
hypothesis use, serving as a domain-general processing mechanism. This dis-
tinction highlights evolutionary rationality (System 1 logic) versus individual ra-
tionality (System 2 logic). The late development of System 2 enables humans to 
pursue personal goals, beyond genetic objectives, leading to what is termed the 
“carbon robot revolution” [7]. This revolution signifies the possibility of over-
coming the constraints of natural and sexual selection. 

Most evolutionary psychologists reject the concept of a domain-general 
processing mechanism (System 2) [8] and adhere to the modularity of the mind 
hypothesis (System 1) [9]. A few cognitive psychologists agree, suggesting that 
both intuitive and deliberate judgments operate on common principles [2]. Al-
though the majority of evolutionary psychologists dispute the idea of a gener-
al-purpose, content-free cognitive architecture, a growing number are starting to 
acknowledge the two-minds theory [10]. 

Evolutionary psychologists contend that although specialized adaptations 
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arise from recurring adaptive problems, humans also encountered novel prob-
lems too infrequent for specific adaptations to evolve. They caution against pre-
maturely assuming the existence of a domain-general processing mechanism 
alongside proven domain-specific mechanisms. The domain-specific mind 
theory has effectively revealed key mechanisms, and it is yet to be determined if 
the domain-general mind theory will produce similar empirical findings [10]. 

The human mind’s mechanisms are interdependent, as they share data among 
each other [10]. For instance, internal data like sight, smell, and hunger combine 
to assess food’s edibility. This lack of information encapsulation in psychological 
mechanisms contradicts the idea of modularity [10]. Encapsulation would mean 
each mechanism operates on isolated information, not integrating data from 
other sources. Additionally, the existence of super mechanisms (or daemons) is 
suggested, which specialize in coordinating and regulating these interconnected 
mechanisms. 

System 2 strategizes actions to maximize utility based on individual goals, 
while System 1 focuses on maximizing inclusive fitness from a genetic stand-
point. In scenarios beyond evolutionary adaptations, analytical processing by 
System 2 is required to override System 1 [7]. The conflict between these systems 
leads to numerous cognitive biases, as explored in the heuristics and biases re-
search of Kahneman and Amos Tversky. These biases hinder an individual’s 
ability to effectively maximize utility. 

Cognitive psychologist Keith Stanovich argues that evolutionary psychologists 
are mistaken in believing that System 1 heuristics, developed during the Pleistocene 
(or Paleolithic, as some prefer for its specific relation to human prehistory), are still 
effective for decision-making in today’s world. Consequently, it is necessary to de-
pend on System 2 for making logical and probabilistic inferences with different 
rules. Additionally, we need to sift through the substantial information from our 
independent modules (System 1) that might impede sound decision-making. 

The dual-processing mind, adapted for evolution, developed System 1 in the 
Paleolithic. At that time, the survival benefit of making type I errors (false posi-
tives) outweighed the cost. For example, mistaking a bush’s movement for a lion 
rather than wind increased survival chances, leading us to naturally perceive 
causation. Modern science needs to refine causal inference, moving beyond the 
statistical tendency to reject causation. It should recognize and incorporate the 
inherent survival value of causality identified by fast thinking, and then syste-
matically apply it through slow, deliberate thinking. We hypothesize that during 
the development of System 2, approximately 50,000 years ago [2], humans 
adapted their pre-existing brain functions for automatic pattern recognition to 
also perform deliberate causal reasoning. In Reference [2], we offer a thorough 
discussion of the cognitive theories presented here and document their empirical 
support. Next, we explore a comprehensive script for reliable causal inference. 

2. The Three-Rung Ladder of Causation 

Slow thinking in causal inference should go beyond the quick causality judg-
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ments of System 1. This is crucial because System 1’s tendency to jump to con-
clusions leads to errors, especially in contexts far removed from its evolutionary 
origins. Fast, empirical thinking assumes “what you see is all there is,” ignoring 
silent evidence. Cicero’s reference to Diagoras of Melos illustrates this. Diagoras, 
shown paintings of people saved from shipwrecks by the gods, pointed out the 
absence of paintings of those who drowned. This concept of silent evidence is 
extensively discussed in Chapter 8 of The Black Swan by Taleb [3]. 

Intuition often misses the concept of regression to the mean, leading to non-
regressive judgments by System 1, as identified by Francis Galton. Typically, a 
good performance is followed by a worse one, and vice versa, due to chance ra-
ther than changes in ability. Since people naturally think in terms of cause and 
effect, they fail to recognize this statistical phenomenon. As a result, praising a 
good performance can mistakenly be seen as causing a subsequent poor perfor-
mance. Critics of poor performance often incorrectly assume that their criticism 
causes improvement. This can lead to the false belief that criticism is effective 
while praise is not. The subsequent performance improvement is actually due to 
regression to the mean, a random occurrence, not the criticism. There is a strong 
correlation between praise and poor performance, and criticism and good per-
formance. However, this correlation does not mean one causes the other. Re-
gression to the mean is causeless. Kahneman explores this in Chapter 17 of 
Thinking, Fast and Slow [6]. 

To infer causes correctly, we must use System 2 reasoning to follow a detailed 
process, akin to climbing a three-rung causation ladder (as depicted in Figure 1). 
Successfully doing so could lead to programming this process into machines, 
potentially achieving “strong artificial intelligence” (human-level intelligence 
automation). Pearl developed this concept of a structured approach to under-
standing causation [1]. 

 

 

Figure 1. The three-rung ladder of causation. The first rung of the 
causation ladder focuses on association, involving observations and 
queries like “What if I see…”. The second rung addresses interven-
tion, encompassing actions and questions such as “What if I do…”. 
The third rung covers counterfactuals, characterized by imagination, 
reflection, and comprehension, asking “What if I had done…”. 
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Causal learning encompasses three key cognitive skills: observation, action, 
and causal imagination. Observation is about noticing patterns in our sur-
roundings. Action involves forecasting the outcomes of changes in the environ-
ment and selecting actions to achieve specific goals. Causal imagination, or 
counterfactual thinking, involves grasping the reasons behind events by pictur-
ing their possible outcomes. 

A successful mammoth-hunting tribe during the Paleolithic likely followed a 
three-step causation process, as outlined in Figure 1. This suggests that their 
automatic System 1 was naturally able to navigate this process. It implies that 
specific cognitive modules evolved to facilitate this task. In the first section of 
Chapter 1 of The Book of Why, Pearl and Mackenzie give the mammoth hunting 
example and contend that awareness of the causation ladder only emerged 
50,000 years ago during the “Cognitive Revolution.” We note that this coincides 
with the theorized development of System 2 [2]. Therefore, Pearl’s standpoint 
does not consider the long history of mammoth hunting since the early Paleo-
lithic, indicating that System 1 played the most significant role in the Cognitive 
Revolution. Pearl identifies the Lion Man of Stadel Cave, a 40,000-year-old 
sculpture of a half-man, half-lion made from mammoth tusk, as a key indicator 
of the Cognitive Revolution’s start, highlighting the use of counterfactual rea-
soning [1]. However, this sculpture only represents the later emergence of Sys-
tem 2 deliberate thinking [2]. The need to hunt a mammoth for its tusk, essential 
for creating the sculpture, implies an early use of planning and counterfactual 
thinking, tied to the basic cognitive abilities of System 1. 

System 1’s causation leaps evolved for survival, allowing us to automatically 
climb the first rung of the three-rung causation ladder. This fast thinking, how-
ever, can lead to errors. For instance, when A precedes B, we often perceive a 
causal relationship, as David Hume discussed in A Treatise of Human Nature 
[11] [12]. Consider a cartoon sequence where Bugs Bunny eats a carrot; System 1 
easily infers Bugs caused the action (Figure 2). This indicates that System 1 au-
tomatically evaluates temporal causality. Daniel Dennett highlights this [12], 
noting that without this inference ability, understanding cartoons would be 
challenging. However, System 1 thinking might overlook other possibilities, like 
Daffy Duck being the eater, showing that automatic causation does not always 
mean legitimate causation. This limitation of System 1 is particularly significant 
in our current world, far removed from Paleolithic contexts. 

 

 

Figure 2. Illustration of automatic causation from sequential ob-
servation. © Warner Bros. Both images, taken separately, are in the 
public domain.  
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Observing a rooster crow before sunrise could lead to a mistaken causal belief. 
However, slow thinking understands that the crowing does not cause the sunrise. 
Even System 1 judgments, which are imaginative, imply this understanding. For 
example, if you had eaten the rooster the previous day, you could still easily im-
agine it crowing at dawn, indicating knowledge that its crowing is not causative 
of the sunrise. This example is given by Pearl and Mackenzie [1]. System 1 com-
prehends both temporal causation and counterfactuals. Responsibility, blame, 
regret, and credit naturally arise in the mind, showing that System 1 can effor-
tlessly create counterfactuals. Understanding these concepts requires comparing 
actual events with hypothetical alternatives. 

Hume also explored this idea, focusing on how automatic imagination, or 
counterfactual fast thinking, arises when not witnessing events in sequence, as 
discussed in An Enquiry Concerning Human Understanding [12] [13]. Hume 
recognized that people effortlessly and reliably make counterfactual judgments, 
quickly and easily. This ability to envision alternate realities stems from shared 
experiences and a common understanding of the world’s causal framework. It is 
understood that counterfactuals imply causation. Hume defined a counterfactual 
as, “if the first object had not been, the second had never existed.” Translation: B 
would not have occurred if not for A, or A has caused B. The use of counterfac-
tuals in System 1 thinking can be effective, as seen in the previous example. The 
challenge is how to algorithmize these automatic counterfactuals using System 2 
thinking, especially when climbing the three-rung ladder of causation to reach 
the third rung, where counterfactuals are key. 

3. Bayes 

Bayes’ rule is a valuable tool for the initial rung of the causation ladder but does 
not assist in reaching the rung two of the ladder. By applying System 2’s slow 
thinking in the first rung, we can make valid judgments while observing facts. 
This is effectively achieved through statistical inference using Bayesian methods. 
In contrast to objective frequentist statistics, subjective Bayesian statistics start 
with an initial belief and incorporate new evidence to update this belief. Often, 
in cases of big data, the effect of prior beliefs fades, resulting in a single, objective 
conclusion. 

The discussion of Bayesian statistics must consider the intricacies of prior and 
posterior distributions. Prior distributions represent initial beliefs before ob-
serving any data, while posterior distributions update these beliefs in light of 
new evidence, reflecting a fundamental aspect of Bayesian analysis that com-
bines prior information with the likelihood of observed data to produce updated 
probabilities. 

Bayesian networks automate reasoning from evidence to hypotheses and from 
effects to causes. Thomas Bayes’ question was: when does a hypothesis shift from 
being impossible to improbable, probable, or almost certain? He answered this 
using inverse probability. Knowing the cause makes it easy to estimate the ef-
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fect’s likelihood. However, determining the cause from the effect is more chal-
lenging. Bayes’ rule solves this. It allows big data to be fed into Bayesian net-
works, which implies that induction is essentially the reverse of deduction. 

In forward probability, we start with a known cause and calculate the proba-
bility of its effect. This natural process aligns with System 1 cognition, designed 
to perceive causes. However, in situations of inverse probability, where we ob-
serve effects and infer their probable causes, System 2 cognition is required. Sys-
tem 1 is not equipped to process information flowing in this noncausal direction. 
This is more challenging because several potential causes must be considered, 
demanding more deliberate thought. Bayes developed a System 2 technology for 
accurately computing these inverse probabilities. 

Why do forward probabilities match inverse probabilities in Bayes’ rule? Con-
sider Pearl and Mackenzie’s [1] example in Chapter 3, where 2/3 of 12 customers 
order tea, and half of tea drinkers also get scones, resulting in 1/3 (= 2/3 × 1/2) 
ordering both. We can reverse the analysis since data disregards cause-effect dis-
tinctions. This leads to 5/12 ordering scones, and 4/5 of them also ordering tea, 
again yielding 1/3 (= 5/12 × 4/5) for both. It is the same calculation presented 
differently: the first calculation as ( ) ( ) ( )S and T S | T TP P P=  and the second as 
( ) ( ) ( )S and T T | S SP P P= . Bayes’ rule follows: ( ) ( ) ( ) ( )S | T T T | S SP P P P= . 

With known values of ( )TP  and ( )SP , we can determine the probability of T 
given S if we know the probability of S given T. Thus, we directly estimate the 
conditional probability in one direction using our intuitive System 1, which is 
simpler. For the opposite direction, requiring analytical System 2 thinking, we 
employ mathematics. Given a consumer’s known preferences, you expect her to 
order tea. However, if she orders scones first, you will likely ask, “Would you 
like tea with that?” Bayes’ rule assigns numerical values to this System 1 intuitive 
reasoning. The prior probability indicates the likelihood of her ordering tea. If 
she orders scones first, this probability is revised to reflect the increased chance 
that she will want tea. 

For making personal decisions, understanding inverse probability is essential. 
Such decisions require the slow, deliberate reasoning of System 2. Depending on 
the fast, intuitive thinking of System 1 can be risky in today’s complex world, 
which is very different from the Paleolithic. Pearl and Mackenzie provide a 
striking example that illustrates this [1]. A 40-year-old woman receives a positive 
result on her mammogram test for breast cancer. If she makes an intuitive Sys-
tem 1 judgment, she will opt for surgery because “what you see is all there is.” 
However, this is a forward probability perspective. To make a well-informed de-
cision, she needs to evaluate the inverse probability, which involves the more 
analytical System 2 thinking based on Bayes’ rule. 

In this scenario, the hypothesis of the woman having the disease is 
represented as D, and the evidence from the test is noted as T. By applying Bayes’ 
rule with the concept of odds instead of probability, we can express the updated 
likelihood of D as: Updated odds of D = Likelihood ratio × Prior odds of D. The 
prior odds of having the disease D are calculated as the probability of D (P(D)) 
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divided by the probability of not having D (P(~D)). The updated odds, after the 
test, are the ratio of the probability of having D given the test result T (P(D|T)) 
to the probability of not having D given T (P(~D|T)). The likelihood ratio is de-
termined by dividing the test’s true positive rate (P(T|D)) by its false positive 
rate (P(T|~D)). The base rates are provided by the Breast Cancer Surveillance 
Consortium. For 40-year-old women, the sensitivity of mammograms (P(T|D)) 
is 73%, and the false positive rate (P(T|~D)) is 12%. Therefore, the likelihood ra-
tio is 6. The prior odds of having breast cancer are also known. About 1 in 700 
women aged 40 have breast cancer, making the odds of having it 1/700 divided 
by 699/700, which equals 1/699. According to Bayes’ rule, multiplying 6 by 1/699 
gives approximately 1/116, indicating a very small number of true positives. 
While the probability of a positive test (forward probability) is 73%, the critical 
inverse probability – the chance of actually having cancer given a positive test – 
is less than 1%. Remember, the inverse probability varies by individual and de-
pends on context. For example, if you carry a high-risk gene, Bayes’ rule lets you 
incorporate this factor into your assessment. In summary, Bayes’ rule is effective 
in both predictive contexts, as illustrated by the teahouse example, and in diag-
nostic settings, exemplified by the mammogram scenario. 

Bayes’ rule, situated at the initial level of the causation ladder, deals with iden-
tifying associations by finding patterns in data. It suggests that one event is 
linked to another if the observation of the first alters the likelihood of observing 
the second. This base level focuses on making predictions from passive observa-
tions. It involves gathering and analyzing data, particularly using conditional 
probability. This metric quantifies the connection between two events in large 
datasets. Crucially, Bayes’ rule can provide accurate predictions without neces-
sarily offering detailed explanations for these associations. 

In Bayesian networks, we input forward probabilities into a computer, and it 
calculates and provides the inverse probabilities as required. In Chapter 3 of The 
Book of Why, Pearl and Mackenzie [1] show the evolution of Bayes’ rule into 
Bayesian networks. Bayes’ rule, when applied using large conditional probability 
tables to compute all possible variable states, demands excessive computer sto-
rage and processing time. To overcome this, we can limit interactions to only a 
few neighboring variables, similar to human neural networks. In this hierarchic-
al network, parent nodes (higher neurons) direct arrows to child nodes (lower 
neurons). Each node shares its belief level about its variable with neighboring 
nodes. When a parent node communicates with a child, the child updates its be-
liefs using conditional probabilities. These are the forward probabilities, 
P(evidence|hypotheses). Conversely, when a child node sends a message to a 
parent, the parent adjusts its beliefs by applying a likelihood ratio. These are the 
inverse probabilities. Belief propagation involves repeatedly applying these rules 
across the network, making Bayesian networks a viable method for machine 
learning. 

Bayesian network enthusiasts represent one of five machine learning groups, 
the others being evolutionaries, connectionists, analogizers, and symbolists [14]. 
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Bayesian networks differ from others in that they are transparent: each step is 
traceable, allowing you to see how and why every piece of evidence alters the 
network’s beliefs. 

While the notion that induction is the inverse of deduction sparks debate, its 
positive impact on machine learning is noteworthy. Induction involves reason-
ing from specific evidence to a general hypothesis, or from an effect to its cause. 
Conversely, deduction means reasoning from a general hypothesis to a specific 
conclusion, or from a cause to its effect. Is induction the counterpart of deduc-
tion, much like subtraction is to addition or integration is to differentiation? 
This question, a recent consideration, finds practical relevance among symbol-
ists [14]. In deductive reasoning: 

Socrates is a human being. 
Humans are all mortal. 
Therefore, … 
Here, the first statement is a fact, the second a general rule, and we deduce the 

outcome. In inductive reasoning, we begin with the initial fact and the derived 
fact: 

Socrates is human. 
… 
Therefore, Socrates is mortal. 
Inducing the rule from Socrates alone is challenging, but an algorithm seeks it 

in similar facts about others. It starts with a basic but limited rule: 
If Socrates is human, he is mortal. 
Then, employing Newton’s principle, it generalizes: 
If an entity is human, it is mortal. 
Ultimately, the rule emerges: 
All humans are mortal. 
Inferring that all swans are white based on observing n white swans is akin to 

making an infinite leap, which, as Hume argued, lacks logical legitimacy. Karl 
Popper even suggested that induction is unnecessary. According to Hume, in-
duction is essentially our psychological tendency to assume that unobserved oc-
currences resemble those we have witnessed. While Figure 2 shows a causal se-
quence, it is not mandatory. To deal with this, you must create hypotheses about 
events you have not seen and test them with your own experiences. There is no 
way to definitively prove a hypothesis; it can only be rejected if falsified or tem-
porarily accepted when not falsified. At n, you propose that all swans are white. 
If you encounter a black swan at n + 1, your hypothesis is invalidated. The same 
principle applies to Taleb’s Black Swan, which carries more weight than all n 
white swans combined. If you spot another white swan at n + 1, your hypothesis 
remains intact, but it does not prove that all swans are white. The appropriate 
stance here is empirical skepticism; you cannot assert the absence of black swans 
because absence of evidence is not evidence of absence. 

The essence of machine learning lies in predicting previously unseen events. 
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This happens at the first rung of the causation ladder. We can infer the possibil-
ity of encountering a non-white swan from our knowledge of other white bird 
species that also have non-white variations [14]. Predicting a black swan solely 
based on white swan observations remains a challenge, leaving the induction 
problem unsolved. Machine learning takes a different approach by incorporating 
information about all white birds capable of changing plumage, not just swans. 
In this case, we must assert that non-white swans are gray. Black swans remain 
elusive and always manage to evade detection. 

Here, causal inference is crucial because data alone cannot replace scientific 
knowledge. Raw data does not contain information about the consequences of 
actions. Deep learning programs simply fit functions to data and analyze it 
without considering a model, missing the predictive strength found in causal 
models. In contrast, causal models use an “estimand” (defined later), calculated 
before examining specific data. Data collection occurs once we establish a causal 
model, formulate a specific query, and derive the estimand. This approach, fo-
cused on causality, better predicts black swans compared to relying solely on di-
verse datasets and statistical methods like Bayes’ rule. A key philosophical ques-
tion is whether causal networks can solve the problem of induction. 

4. Mediators, Confounders, and Colliders 

Intervention, the next stage in causal queries, surpasses mere association as it 
involves not just observing but actively altering the current state. This requires 
generating new information that is not already in the data. A fundamental issue 
in data science is the assumption that all knowledge is contained within the data. 
However, no matter the size of the dataset or the depth of the neural network, 
questions about interventions cannot be answered using only passively collected 
data. 

Therefore, to advance on the second rung of the causation ladder, we first 
convert Bayesian networks into causal networks. Bayes’ rule, which is used for 
inverse probability, forms the most basic Bayesian network, consisting of just 
two nodes and a single link. The next level of complexity is a three-node network, 
which has two links and is known as a junction. Junctions serve as fundamental 
components for all networks, as they can represent any pattern of arrows within 
the network. There are three primary types of junctions: 

1) A → B → C 
2) A ← B → C 
3) A → B ← C 
Within these three categories, A and C exhibit correlation but lack a direct 

causal arrow connecting them. B plays a crucial role in each of these junctions. 
In the first chain junction, B serves as a mediator. In the sequence Fire → 

Smoke → Alarm, there is no direct arrow from Fire to Alarm, as the Alarm is ac-
tivated by Smoke, acting as the mediator. In this context, given the presence of B, 
A and C become conditionally independent at the chain junction. 
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In the fork junction, B acts as a confounder, as seen in Shoe Size ← Child Age 
→ Reading Ability. While Shoe Size and Reading Ability correlate, giving larger 
shoes will not enhance reading skills. There is a correlation but no causation 
between Shoe Size and Reading Ability. To guide interventions, controlling for 
the shared factor, Child Age, is crucial. Confounding bias arises when a variable 
affects both the selection for treatment and the outcome of the experiment. The 
genuine causal effect A → C is mixed with the correlation between A and C in-
duced by the fork A ← B → C. To effectively address confounding bias, inter-
ventions must employ deliberate, System 2 slow thinking for the control of con-
founders. Similar to the chain junction, given B, A and C are conditionally in-
dependent at the fork junction. 

In the third junction, B acts as a collider, as seen in Talent → Celebrity ← 
Beauty. Avoid controlling for Celebrity, as it can create a misleading correlation 
between Talent and Beauty. While both Talent and Beauty contribute to an ac-
tor’s success, they are unrelated in the general population. Initially, A and C are 
independent, but conditioning on B makes them dependent. For instance, if you 
observe Vin Diesel lacking Beauty, inferring Celebrity due to his Talent is flawed; 
he might also be untalented. Never, ever control a collider! 

Imagine arrows as data pipelines. At a collider junction, A and C start inde-
pendently, but controlling B connects them, unintentionally opening the data 
flow. In the second rung of the causation ladder, correctly handling the mediator 
B means not controlling it in a chain junction, maintaining data flow between A 
and C. Never try to control a mediator! You might inadvertently control for the 
very variable you intend to measure. 

Figure 3 illustrates that controlling for a confounder (C) is essential, while 
controlling for a mediator (M) or collider (L) is not necessary, because only the 
confounder C directly affects both the treatment X and the outcome Y. This is 
the issue of overcontrol. 

 

 

Figure 3. Control is crucial only for a confounder (C), as it 
directly influences both treatment X and outcome Y. Media-
tors (M) and colliders (L) should be disregarded. 
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Chains, forks, and colliders serve as crucial links between the first and second 
rungs of the causation ladder. They enable us to test causal models, discover new 
ones, and evaluate intervention effectiveness. 

In a chain like A → B → C, the absence of an arrow between A and C means 
they are independent once their parents are known. A, with no parents, and C, 
with B as its sole parent, become independent once we know B’s value. In a 
chain A → B → C, B “listens” to A, C listens to B, and A listens to no one. In this 
metaphor, knowledge is represented as a causal network where variables listen to 
each other. Causation is defined as follows: if variable Y listens to variable X and 
changes its value in response, then X is considered a cause of Y. 

Reversing the chain’s arrows alters the causal interpretation significantly, yet 
A and C’s independence persists. This underscores the importance of crafting 
well-founded causal hypotheses that can withstand empirical testing and poten-
tial refutation. For instance, if the data fail to support the independence of A and 
C, given B, the model should be reconsidered. However, in this case, distin-
guishing between the fork A ← B → C and the chain A → B → C is not possible 
based solely on data, as both imply the same independence conditions with C in-
fluenced solely by B. Consequently, a Bayesian network cannot differentiate be-
tween a fork and a chain, as it predicts that observed changes in A relate to 
changes in C but does not provide predictions about A’s intervention effects. 
Therefore, a Bayesian network resides on the first rung of the causation ladder. 
Nevertheless, Bayesian networks play a crucial role in enabling causal diagrams 
(explained next) to interact with data through junctions. In a probabilistic Baye-
sian network, the direction of arrows pointing to variable Y indicates that Y’s 
probability depends on its parent variables, as defined by Y’s conditional proba-
bility tables. Conversely, in a causal Bayesian network, these tables determine Y’s 
probability in response to interventions in its parent variables. 

Multiple paths often connect variable pairs, involving chains, forks, and collid-
ers. A key criterion, d-separation (directional separation), simplifies analysis in 
complex models. It helps determine if nodes are d-connected (linked by a path) 
or d-separated (no connecting path). D-separated nodes indicate definite inde-
pendence, while d-connected nodes suggest potential dependence. D-separation 
thus predicts expected data dependencies based on path patterns. It is useful for 
validating models, particularly if observed data does not align with predicted in-
dependencies. The d-separation property, which allows the use of path-blocking 
rules to identify independencies in data, is definitive. In other words, a causal 
diagram (which we will discuss next) implies no additional independencies 
beyond those identified through path blocking. 

Certainly, getting all feasible information from data is valuable, but we must 
recognize its limitations. This approach alone cannot advance us past the first 
rung of the ladder of causation. Without a causal model, progressing from ob-
servational (rung-one) data to interventional (rung-two) queries is impossible. 
But with a robust causal model, we can use observational data to respond to in-
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terventional queries. This enables us to predict the outcomes of interventions 
without conducting actual experiments. We mentally simulate an intervention 
before deciding its execution in reality [1]. 

Causal models and statistical methods serve distinct but complementary pur-
poses in research. Causal models are designed to uncover and validate cause-and- 
effect relationships by constructing frameworks that simulate interventions and 
predict outcomes under different scenarios. They often use tools like Bayesian 
networks, which explicitly map out potential causal pathways and assess how 
changes in one variable can impact others. In contrast, statistical methods, such 
as regression models, focus on identifying correlations and patterns within the 
data without necessarily establishing causation. These methods are valuable for 
understanding associations and making predictions based on observed data. 
However, they do not inherently account for underlying causal mechanisms. The 
distinction lies in the fact that while statistical methods can indicate that two va-
riables are related, causal models aim to explain why and how these relationships 
occur, often requiring careful consideration of confounders, mediators, and oth-
er factors that pure statistical approaches might overlook. 

5. Causal Diagrams 

Causal diagrams, created by linking the three types of junctions in a causal net-
work, follow clear rules: they control for confounders but not for mediators and 
colliders. A confounder is an unseen factor (U) that obscures the causal link be-
tween a treatment (X) and an outcome (Y). Adhering to these rules and appro-
priately adding or removing arrows from the causal diagram helps in accurately 
ascending to the second rung of the causation ladder. And up to the third rung. 
Pearl suggests that these diagrams could reflect how we think about “what-if” 
scenarios (counterfactuals), advocating their use in machine learning for better 
decision-making. 

Causal diagrams depict our current knowledge, whereas the do-calculus arti-
culates our inquiries. These form the dual languages of causation calculus. The 
do-operator indicates intervention, as opposed to passive observation [1]. We 
see ( )Y | XP  when we look at the data in rung one of the causation ladder. 
Taking into account the do-operator ( )Xdo , intervening in rung two entails 

( )( )Y | XP do . The observed quantity is the conditional probability of the out-
come Y given the treatment X, ( )Y | XP . However, to understand the causal 
relationship between X and Y, we focus on the interventional probability, 

( )( )Y | XP do . As a result, confounding refers to ( )( ) ( )Y | X Y | XP do P≠ . 
Thus, confounding is not merely a statistical concept. It represents the gap be-
tween the causal effect we aim to evaluate and what we actually measure with 
statistical techniques. 

The causal diagram in Figure 4 illustrates a proper intervention. 
To deconfound variables X and Y, it is essential to block all noncausal paths 

between them while keeping causal paths open. A backdoor path, which intro-
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duces a spurious correlation, is any path where an arrow points to X. By block-
ing all such paths, X and Y are deconfounded. In Figure 4’s causal diagram, 
there are no arrows entering X, indicating no backdoor paths and no need for 
control measures. The best intervention here is inaction. Additionally, B is not a 
confounder in the causal path from X to Y through A, as it does not lie on this 
path. The backdoor criterion clearly determines the deconfounding variables in 
a causal diagram. The backdoor criterion serves as a practical test to identify 
confounding. 

 

 

Figure 4. Causal diagram with no 
backdoors. 

 
Now, examine the M-shaped causal diagram shown in Figure 5. 

 

 

Figure 5. Causal diagram with a col-
lider blocking one backdoor path. 

 
The sole backdoor path in this scenario is naturally blocked by a collider at B, 

eliminating the need for additional control measures. Believing B is a confound-
er because it is associated with both X and Y is a mistake. In fact, not controlling 
for B ensures that X and Y remain deconfounded. It is only when B is controlled 
for that it turns into a confounder. 

Our causal diagrams, also known as directed acyclic graphs, are largely 
sourced from The Book of Why [1], as seen in Figures 4-21, excluding Figure 
10, Figure 14, and Figure 18. These diagrams are closely related to Bayesian 
networks, but differ in that each arrow in a causal diagram specifically denotes a 
direct causal relationship or its possibility. This distinction is important because 
not all Bayesian networks are causal. Software for calculating causal effects using 
the do-calculus is already available [15]. 

Causal networks combine diagrams with conditional probability tables, where 
each node’s probability is determined by its parent nodes. This setup calculates 
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forward probabilities, P(evidence|hypotheses). The main role of a Bayesian net-
work is to address inverse-probability problems, like decoding a message. For 
instance, it infers the probability of an original message (“Hello world!”) from a 
received one (“Hxllo wovld!”) using belief propagation. As new information is 
introduced, the beliefs at each node adjust dynamically throughout the network. 
Pearl emphasizes that a key aim of causal inference is to develop an interface 
that integrates human intuition with this belief propagation process [1]. 

6. Randomized Controlled Trials 

Randomized controlled trials (RCTs), pioneered by R.A. Fisher, are considered 
the highest standard in clinical trials. In an RCT, individuals are randomly as-
signed to receive a treatment X or not, and subsequent changes in a variable Y are 
observed. Randomization serves as a deconfounder by eliminating influences on 
the treatment variable X (by erasing arrows pointing to X), allowing statisticians 
to accurately infer causal relationships from X to Y. From the causal perspective, 
RCTs serve as a man-made instrument for revealing the query ( )( )Y | XP do , 
and are the principal contribution of statistics to causal inference. Chapter 4 of 
The Book of Why thoroughly examines RCTs. RCTs isolate variables X and Y 
from confounding variables U, clarifying the causal relationship between X and 
Y. RCTs uncover the query ( )( )Y | XP do . 

In RCTs, statisticians are uniquely allowed to talk about causes and effects. 
The phrase “X causes Y” is understood uniformly by both statisticians and those 
specializing in causal inference within this context. Causal diagrams are some-
what seen as an expansion of RCTs. Yet, Pearl notes that overvaluing RCTs is 
unnecessary, as other causal inference methods can replicate their results. 

RCTs are not always practical. For example, it is ethically and physically im-
practical to conduct RCTs on the effects of smoking by making people smoke for 
a decade. In such cases, observational studies are used. For these studies, where 
randomization is not possible, causal diagrams and the do-calculus are the most 
reliable methods for accurate deconfounding. Causal inference leverages the ex-
perimenter’s scientific knowledge, as we can still learn from observational stu-
dies where treatment and control groups are not randomly assigned. Confound-
ing, unlike statistical concepts on the first rung of the causation ladder, is ad-
dressed in the second rung through intervention. In observational studies, statis-
ticians often advise controlling for all available data, which can be misguided. 
This is less likely with causal inference, where researchers caution against con-
trolling for mediators and colliders. 

The front door adjustment, described in Chapter 7 of The Book of Why and 
discussed later, enables us to account for unseen confounders while observing 
natural behaviors outside the lab. This benefits observational studies where par-
ticipants self-select rather than being randomly assigned as in an RCT. RCTs, in 
fact, base their validity on deeper causal inference principles. However, the 
do-operator offers reliable ways to identify causal effects in nonexperimental 
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studies, questioning the traditional supremacy of RCTs. The do (X = x) opera-
tion is fundamental as it reflects a natural property that yields the desired answer. 
In contrast, randomization is a secondary, artificial technique used to extract 
that answer [1]. However, randomization offers two key advantages: 1) it re-
moves confounder bias by correctly posing the question to nature, and 2) it al-
lows the researcher to measure their uncertainty accurately. 

7. Does Smoking Cause Lung Cancer? 

Fisher, once revered, faced skepticism after reviewing observational studies on 
this question. Given that some lifelong smokers avoid lung cancer while some 
non-smokers develop it, Fisher claimed the perceived link between smoking and 
lung cancer was merely coincidental. He suggested that smokers might be “con-
stitutionally” (genetically) predisposed to behaviors detrimental to their health. 
Figure 6 illustrates Fisher’s perspective using a causal diagram. 

 

 

Figure 6. Fisher’s causal diagram on Smoking 
and Lung Cancer. 

 
The Smoking Gene as a hidden third variable could confound the relationship. 

Fisher’s model omits the direct link Smoking → Lung Cancer, often inferred 
from observational studies. In contrast, the rival theory, depicted in Figure 7, 
includes this direct link. 

 

 

Figure 7. Opposing view’s causal diagram 
linking Smoking to Lung Cancer. 

 
The responsibility fell to the antismoking group to either disprove the exis-

tence of any confounding factor or to prove a negative. Jerome Cornfield em-
ployed an early form of sensitivity analysis, supported by data from associational 
studies, to demonstrate to epidemiologists and policymakers that the Smoking 
Gene by itself could not account for the significant connection between Smoking 
and Lung Cancer. Cornfield’s reasoning indicated that this genetic factor was 
not enough to justify the significant impact of Smoking on Lung Cancer risk. 
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In 2008, the Smoking Gene was identified as a single nucleotide polymor-
phism on chromosome 15, which affects nicotine receptors in lung cells. This 
genetic variation has two forms. About 11% of people possess two copies of the 
rarer variant, elevating their lung cancer risk to 77%. This variant also increases 
nicotine dependence and quitting difficulty, linking the gene to risky smoking 
behavior. These discoveries warrant an update to the previous causal diagram in 
Figure 7, as depicted in the revised Figure 8. 

 

 

Figure 8. Causal diagram illustrating the ef-
fects of the Smoking Gene. 

 
Rather than questioning if Smoking causes Lung Cancer, as it does, we focus 

on understanding the direct and indirect effects of the Smoking Gene, mediated 
by Smoking. Epidemiologist Tyler VanderWeele found that the Smoking Gene 
neither notably raises cigarette use nor causes Lung Cancer independently of 
Smoking. However, it does significantly heighten Lung Cancer risk in smokers. 
Fisher lost the debate posthumously, as the direct link Smoking Gene → Lung 
Cancer needs to be eliminated in Figure 8. For a detailed discussion of this de-
bate, see Chapter 5 of The Book of Why. 

Jacob Yerushalmy, supporting Fisher’s views, noted that smoking during 
pregnancy appeared beneficial for underweight newborns’ health. Figure 9’s 
causal diagram summarizes his research findings. 

 

 

Figure 9. Causal diagram of the birth-weight 
paradox. 

 
In this case, a statistician overlooked a collider, which was Birth Weight. By 

focusing solely on low Birth Weight babies, Yerushalmy inadvertently activated 
a noncausal backdoor path between Smoking and Child Mortality. This path, 
featuring an incorrectly directed arrow, produced a misleading negative correla-
tion, falsely suggesting that Smoking had a beneficial effect. The paradox is not 
related to birth weight; it is entirely associated with colliders. 
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The birth-weight paradox remained unresolved for over forty years after Ye-
rushalmy’s publication, long after the smoking-cancer debate subsided. Pearl 
and Mackenzie attribute this delay to the lack of a causality framework at the 
time. The concept of collider bias, clarified through a causal diagram, revealed a 
hidden collider structure in the data selection process. 

The smoking debate highlights the survival value of understanding causality. 
Without the possibility of reliable randomized controlled trials, many lives were 
lost due to statisticians’ lack of proper tools and language for addressing causal 
questions. Furthermore, the complexity of the discussion arises from the differ-
ences in causation between diseases like scurvy and lung cancer, for example. 
Scurvy is solely caused by a deficiency in vitamin C, making this deficiency both 
a necessary and sufficient condition. In contrast, lung cancer is likely caused by 
multiple factors. Therefore, while smoking is a necessary cause of lung cancer, it 
is not sufficient on its own to cause the disease. 

8. Paradoxes 

Paradoxes arise from conflicts between statistical reasoning (System 2) and 
causal intuition (System 1). Human intuition is fundamentally based on causal 
logic, not statistical. Our minds in automatic mode tend to fall for randomness, 
perceiving patterns where none exist, known as type I error. Additionally, when 
examining correlations caused by colliders, like in the previous example, we in-
advertently create patterns from what was initially random. 

Coin flips are independent events. However, consider this experiment: flip two 
coins 100 times and only record results when at least one shows Heads. In your 
75-entry table, the coin flips seem dependent – if one shows Tails, the other shows 
Heads. This perceived correlation arises because we excluded all Tails-Tails out-
comes, thus conditioning on a collider, and inadvertently created a correlation. 

Observing a correlation between Tails and Heads while deliberately control-
ling for the Tails-Tails collider (as shown in Figure 10) leads to a type I error. 
This error arises because we attempt to find a stable, causal relationship in the 
data that, when correctly sampled, is not actually there. Collider bias is a cogni-
tive illusion. 

 

 

Figure 10. Causal diagram of coin flip 
correlations with collider control. 

 
Consider the factors of attractiveness and personality in dating choices. If you 

date attractive but mean, attractive and nice, or unattractive but nice individuals, 
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but never mean and unattractive ones, you might wrongly conclude that attrac-
tiveness correlates with meanness. You form a belief that the attractive people 
you date are often unpleasant. Yet, this belief is a cognitive illusion resulting 
from collider bias. Mean behavior is equally common in unattractive and attrac-
tive people. However, you will not notice this because you avoid dating those 
who are both mean and unattractive. This example is similar to the coin flip 
scenario in Figure 10. 

Biostatistician Joseph Berkson found that unrelated diseases could appear 
linked in hospital patient samples. This is illustrated in Figure 11, where a false 
positive correlation emerges between Respiratory Disease and Bone Disease due 
to controlling for Hospitalization. This phenomenon, known as the Berkson pa-
radox, occurs from unintentionally controlling a collider. 

 

 

Figure 11. Causal diagram illustrating the 
Berkson paradox. 

 
On a game show, you choose from three doors: one hides a car, the other 

goats. You pick Door 1. Host Monty Hall, aware of what is behind each door, 
opens Door 3, revealing a goat. He then asks if you want to switch to Door 2. 
Should you change your choice? 

You should say “yes” to switching doors. Without switching, your odds of 
winning the car are 1 in 3; switching increases them to 2 in 3. However, your 
System 1 might say “no,” mistakenly thinking the odds are 50-50 and that 
switching does not matter. System 1 can mislead you by wrongly assuming a 
causal connection between your chosen door and the car’s location. 

The fact that Monty Hall opened Door 3, a collider, creates a false association. To 
correctly calculate your odds, ignore Monty’s choice. The lesson: rely on empirical 
data analysis. However, System 1 thinking may tempt you to consider the collider, 
but it is System 2’s slower, deliberate thinking that helps you accurately assess 
probabilities and causality by understanding both the data and the game’s rules. 

Statisticians adhering to Fisher’s principle of focusing solely on data can still 
be misled by the Monty Hall paradox, as shown in Figure 12’s causal diagram. 
In this game, there is no direct link between Door 1 and the Car Door, indicating 
that your choice and Monty Hall’s car placement are independent events. Door 3, 
however, is affected by both your choice of Door 1 and the Car Door’s location 
since Monty Hall takes both into account. Thus, Door 3 serves as a collider, with 
no causal relationship between your chosen door and the Car Door. 
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Figure 12. Causal diagram of the 
Monty Hall paradox. 

 
Since Door 3 was opened, it has become a collider. Learning this affects our 

probabilities, making them conditional on this information. Conditioning on a 
collider introduces a false dependence between its causative factors. This is evi-
dent in the probabilities: if you chose Door 1, it is twice as likely that the car is 
behind Door 2 rather than Door 1; if you chose Door 2, it is twice as likely to be 
behind Door 1. This creates an odd dependence without any causal relationship. 
This is solely an artifact of Bayesian conditioning. 

System 1 is wired for causal reasoning, but not for probability tasks. System 1 
equates correlation with causation. For example, if a car behind us mimics our 
turns, we initially assume it is following us, implying causation. We then instinc-
tively think we share a destination, as fast thinking assumes a shared cause for 
each turn. However, correlations without causes disrupt this fast-thinking mode. 
System 1 is incapable of neutralizing colliders. 

Pearl argues that relying only on data is flawed, as the same data can result 
from different data-generation processes [1]. Consider a variation of the game 
where Monty Hall randomly chooses a door different from yours, as illustrated 
in Figure 13’s causal diagram. An arrow from Door 1 to Door Opened remains, 
reflecting Monty’s need to choose a different door. But with Monty’s choice now 
random, there is no link from Car Door to Door Opened. Thus, focusing on 
Door Opened does not change the situation: your choice and the Car Door re-
main independent, both before and after Monty’s choice. With the odds now 
50-50, switching doors has no benefit. 

 

 

Figure 13. Causal diagram of a 
modified Monty Hall game. 

 
Statisticians employing model-blind methods and not considering causality are 

prone to paradoxes, as the same data can lead to correct conclusions in one scena-
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rio but incorrect ones in another. The means by which we gather information is 
just as important as the information we obtain [1]. Chapter 6 of The Book of Why 
explores more of these paradoxes. The paradoxes highlight the conflict between 
association and causation, which occupy distinct rungs of the causation ladder. 
This conflict is intensified because human intuition (System 1) tends to think in 
terms of causation, while data is governed by probabilities and proportions. Para-
doxes occur when we incorrectly apply rules from one domain to the other. 

To make valid causal inferences, it is essential to control for confounders. For 
example, if age (Z) is the confounding variable, we analyze treatment and con-
trol groups within each age group. Then, we average the effects, weighting by 
each age group’s representation in the target population. This is how we control 
for Z. However, mistaking mediators for confounders is another source of error. 
For instance, when deconfounding, we face decisions like whether to segregate 
data. With readily available data, age and gender are often chosen for demo-
graphic control, due to their accessibility. 

However, consider this case. To determine if exercise lowers LDL cholesterol, 
an observational study was conducted, collecting participants’ ages and birth 
genders. The results revealed a contradiction: while exercise was beneficial for in-
dividuals in every age group, it was detrimental for the overall population. This 
exemplifies Simpson’s paradox, a puzzle that highlights confounding factors in 
data interpretation. Without age segregation, data showed a misleading positive 
correlation, suggesting exercise increases cholesterol. But, careful analysis re-
vealed older individuals tend to exercise more. Since cholesterol levels also vary 
with age, age is identified as a confounder in the exercise-cholesterol relationship. 
Figure 14’s causal diagram illustrates this. When age is considered, the correla-
tion reverses, indicating exercise does reduce bad cholesterol, regardless of age. 

 

 

Figure 14. Causal diagram showing 
Simpson’s paradox and its confound-
ing factor. 

 
Simpson’s paradox occurs when a trend appears to go in one direction within 

individual segments of a population, but in the opposite direction when consi-
dering the entire population. Resolving this paradox depends on the specific 
question being addressed. If every individual in a group prefers one option over 
another, this preference should be reflected in the group’s overall data. If the da-
ta suggests otherwise, it indicates an error in data processing, particularly in un-
derstanding causal relationships. 
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Lord’s paradox is a variation similar to Simpson’s paradox: in a school, overall 
neither boys nor girls gain weight over the year. However, within each initial 
weight category, boys generally gain more weight than girls. How is this possible? 
Is not the total weight gain simply the average of the gains in each specific stra-
tum? No, if the composition of the strata changes during the treatment. 

The school investigates how two diets affect weight gain. Student weights are 
recorded at the start and end of the year. They eat in one of two halls, each serv-
ing a different diet. Heavier students tend to choose a particular hall, leading to a 
causal diagram in Figure 15 showing a link from Initial Weight to Diet Choice. 
Initial Weight also influences Final Weight. Since Gain equals Final Weight mi-
nus Initial Weight, the deterministic correlations are −1 and +1. To accurately 
evaluate Diet’s impact on Final Weight, the confounder, Initial Weight, must be 
controlled. 

 

 

Figure 15. Causal diagram illustrating the 
control of a confounder in Lord’s paradox. 

 
The causal diagram changes, as Figure 16 illustrates, when the school consid-

ers the diet’s differing effects on girls and boys. Sex is linked to both Initial and 
Final Weight. Regardless of Sex, a higher Initial Weight generally leads to a 
higher Final Weight. Now, Initial Weight acts as a mediator instead of a con-
founder, making control of it incorrect. 

 

 

Figure 16. Causal diagram showing the con-
trol of a mediator in Lord’s paradox. 

 
Simpson’s and Lord’s paradoxes are detailed in Chapter 6 of The Book of Why. 

These paradoxes stem from confusion between confounders and mediators. 
Chapter 9 of the same book discusses the fallacy of conditioning on a mediator 
in depth. 
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9. Deconfounding 

Galton developed the regression line YXY Xr b= +  to show the relationship 
between a treatment variable X and an outcome variable Y. He did this by 
drawing a line that best fits through a set of datapoints. The regression coeffi-
cient of Y on X, YXr , indicates that for every one-unit increase in X, Y increases 
by an average of YXr  units. However, if a confounding variable Z is present, 
this coefficient YXr  represents only the observed trend, not the average causal 
effect between X and Y. 

Karl Pearson and George Yule found that the partial regression coefficient 

YX.Zr  automatically adjusts Y’s trend on X for the confounder Z in the regres-
sion plane equation YX.ZY X Zr b c= + + . This means it is unnecessary to sepa-
rately regress Y on X at each level of Z in linear regressions. Therefore, YX.Zr  
can indicate the average causal effect, assuming Z is a confounder and not a me-
diator or collider.  

Since data alone cannot clarify Z’s role, we need to apply the backdoor crite-
rion in a causal diagram to confirm Z as a confounder. This ensures YX.Zr  re-
flects the average causal effect. The Book of Why delves into this in Chapter 2, 
providing historical context for regression lines and causal inference, and offers 
a detailed explanation in Chapter 7. 

Even when X’s effect on Y varies based on the confounder Z’s level, as seen in 
nonlinear interactions, the backdoor criterion remains applicable. In these non-
parametric cases, it is used through extrapolation methods. Linear regression’s 
partial regression coefficients automatically adjust for confounders; however, in 
nonparametric regression, this adjustment must be explicitly done, either di-
rectly using the backdoor criterion or through an extrapolated form of it. 

The misconception that partial regression coefficients YX.Zr , by adjusting for 
confounders, contain causal information that unadjusted coefficients YXr  do 
not, is incorrect. For causal legitimacy, two key elements are needed: 1) a path 
diagram that accurately reflects reality, and 2) the adjusted variable Z must meet 
the backdoor criterion [1]. 

During the debate about Smoking and Lung Cancer, the Smoking Gene con-
founder was undetectable. With causal diagrams, we could have resolved this is-
sue without needing Cornfield’s mathematical calibration. As shown in Figure 
17’s causal diagram, if the Smoking Gene is unknown and thus unmanageable, it 
is impossible to block the path: Smoking ← Smoking Gene → Lung Cancer 
through the Smoking Gene using a backdoor adjustment. 

 

 

Figure 17. Causal diagram illustrating the 
front door criterion. 
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If we think tar in smokers’ lungs causes lung cancer, we can apply the front 
door criterion. The front door is the direct causal path: Smoking → Tar → Lung 
Cancer. We have data on all three of these variables. The front door adjustment, 
unlike the backdoor adjustment, involves adjusting for two variables, Smoking 
and Tar, which are on the front door path leading from Smoking to Lung Cancer, 
rather than on the backdoor path. 

The collider at Lung Cancer is blocking the path: Smoking ←Smoking Gene 
→ Lung Cancer ←Tar. Consequently, we can accurately estimate the average 
causal effect of Smoking on Tar. While a backdoor adjustment is not feasible, it 
is unnecessary in this scenario. At the first rung of the causation ladder, we 
gather data on ( )Tar | SmokingP  and ( )Tar | No SmokingP , and then calcu-
late their difference to determine the average causal effect of Smoking on Tar. 

We next estimate the average causal effect of Tar on Lung Cancer. Since we 
have Smoking data, we can block the backdoor path: Tar ← Smoking ← Smok-
ing Gene → Lung Cancer by adjusting for Smoking. After gathering data at the 
first rung of the causation ladder, we intervene at the second rung by calculating 

( )( )Lung Cancer | TarP do  and ( )( )Lung Cancer | No TarP do . The difference 
between the two represents the average causal effect of Tar on Lung Cancer. 

Finally, we can calculate the causal effect of Smoking on Lung Cancer using 
observational study data from the first rung of the causation ladder. We can ex-
press ( )( )Lung Cancer | SmokingP do  in terms of probabilities and this does 
not require the use of the do-operator. In this case, a randomized controlled trial 
is not needed. Assuming X represents Smoking, Y Lung Cancer, Z Tar, and U 
the unobservable Smoking Gene, the front door adjustment then implies 

( )( ) ( ) ( ) ( )Y | X Z | X Y | X , Z Xz xP do P z P x z P x= = = = =∑ ∑ . 

The left side of the equation asks, “What effect does X have on Y?” The right 
side provides the estimand, the method to answer this query. Estimand, derived 
from Latin, means “what needs to be estimated.” Noticeably, the right side only 
includes do-free probabilities and excludes U. Therefore, we can calculate the 
causal effect of Smoking on Lung Cancer using just data, effectively decon-
founding U without its data. 

If a backdoor adjustment were feasible, it would imply 

( )( ) ( ) ( )Y | X Y | X,U UuP do P u P u= = =∑ . 

In Figure 17, Tar acts as a shielded mediator. If individuals with the Smoking 
Gene are more prone to Tar formation and those without it are more resistant, 
an arrow from Smoking Gene to Tar must be added in the causal diagram 
(Figure 18). Since Tar is no longer shielded, a front door adjustment becomes 
unfeasible. 

The front door adjustment allows for controlling unseen confounders, in-
cluding unnamed ones, much like RCTs. However, its advantage over RCTs lies 
in observing individuals in natural, field settings rather than in a laboratory. 
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Figure 18. Causal diagram showing a blocked 
front door path. 

10. The Do-Calculus 

The primary aim of backdoor and front door adjustments is to estimate the im-
pact of an intervention using data that do not rely on a do-operator. Successfully 
removing the do-operators enables the use of observational data for assessing 
causal effects, advancing from the first to the second rung in the causation lad-
der. There exists a method to determine beforehand if do-operators can be 
eliminated in a specific causal model. Hence, the do-calculus model can substi-
tute an experiment by converting a do quantity into a see quantity. If this me-
thod indicates that do-operators are irremovable, it implies that our assumptions 
are insufficient for deriving causal effects from observational data alone, neces-
sitating the use of RCTs. 

When both backdoor and front door adjustments fail to enable successful inter-
vention amid confounders, an alternative exists. The fully automated do-calculus 
allows for customizing the adjustment method to suit any given causal diagram. 
The objective is to determine the impact of variable X on Y, beginning with the 
target sentence ( )( )Y | XP do . The key step is to remove the do-operator from 
this sentence, resulting in only standard probability expressions, such as 
( )Y | XP  or ( )Y | X,Z,WP . This removal process must accurately represent 

the physical intervention implied by do(X), achieved through a series of valid 
deductive steps. 

In the do-calculus, there are three foundational rules for valid manipulations. 
Rule 1 highlights that observing a variable W, which is independent of Y (given 
other variables Z), does not affect Y’s probability distribution. For instance, in 
the chain Fire → Smoke → Alarm, knowing the mediator Z (Smoke) renders W 
(Fire) irrelevant for Y (Alarm). Thus, Rule 1 implies 

( )( ) ( )( )Y | X ,Z,W Y | X ,ZP do P do= . 

This implies that once we remove all incoming arrows to X, Z will obstruct 
any path from W to Y. Although X is not present in our example, Smoke (Z) ef-
fectively blocks every path from Fire (W) to Alarm (Y). 

Rule 2 states that if Z blocks all backdoors from X to Y, then do(X) is the same 
as see(X) when considering Z. This means if Z satisfies the backdoor criterion, 
then 

( )( ) ( )Y | X ,Z Y | X,ZP do P= . 
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Simply put, Rule 2 indicates that after controlling for all confounders, any 
persisting correlation is a true causal effect. 

Rule 3 allows for the removal of do(X) from ( )( )Y | XP do  when there are 
no causal paths from X to Y. If no paths exist from X to Y, Rule 3 asserts: 

( )( ) ( )Y | X YP do P= . 

Essentially, Rule 3 implies that if an action on the treatment variable X does 
not influence the outcome Y, then Y’s probability distribution remains un-
changed. Do something that has no effect on Y, and the probability distribution 
of Y will stay the same. 

Rule 1 permits adding or removing observations. Rule 2 enables switching 
between observation and intervention. Rule 3 allows adding or eliminating in-
terventions. 

As observed, the primary aim of the axiomatic do-calculus, similar to back-
door and front door adjustments, is to validly deduce the impact of an interven-
tion ( )( )Y | XP do using data without a do-operator, such as ( )Y | X,ZP . In-
terestingly, a front door adjustment formula, a do-operator-free expression, can 
be derived through multiple applications of do-calculus rules, using a particular 
causal diagram as input. This formula estimates causal effects through methods 
other than controlling for confounders. Moreover, if a causal effect can be esti-
mated from data, a series of steps applying these three rules will remove the 
do-operator. 

To better understand causation, it is more useful to respond to causal queries 
than to initially define causation. Definitions often necessitate breaking down 
concepts to simpler forms. Causation, however, is not easily simplified to just 
basic probabilities, which are at the rung one of the causation ladder [1]. With 
the introduction of the do-operator, however, we can offer a definition: we say X 
causes Y if ( )( ) ( )Y | X YP do P> . Chapter 7 in The Book of Why presents the 
do-calculus. 

Graphical models are now widely used in epidemiology. Yet, most econome-
tricians, for example, are still doubtful about using graphical analysis tools [16] 
[17]. However, some have extended and applied causal diagrams and the 
do-calculus to areas such as economic optimization, equilibrium, and learning 
[18] [19], and also to social and behavioral methods [20] [21]. 

A frequent criticism of causal diagrams is the assumption that a simple 
graphic can fully capture the complex interactions of multiple variables and their 
joint effect. The actual goal of these diagrams, however, is not to prove causality 
between X and Y or to identify Y’s root cause from the beginning. It is simply to 
encode plausible causal knowledge in a mathematical language, combine it with 
empirical facts, and respond to causal queries that have practical significance. 
Discovering causality is much harder, often impossible. Therefore, causal dia-
grams are best used for exploration. We form hypotheses about causal connec-
tions and predict variable correlations. If these predictions conflict with actual 
data, it suggests our assumptions were wrong. We cannot draw causal conclu-
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sions without a causal hypothesis, which implies we cannot answer a question 
regarding rung two of the causation ladder based just on information from rung 
one. 

Note that we are not simply assuming what we want to prove, which would 
make the causal reasoning circular. This is because, following causal analysis, we 
get unique information, allowing us to extract the non-obvious from the obvious. 
Causal analysis involves more than just data; it requires integrating knowledge of 
the processes that generate the data, leading to insights not originally present in 
the data. A causal diagram must be justified based on scientific reasoning. One 
objective of causal inference is to develop a more intuitive human-machine in-
terface, enabling the user’s intuition to be incorporated into the belief propaga-
tion mechanism [1]. 

11. Instrumental Variables  

An instrumental variable Z can serve similarly to a front door adjustment for 
assessing X’s impact on Y when controlling or obtaining data on a confounder U 
is not feasible. This method is especially effective in cases similar to the causal 
diagram shown in Figure 18, where front door adjustment is not feasible. 

While instrumental variables were used before the advent of causal diagrams, 
the introduction of these diagrams has enhanced our understanding of how in-
strumental variables operate. First, let us assume the variables are numerical and 
their relationships are linear. In the causal diagram shown in Figure 19, an in-
tervention increasing Z by one unit results in X increasing by a units. Z qualifies 
as an instrumental variable because there is no direct path U → Z, ensuring Z 
and X are deconfounded and the Z → X relationship is causal. Consequently, a 
can be estimated from the slope XZr  of the regression line between X and Z. 

 

 

Figure 19. Causal diagram showing an in-
strumental variable Z. 

 
Additionally, Z and Y are deconfounded due to the collider at X, which blocks 

the indirect path Z → X ← U → Y. Consequently, the slope YZr  of the regres-
sion line from Y on Z represents the causal effect on the direct path Z → X → Y, 
quantified as ab. 

Then, dividing the equation YZab r=  by XZa r=  yields YZ XZb r r= , 
representing the causal effect X → Y. Thus, we infer about b, from the second 
rung of the causation ladder, using correlations XZr  and YZr  from the first 
rung. Instrumental variable methods are also applicable to nonlinear variables, 
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yielding range estimates instead of specific point estimates. 
The solution in Figure 19 was simple due to the collider obstructing the indi-

rect path. When this blockage is absent, assessing the direct and indirect effects 
of an intervention becomes crucial, as detailed in Chapter 9 of The Book of Why. 

In the 1853-4 London cholera outbreak, Dr. John Snow unintentionally used 
an instrumental variable (Z) to clarify the causal relationship between water pur-
ity (X) and cholera (Y), unaffected by the unobserved confounder of unhealthy 
air (U). He distinguished between two water companies, one upstream and one 
downstream of the sewers. In areas served by both, the air quality was constant, 
eliminating confounders (U) for the instrumental variable Z. This demonstrated 
that the link between water purity (X) and cholera (Y) was indeed causal. 

After carefully considering the causal intuition from System 1, we conclude 
that there is no connection between U and Z. This intuition is represented and 
explained in the causal diagram using System 2. We rely on causal intuition 
(System 1) for responding to causal queries, with this intuition being encapsu-
lated, clarified, and detailed in the causal diagram using System 2. Instrumental 
variables are valuable as they reveal causal insights beyond the do-calculus, 
making them highly useful in observational studies. They also aid in RCTs, par-
ticularly when noncompliance occurs, like when participants are assigned a drug 
but do not take it. However, the do-calculus offers greater flexibility than in-
strumental variables as it does not require assumptions about the causal model’s 
function types. Additionally, causal diagrams are essential for effectively apply-
ing instrumental variables methods, which have limited scope on their own. 

Econometric textbooks cover instrumental variables [22]-[24], but econome-
tricians often resist adopting causal diagrams [25], struggling with the concept of 
causality [26]. Causal diagrams provide a graphical yet mathematically robust 
method for causal inference. Analyzing these diagrams can be labor-intensive, 
making them suitable for computer program automation. The online tool DA-
Gitty allows users to identify generalized instrumental variables in diagrams, re-
porting the estimands found [27]. Additionally, BayesiaLab offers another dia-
gram-based software for decision-making (https://www.bayesia.com/). 

AlphaGeometry combines a neural language model with a symbolic deduction 
engine to prove complex geometry theorems. This dual approach mirrors the 
“thinking, fast and slow” concept [6]. One part offers quick, intuitive insights, 
while the other delivers methodical decisions. We propose applying this neu-
ro-symbolic method for creating causal diagrams in research. It balances System 
1’s intuitive causal reasoning with the thoroughness of causal inference using 
System 2. 

12. Counterfactuals 

To step up the top rung of the causation ladder, data alone is insufficient. The 
possibilities of what might have been are never observed. Data cannot predict 
outcomes in counterfactual scenarios, which negate existing facts. Counterfac-
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tuals conflict with data, which are factual by nature. Yet, knowledge extends 
beyond data. For instance, the laws of physics represent counterfactual asser-
tions [1]. Rung one deals with the observable world, rung two with a possible 
world that can be observed, and rung three with an unobservable world that 
contradicts what is seen [1]. 

It is pointless to inquire about the causes of things if you cannot envision their 
outcomes. This is what causal imagination entails. Before, we examined the im-
pact on either a whole population or a typical individual from that population, 
by assessing the average causal effect. Now causal inference enables us to gener-
ate counterfactuals for an individual. This System 2 technology complements the 
mind’s System 1 counterfactual generation while avoiding cognitive biases. We 
employ both observational and experimental data to understand counterfactual 
scenarios. Causal diagrams are used to depict causes on an individual level. 

A counterfactual, also known as a potential outcome, is the value of an out-
come Y for an individual u if a certain condition X had occurred (X = x), de-
noted as ( ) ( )XY Yx xu u= ≡ . Table 1 shows hypothetical data on employee sala-
ries, ( )EDS i u= , education levels (ED), and years of experience (EX) for a com-
pany. A common counterfactual query is, “What would Alice’s salary be if she 
had a college degree?” In this scenario, education levels are coded as i = 0 for 
high school, i = 1 for college, and i = 2 for a graduate degree. We aim to find the 
potential salary outcome ( )1S Alice  for a college education. 

 
Table 1. Hypothetical employee data. 

Employee u EX(u) ED(u) S0(u) S1(u) S2(u) 

Alice 6 0 81,000 ? ? 

Bert 9 1 ? 92,500 ? 

Caroline 9 2 ? ? 97,000 

David 8 1 ? 91,000 ? 

Ernest 12 1 ? 100,000 ? 

Frances 13 0 97,000 ? ? 

 
In Table 1, each employee has just one observable potential outcome. A sta-

tistician views the missing data, marked by question marks, as regular variables 
and would apply interpolation methods. For instance, using a matching tech-
nique, if Bert and Caroline share the same years of experience (EX(u)), then 

( ) ( )2 2S Bert S Caroline 97000= =  and ( ) ( )1 1S Caroline S Bert 92500= = . 
To answer the counterfactual question, a statistician uses these matched data 

pairs. Yet, no statistical method can transform data into potential outcomes, as 
this depends on whether education (ED(u)) leads to experience (EX(u)) or vice 
versa. This causal information is not available in Table 1. 

An alternative statistical method uses the linear regression  
S 65000 2500EX 5000ED= + + , where the intercept is the average starting salary 
for an employee with no experience and a high school diploma. The model adds 
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$2500 for each year of experience and $5000 for each extra educational degree (up 
to two). However, this approach has a flaw: it overlooks the dependency of expe-
rience on education (ED → EX). Attending college for four years, for instance, 
could otherwise contribute to work experience. Unlike the matching method, ac-
knowledging this opportunity cost results in ( ) ( )1 1S Caroline S Bert> . 

To properly tackle counterfactual questions, one should employ a structural 
causal model. We assess statements like “had X been x” in the same manner as 
interventions do(X = x), by removing arrows in a causal diagram or altering eq-
uations in a structural model. Therefore, prior to analyzing the data in Table 1, 
it is crucial to first examine the causal diagram shown in Figure 20. 

 

 

Figure 20. Diagram illustrating how 
education and experience affect sala-
ry. 

 
If EX → ED, then EX acts as a confounder. However, if ED → EX, EX serves as 

a mediator (Figure 20). Our analysis starts with ( )SS EX,EDf= . We then ex-
tend our approach to consider unobserved factors, represented as SU , that af-
fect salary. Therefore, ( )S SS EX,ED,Uf= . Galton noted that “regressions are 
cause blind,” so we continue by building on our previous linear regression equa-
tion SS 65000 2500EX 5000ED U= + + + . This equation becomes structural 
when we incorporate our causal conjecture ( )S SS EX,ED,Uf= . 

To finalize the model, we incorporate the equation EXEX 10 4ED U= − + , 
calculated using Table 1 data. This data indicates employees with only a high 
school diploma average ten years of experience. Additionally, each year of edu-
cation beyond high school (up to two years) corresponds to a four-year reduc-
tion in experience. Hence, this equation explicitly considers the opportunity cost, 
which was previously overlooked by the statistical methods. 

There is an arrow from Experience (EX) to Salary (S), but not from Salary to 
Experience in Figure 20. Although there is a strong correlation between S and 
EX, the coefficient of S is zero, indicating no causal relationship between Expe-
rience and Salary in our analysis. Notably, in our structural causal model, Edu-
cation lacks a causal arrow, ruling out any equation like ( )ED EDED EX,S, Uf= . 

To estimate Alice’s salary using structural causal equations, we undertake 
three steps. Initially, we estimate variables ( )SU Alice  and ( )EXU Alice  using 
data from Table 1 for Alice and other employees. Next, we apply the do-operator 
for the counterfactual hypothesis ( )ED Alice 1= . Lastly, with this data, we 
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compute Alice’s revised salary. 
In the first stage, positioned at the first rung of the causation ladder, we input
( )EX Alice 6=  and ( )ED Alice 0=  into EXEX 10 4ED U= − +  to determine 

EXU 4= − . Subsequently, using the same data and setting S to 81,000, we feed 
these into SS 65000 2500EX 5000ED U= + + +  to calculate SU 1000= . 

In the second phase, at the second rung of the causation ladder, we focus on 
variable ( )ED Alice 1= . Moving to the third phase, at the third rung, we input 

EXU 4= −  and set ED = 1 into equation EXEX 10 4ED U= − + , resulting in EX 
= 2. 

We then incorporate SU 1000=  into  
( )ED=1 SS Alice 65000 2500EX 5000ED U= + + +  to ultimately derive  
( )ED=1S Alice 76000= , which results in a value less than the $85,000 estimated by 

the linear regression method. The linear regression method produces spurious 
correlations because it overlooks key causal hypotheses. In our analysis, we fac-
tored in the opportunity cost in the causal narrative, leading to a lower estimate 
of the counterfactual salary. 

In this example, we used a fully specified structural causal model. Had it been 
only partially specified, the counterfactual outcome would be expressed as a 
probabilistic range, such as “there is an 80% - 90% chance that the salary will be 
$76,000”. A complete structural causal model, which includes both a causal dia-
gram and its underlying functions, enables us to respond to any counterfactual 
query. This section’s example is adapted from Chapter 8 of The Book of Why, 
where we identified the opportunity cost. Causal analysis demands subjective 
judgement rather than solely relying on objective statistics. In this case, the focus 
was on its application in the field of economics. 

Counterfactuals, or “what-if” scenarios, can be algorithmically systematized, 
enabling machines to emulate human retrospective thought. This involves using 
algorithms to analyze real-world data and generate insights about hypothetical 
situations. Unlike abstract metaphysical logic, this process relies on structural 
causal equations and diagrams, which use clear rules for drawing and omitting 
connections. These methods closely resemble how System 1 processes counter-
factuals. Although empirical evidence cannot disprove such hypotheticals, we 
can still form highly reliable and consistent judgements about potential out-
comes. Counterfactual reasoning is essential not only in scientific inquiry but 
also in moral decision-making [1]. Hence, equipping AI with a causal reasoning 
module is a vital step towards achieving strong AI. 

2023 was the year AI became mainstream, predominantly led by ChatGPT. 
The potential of this AI generation prompts questions: can it achieve conscious-
ness and become a threat, or will it plateau? Based on our discussion, this AI 
generation has not advanced to the second rung of the causation ladder, making 
the outcomes clear. We need to integrate causal inference into the next AI gen-
eration to move closer to strong AI. Today’s machine learning techniques effi-
ciently turn finite sample estimates into probability distributions. However, we 
still need to derive cause-effect relationships from these distributions [1]. A cy-
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borg is a being whose human capabilities are enhanced by mechanical elements 
within their body. This includes technology to restore or augment functions, like 
a hearing aid improving hearing. By this definition, using technology, like rely-
ing on a smartphone for memory, gradually makes us more cyborg-like. Em-
bracing tools like ChatGPT broadens this, enhancing our cognitive abilities 
beyond specific senses or skills. This blurs the line, leading some to mistakenly 
believe that conscious AI is imminent. 

We proposed that automatically ascending the three rungs of the causation 
ladder is risky. But how exactly does relying on System 1 for causal inference 
lead to failure? Many evolutionary psychologists believe that System 2 faces a 
vast number of choices, leading to a combinatorial explosion. For instance, 
making 100 deliberate decisions in the first minute and another 100 in the 
second results in 10,000 possible combinations after just two minutes, and one 
million combinations after three minutes (100 × 100 × 100). Unlike System 2, a 
computer avoids this combinatorial explosion, as it is programmed for specific 
tasks, thus narrowing its decision-making scope [2]. 

System 1, shaped by evolution, comes with survival and reproduction pro-
grams, enabling spontaneous causation ladder climbing. Yet, System 2 causal 
inference is essential. The adapted mind, designed for Paleolithic survival and 
reproduction, is not tailored for truth-seeking. In today’s world, truth-finding is 
crucial for survival. We must use System 2 to make causal inferences. This is ne-
cessary because many modern decisions were not present in our ancestral envi-
ronment, leaving us without evolutionary training or data on their frequency. 
Additionally, we need to sift through the vast information from our independent 
modules (System 1) to prevent them from hindering sound causal inference. 

The Turing test measures a machine’s human-like intelligence by its ability to 
play an imitation game, where an average human interrogator cannot correctly 
identify the machine more than 70% of the time after five minutes of question-
ing. Pearl proposes a modified version, a mini-Turing test, focused specifically 
on causal reasoning as a benchmark for achieving strong AI [1]. For example, 
the mini-Turing test is resistant to deception by a mere list of scripted questions 
and answers, which are insufficient to replicate human intelligence. This is due 
to a combinatorial explosion: even a small set of variables can lead to an astro-
nomical number of potential questions. To succeed in the mini-Turing test, 
machines must be equipped with an efficient environmental representation sys-
tem and an effective answer-extraction algorithm [1]. The mini-Turing test was 
developed to enable computers to make causal inferences effectively. This also 
helps us understand the functioning of System 2’s causal inference process. Pearl 
presents a causal diagram example that enables machines to successfully pass the 
mini-Turing test, thereby safely ascending the three levels of the causation lad-
der. 

Imagine a prisoner facing execution by a firing squad. The court issues an ex-
ecution order (O), which is relayed to a captain (C). The captain then signals 
soldiers A and B to shoot. Both soldiers are obedient and skilled marksmen; they 
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shoot only on command, and the prisoner dies (D) if either fires. Every variable 
(O, C, A, B, D) is binary, representing true or false. 

Figure 21(a) displays a causal diagram addressing a first-rung causal query, 
focusing on association – how one fact informs us about another. Ascending the 
causation ladder, Figure 21(b) addresses an intervention question (second rung). 
Progressing to the third rung, Figure 21(c) explores a counterfactual scenario. 

 

 

Figure 21. Causal diagrams for the firing squad scenario. (a) First level of causation (ob-
servation): A and B indicate the actions of soldiers A and B. (b) Second level (interven-
tion): Soldier A chooses to fire; the link from C to A is removed, and A is set to true. (c) 
Third level (counterfactual): observing the prisoner’s death, we question the outcome if 
Soldier A had not been fired. 

 
Consider the query: if the prisoner is dead, does this mean a court order was 

issued? From Figure 21(a), a computer would deduce that the soldiers would 
only fire on the captain’s command. The captain, in turn, would command only 
if he had a court order. Hence, the computer concludes the answer to the query 
is yes. In another scenario, if it is known that Soldier A fired, what does this 
imply about Soldier B? Using Figure 21(a), the computer would ascertain that 
Soldier B must have also fired, regardless of A’s actions causing B’s. 

Next, consider the query: if Soldier A fires on his own, without the captain’s 
command, is the prisoner dead or alive? The computer, using the causal diagram 
in Figure 21(a), finds this question unanswerable. To address this, we use Fig-
ure 21(b), teaching the computer the distinction between observing an event 
and affecting it. We tell the computer: “When you cause an event, eliminate all 
incoming arrows to that event and proceed with the analysis, ignoring those ar-
rows as if they never existed”. By erasing all arrows to variable A and setting A to 
true, the computer can now respond. It concludes that the prisoner is dead. 

Finally, consider the query: if Soldier A chose not to shoot, would the prisoner 
still be alive? To analyze this, we introduce the computer to the counterfactual 
scenario in Figure 21(c)’s causal diagram. We remove the arrow to A, freeing it 
from C’s influence, and set A to false, maintaining its real-world history. In this 
imagined scenario, the computer concludes that the prisoner would still die 
from Soldier B’s shot, proving its ability to pass the mini-Turing test. 

Why are counterfactuals on the third rung and interventions on the second 
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rung of the ladder of causation? Consider this scenario: we know the fire escape 
was blocked (X = 1) and Judy died (Y = 1). What is the probability that Judy would 
have survived (Y = 0) if the escape was not blocked (X = 0)? Without knowing the 
actual outcome (hindsight), ( )X 0Y 0P = =  and ( )( )Y 0 | X 0P do= =  are identical. 
However, since a do-expression cannot be encapsulated ( )X 0Y 0 | X 1,Y 1P = = = = , 
counterfactuals are ranked higher than interventions in the causation ladder. 

13. Concluding Remarks 

The first rung of the causation ladder focuses on association, involving observa-
tion and queries like “what if I see…”, “how are variables related”, and “how 
would seeing X change my belief in Y?”. The second rung centers on interven-
tion, encompassing actions and questions such as “what if I do…”, “what would 
Y be if I do X”, and “how can I make Y happen?”. The third rung addresses 
counterfactuals, characterized by imagination, retrospection, and understanding, 
asking “what if I had done…”, “was it X that caused Y”, “what if X had not oc-
curred”, and “what if I had acted differently?” [1]. 

Evolution through natural and sexual selection has honed our minds to intui-
tively navigate the rungs of observation, intervention, and imagination, akin to 
System 1 thinking. Humans surpass data in understanding causes and effects, as 
we automatically grasp them through our intuitive System 1 thinking, while data 
lacks this ability. However, our minds are tailored more for survival than for 
uncovering truth, leading us to be satisficers, not maximizers, as Herbert Simon 
noted. This concept from Simon [28] sparked the bounded rationality approach, 
which laid the groundwork for behavioral economics. Fast thinking, therefore, 
should not be relied upon for accurate causal inferences. Yet, by deliberately 
pondering over our innate causal inference abilities using System 2, we can safe-
ly and effectively ascend the causation ladder. 

This paper emphasizes the importance of employing slow thinking for accu-
rate determination of cause-and-effect relationships, and outlines methods for 
developing precise causal inference frameworks. It underscores the critical roles 
of System 1 and System 2 in understanding and navigating the complexities of 
causal inference. The paper delves into numerous instances where the interplay 
between these two cognitive systems either clarifies or complicates our grasp of 
causation. System 1, operating on intuition and rapid processing, often leads us 
to perceive causal relationships where none exist (type I errors), as exemplified 
by the coin flip experiment and attractiveness and personality in dating choices. 
It equates correlation with causation, which can be misleading in complex situa-
tions such as the Monty Hall problem. In contrast, System 2, with its slow and 
deliberate reasoning, is essential for accurately assessing probabilities and cau-
sality, especially in situations laden with cognitive illusions such as collider bias 
and paradoxes arising from conflicting statistical reasoning and causal intuition. 

This review highlights the importance of employing both systems judiciously 
to navigate the landscape of causal inference, emphasizing the need for a ba-
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lanced approach that harnesses the intuitive rapidity of System 1 and the analyt-
ical rigor of System 2. We propose using the “thinking, fast and slow” concept to 
enhance the creation of causal diagrams in everyday research. This method 
combines System 1’s intuitive causal reasoning with the comprehensive causal 
scripts derived from System 2’s causal inference. Ultimately, causal inference 
emerges as a quintessential System 2 technology, adeptly leveraging our innate 
System 1 tendency to discern causality, yet meticulously steering clear of the 
simplistic extremes of statistical inference that deny causality in favor of mere 
correlation. 
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