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Abstract 
This paper revisits the optical contributions of Thomas Young to the theory 
of diffraction and, in particular, some experiments presented in his celebrated 
“Bakerian Lecture” of 1803. The major input to re-analyze some of Young’s 
experiments came by a recent paper appeared on an instructional and peda-
gogical journal. Diffraction experiments of Thomas Young are here revisited 
with particular reference to the coherence requirements of the white light 
source to see and measure diffraction fringes by pins, and in general to con-
sider the difficulties in working in a “camera obscura”. If at the beginning of 
the nineteenth century, the experiments of Optics in a darkroom were consi-
dered “simple”, however they needed rooms about 7 meters long, completely 
darkened out, with a window mostly exposed to south, a darkened window 
and a small hole practiced on a dark sheet applied to a hole in the window 
shutter. Often a heliostat should be placed outside and a mirror inside the 
room to direct the cone of sunlight. Thomas Young worked only with a mir-
ror interior to the darkened room in order to have a cone of light horizontally 
directed and moving the mirror at each observation. Today, these require-
ments are not easy to implement. However, only a single measure by Thomas 
Young will be repeated under his own conditions with a “reduced darkroom” 
using internally blackened cardboard tubes. 
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1. Introduction 

“Any deviation of light rays from rectilinear paths which cannot be interpreted 
as reflection or refraction is called diffraction”. This sentence opens the chap. 5 
of one of the most classical books of Optics [1]. The observation of phenome-
nology related to diffraction requires some experimental conditions, such as a 
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“light point source”, openings and/or “small” obstacles that introduce a sharp 
discontinuity in the incident spherical wavefront that, at a great distance from 
the source, can be treated as a “plane wavefront”. 

These practical conditions were correctly recognized by Thomas Young start-
ing from the 1802 papers [2] [3]. In the first of these papers, a first Boundary 
Theory of Diffraction was proposed and here it is found for the first time the 
Principle of Interference. 

The major point attempted in this paper is an attentive reading of Thomas 
Young’s contributions in order to particularly reproduce its own experimental 
conditions. We will see how, in the 1803 Bakerian Lecture [4], the requirement 
of coherence of the source using sunlight, in order to obtain diffraction fringes 
with fair readability, had to require a good adaptation of the eye to the dark and 
a challenge to one’s own visual abilities. 

2. Historical Survey 

As pointed in the Sect. 1, the first “wave theory of diffraction” is found in the 
1802 Young’s paper [2]. The basic statement is the assumption of the periodic 
nature of the light and the interference principle, which is re-formulated with 
slight differences through all its papers on this matter [1] [2] [3] [4] [5]. Thomas 
Young assumed the wavefield through an aperture or an obstacle as the super-
position between the unperturbed incident wavefront and an edge-diffraction 
wave arising at each point of the rim of the aperture or the obstacle. The origin 
of this edge-wave is confused. At the first time, the edge-wave is described as a 
kind of reflection on the edge by the incident wavefront; afterwards, in the same 
paper [2], Young considers diffraction as a refraction through an ether atmos-
phere surrounding the edge and having a density gradient in substantial agree-
ment with the Newtonian description given by M. De Mairan [6]. The ether gra-
dient hypothesis is not mentioned at all in the following paper [3], explicitly re-
jected in the following Bakerian Lecture [4] and ambiguously re-proposed in his 
“Lectures” [5] leaving diffraction without any theoretical support. A final obser-
vation on some difficulties that Thomas Young seems to have noticed appears in 
his latest paper on the subject [7] where ether is marginally considered as a ne-
cessary mean of propagation, and there is no mention of the analogy between 
light and sound, whereas the “interference principle” is again reiterated at the 
beginning of the paper. The full understanding of the resolving power of a dif-
fraction grating as proportional to the number of lines cannot be unnoticed. It 
appears also noticeable how the mathematical language has completely changed. 
The style of the article reveals no emphasis, and no mention of the models of 
optical radiation. The term “diffraction” is the only one to be employed, while in 
the Bakerian Lecture [4] and in the Lectures [5] a promiscuous terminology is 
used (the Newtonian “inflection” and the provocative “diffraction”). 

The Boundary Diffraction Wave Theory seems to have been so natural that A. 
Fresnel also adopted the same Young’s ideas in his first investigations without 
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knowing Young’s contributions [8]. His experiments about the influence of 
edge-parameters (material, cross-sectional geometry) made him change his 
mind about edge-diffraction wave approach, so that he developed his own 
theory of diffraction based on Huygens’ concept of secondary wavelets [9]. A. 
Fresnel gave quantitative description of diffraction phenomena, but Huygens’ 
Principle is not a “Theory”. Therefore, Fresnel contributions to studies on dif-
fraction received high consideration because observed phenomena were in good 
agreement with description provided by Fresnel. As a matter of facts, Young’s 
diffraction Theory has been forgotten for many decades and Fresnel analysis was 
accepted and highly considered through the XIX century. 

Also Fresnel analysis remained without any mathematical support until 1883 
[10] when the diffracted wavefield was expressed as a solution-form of the 
wave-equation by superposition of spherical wavelets emitted by virtual sources 
on the plane of the aperture. Some years later, G. A. Maggi, showed how Kir-
chhoff integral formula could be converted into a line integral around a boun-
dary line rim of an aperture or obstacle [11]. Maggi’s contribution could not be 
considered as an explicit re-discovery of Young’s ideas. Also, A. Rubinowicz, 
independently from Maggi’s paper, explicitly re-discovered Young’s ideas con-
verting Kirchhoff integral formula into a line integral around the line Γ boun-
dary of the aperture in a “black” screen [12] [13] [14] with no approximation. 
Considering all the historical considerations on the Scalar Theory of Diffraction, 
it can be observed how two theories apparently so different, are at the end 
equivalent. In one of these it is emphasized that the diffraction is an effect of su-
perposition of wavelets due to “sources” distributed in the aperture-plane, in the 
other it is emphasized that the diffraction arises from the overlap between the 
wave “geometrically cut” from the aperture and spherical wavelets coming from 
each point-sources on the edge of the aperture [15]. 

3. Reading Thomas Young Paper 

Let us refer to 1804 paper [4] where experiments were more emphasized than 
theory. The paper is open with a sentence where T. Young claims: “I have found 
so simple and so demonstrative a proof of the general law of the interference of 
two portion of light...”. Hence a first qualitative experiment is done. Experimen-
tal setup described appears very simple at his age. A small hole in a win-
dow-shutter covered with a thick card where a pin-hole was punched and a 
mirror out the window give a sunlight “point” source. A cone of diverging light 
passes the space through a table up to the opposite wall of the carefully obscured 
room. It appears evident that Thomas Young observes a Fresnel diffraction 
phenomenon (point source and a spherical wave). A fundamental observation 
then follows: the shadow of a rectilinear slip of card (breadth about 0.85 mm) is 
surrounded by exterior fringes (similar to the fringes of a half-plane and a sys-
tem of interior fringes of smaller dimensions) in parallel with the edge of the slip 
of card. Thomas Young claims these interior fringes differing in number, ac-
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cording to the distance at which the shadow is observed, but leaving the middle 
of the shadow always white. Historically his last fundamental observation was 
previously noticed by the Newtonian M. De Mairan [6] where a figure showing 
this phenomenology in the case of a rectilinear obstacle but also in the case of 
circular screen (the so called “Poisson Spot”) was realized [16]. In both experi-
ments, it is implicitly verified the spatial coherence requisite of the source along 
all the distances involved between the source (the hole in the window shutter) 
and the slip of card whose width is little less than 1 mm. The “crucial” demon-
stration is the following: a few centimeters before the slip of card a sharp opaque 
screen moves towards one of the edge of the slip card and parallel to that edge. 
The exterior fringes disappear one by one and no perturbations are seen in the 
opposite and symmetric11al exterior fringes. When the edge of the screen is 
touching the “geometrical” line from the screen’s edge and the slip-edge, the in-
terior fringes disappear. Thomas Young do not refers a change in approaching 
the edge of the slip card and infer that this portion of light “bending in-
to-shadow” do not interfere with the other “portion of light” giving a disappear-
ing of the interior fringes. T. Young claimed it to be “…the demonstrative proof 
of the general law of the interference”. Curiously, a similar experiment was used 
later by Henry Brougham (a “natural” enemy of T. Young) at support of his 
“corpuscular” nature of light [17], and by G. Burniston Brown in his “new 
treatment of diffraction” [18]. 

In his Table I Obs. 9. N and in Table II Obs. 3 N, T. Young quotes two expe-
riments in the third book of I. Newton [19] and in the Table III some measure-
ments where T. Young point out better experimental setup used in all his obser-
vations. The distance from the source of light and the wall of the observation 
was 6.35 m, the distance between the source and the aperture was z1 = 3.18 m 
about even the rectilinear obstacle was l ≈ 11 mm in width. Because the sun has 
an angular diameter θ ≈ (½)˚ the “geometrical diameter” of the sunbeam spot on 
the obstacle-edges was about 55 mm. and consequently the “geometrical sha-
dow” of the obstacle (not quoted by Young) were about 22 mm, but Young re-
fers his measurements to the external fringes and neglects the internal fringes. 
Of course, in order to see interference fringes with an acceptable degree of con-
trast the practical condition [19]: 

1

Da
z

λ                           (1) 

must be verified, where in Equation (1) a is the pin-hole diameter in the win-
dow-shutter, z1 is the distance between the light source and the diffracting sys-
tem, D is the diameter of the light spot impinging on both edges of the diffract-
ing system and λ is the wavelength of the light. In white light, a “mean” wave-
length λ ≈ 500 nm gives the magnitude order to considered verified Equation 
(1). In spite of the high frequency that the internal fringes should had o have, the 
visibility of them should have assumed a small hole—as light source—having 
diameter a << 0.15 mm. 
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In the quoted “Exper. 4.” the distance z1 between the “light point-source” and 
a wire whose width was l ≈ 2.1 mm reduced to z1 ≈ 0.8 m and the mean of the 
“geometrical shadow” observed on the opposite wall was claimed about 21 mm. 
The measure is in agreement with a geometrical calculus on the similitude of the 
triangles isosceles S l and S s where S is the vertex at the “point source” l the 
width of the wire and s the “breadth” of the shadow. Again, only the external 
fringes were considered and the coherence condition given by Equatiob (1), 
Young should have assumed a small hole—as light source—having diameter a 
<< 0.2 mm. 

4. Revisiting Young’s Experiments 

a) In the beginning of this investigation, an experimental apparatus similar to 
that used by Thomas Young would have been difficult to reproduce. Today the 
author has been unable to find a laboratory adapted as a darkroom in two phys-
ics departments. Indeed, it would have required a great Lab room, which they 
should have been south exposed and carefully darkened, a heliostat and a pin-
hole in a windows shutter. So, a “reduced camera obscura” was assembled using 
cardboard tubes of about 40 mm in diameter, carefully blackened with matt 
black paint in order to have a final tube long about 1.80 m well assembled on a 
wood support. One end of the tube was closed with thick blackened card and a 
central hole was made in an Aluminum foil ensured to the blackened card. The 
minimum hole diameter allowed was 0.35 mm (like a pinprick for diabetes di-
agnostic test). The sunlight, after reflection on a mirror, was sent into the hole 
acting as the source. A little screen of tracing paper was positioned near the end 
of the tube and a photographic camera was carefully assembled with the objec-
tive in contact with the end of the tube in order to focus on the shadow of a pin 
on the tracing-paper screen. A blackened pin (width 0.65 mm) was placed at a 
distance z1 ≈ 0.8 m from the point source in full agreement with the conditions 
used by Young in his last quoted experiment. In our experiment only the width 
of the wire was strongly reduced. Although the pin was less broad than that used 
by Thomas Young, the results were not satisfactory. Aside from undesired blur-
ring caused by the vision of a fine-detail image on tracing paper, a single internal 
white fringe has been seen, even the external fringes appeared just recognizable 
as shown in Figure 1. If we apply Equation (1) to the wire used at a distance 0.8 
m from the source, the “spatial coherence requirement” is very poorly verified. 
This attempt allows us to realize that when the eye is well accustomed to work-
ing with shadows using a faint cone of light in a completely darkened room, the 
recognition of interference fringes in white light can be a not entirely trivial en-
terprise. It can be inferred that in a darkroom the image quality is better and is 
not affected by blurring caused by vision through translucent paper. Young’s pin 
where 2.11 mm in diameter, so, the coherence requirement should be satisfied 
by a “point source” having an amplitude a << 0.2 mm with obvious problems in 
vision because the very low intensity of the light. 
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Figure 1. The shadow of a pin in sunlight through a pin-hole (diame-
ter 0.35 mm) at a distance z1 ≈ 0.8 m viewed through a tracing paper 
that blurs some details. A light fringe at the center of the luminous 
area is (barely) recognizable at the center of two dark fringes. Not well 
defined the external fringes. As referred in the text, the spatial cohe-
rence requirements of the source are not fully verified. Photograph is 
unretouched. 

 
b) Amore easy experimental attempt was carried out using a solid-state Laser 

emitting blue-violet light (nominal wavelength λ ≈ 405 nm) with its terminal 
lens adjustable in order to have a cone of diverging light impinging on a black-
ened pin that can be positioned at different distances from the source. We can 
then obtain a divergent cone of light with the same angular divergence of that 
generated by a beam of sunlight through a small hole. The shadows, exterior and 
interior fringes, could be directly recorded on a sheet of glossy photographic pa-
per ensured to the opposite wall at a distance about 3 m and using a front sil-
vered mirror at a distance 6.3 m as in the Young’s experiments. Figure 2 shows 
one of the more recorded images. To change the photo negative into a positive 
we use a quick procedure by finely scanning the recorded image and its conver-
sion using an image processor software. Even the measurements of the in-
ter-fringes distances can be made directly on the recorded image. 

c) On the fringes internal to the shadow Thomas Young comments: “…differing 
in number, according to the distance at which the shadow was observed, but 
leaving the middle of the shadow always white”. An experimental verification of 
this sentence shows that the crucial distance causing the increase of the fringes 
inside the shadow is only the distance source-diffracting object. In Figure 3(a) 
and Figure 3(b) it is shown the same shadow when the distance between the 
source and the pin (width of the pin l = 0.65 mm) when the pin is respectively 
put at distances 0.4 m and 0.8 m from the source. Over the distance 0.8 m the 
shadow becomes narrower but the number of dark fringes with the central fringe 
always luminous remains unchanged. It was verified up to the limit of the  
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Figure 2. The shadow of the wire (width 0.65 mm) obtained with a 50 m 
W solid-state blue laser (nominal wavelength λ ≈ 405 nm) with its termin-
al lens adjustable in order to have a cone of diverging light impinging on a 
blackened wire that can be positioned at different distances from the 
source. A divergent cone of light with the angular divergence less great of 
that generated by a beam of sunlight through a small hole was employed, 
but the spatial coherence requirements of the source are better verified. 
Because the image (the negative of the image) is recorded directly on a 
photographic paper, quantitative measurements becomes possible on the 
image recorded, provided a greater photographic paper sheet and the same 
geometry used by Thomas Young. At a distance z1 ≈ 0.8 m from the source 
and z2 ≈ 2.30 m between the wire and the observation plane, the interfringe 
is estimated about 2 mm using a caliper. A 10.5 × 14.8 cm Ilford photo-
graphic paper n˚ 3 is fixed on the observation plane; exposition time (ma-
nually accomplished moving an opaque screen) is about less than 1 s. De-
velopment with Neutol 1:9 and Ilfosol rapid fixer bath. 

 
naked eye visibility at about 2 meters between the source and the wire on a total 
distance 3.10 m. 

d) In the region of interest (e.g. the shadow of the wire), we have the superpo-
sition of two boundary waves arising at each edge. The idea of the “crucial” 
Young’s experiment was the following: “If one of the boundary waves is sup-
pressed, by means of a screen, then the other boundary wave does not superpose 
with the suppressed wave”. Young’s idea is fully correct, but, unfortunately, 
another boundary wave arises from the plane used for suppression. Its effect is 
visible when it is brought towards one of the wire-edge. The fringes outside the 
shadow come to disappear one at a time, and when the shadow of the screen is 
about to overlap the edge, the internal fringes first deform and then vanish while 
new fine fringes appear on the suppressing plane. When the overlap is com-
pleted the effect of the new “wave edge” introduced does not significantly dis-
turb the system of opposite external fringes. 
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(a)                                                         (b) 

Figure 3. (a) Diffraction fringes of a wire having width 0.65 mm placed at z1 = 0.22 m ± 0.005 m from the source (a solid-state 
Laser) whose nominal wavelength is λ ≈ 405 nm viewed at a distance (after reflection on a front-silvered mirror) between source 
and screen z1 + z2 ≈ 6.54 m ± 0.02 m. The observation is made at about the same distance of the Young’s experimental setup, but 
using a light source much easier to use. In the “geometrical shadow” there are two high-contrast black fringes and two black 
fringes having less contrast. The “geometrical shadowed area” directly estimated is 17 mm ± 2 mm. If the value 17 mm is inserted 
in the Equation (9) this equation is verified under a strong uncertainty of about 12% because of the difficulty to visually localize 
the “geometrical shadowed area”. Different observers give slightly different values. The direct measurement of the two interior 
black interfringe using a caliper gives 4.0 mm ± 0. 2 m; (b) Diffraction fringes of a wire having width 0.65 mm placed at 0.8 m 
from the same source in the previous figure caption. The number of interior black fringes is reduced from 4 to 2. Overcoming the 
distance 0.8 m the pattern remains unchanged at least at the limit of naked eye visibility. 

5. Theoretical Analysis 

Boundary Diffraction Wave Theory (BDW) was the mathematical refinement of 
the Young’s basic idea of the diffraction phenomenon. An attempt to formulate 
the theoretical analysis can be made using Maggi-Rubinowicz transformation of 
the Helmholtz-Kirchhoff integral formula into a line integral along the edge of 
the aperture or the obstacle. 

( ) ( ) ( )
( )

,  
;  

G B i

B s

U P U P P J
U P

U P P J
 + ∈=  ∈

                  (2) 

where UG(P) is the “geometrical” spherical wavefront propagating undisturbed 
through the diffracting object and UB(P) is the “boundary diffraction wave” 
arising at each point of the rim of the diffracting object. Similarly Ji is the space 
region “geometrically illuminated” and JS is the “geometrically shadowed area”. 
So, in the “geometrically illuminated” region, the wavefield is the superposition 
between the geometrical wavefront and a boundary wave; even in the geometri-
cally shadowed region only the boundary wave acts. The general expression of 
the boundary diffraction wave in Equation (2) is the following: 

( )
( ) ( )

( ) ( )
exp cos ,1 sin , d

4π 1 cos ,B r

ik s
U P s

s
ρ

ρ
+  =

+∫
n s

l
s

ρ
ρ

          (3) 
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In Equation (3) we suppose a unit-amplitude spherical wave arising from a 
source S. So k is the wave-number 2𝜋𝜋/λ, where λ is the wavelength, Γ is the sim-
ple closed line rim of an aperture or an obstacle, exp(ikρ)/ρ is the incident wave-
field at a point Q of the edge Γ. The oriented distance s is drawn from the obser-
vation point P and a point Q on the line Γ, n is a unit vector drawn, orthogonal 
to both the incident rays ρ and to the line Γ. The general geometry of the prob-
lem is shown in Figure 4. 

In our case the diffracting screen is rectilinear and with two edges. With ref-
erence to Figure 5 the geometry of the problem is shown. On an (undefined) 
rectilinear wire of width l, a unit-amplitude spherical monochromatic wavefield 
coming from a “point source” S, impinges symmetrically on both the edges of 
the wire (namely are equal ρ and ρ'). In order to apply the Maggi-Rubinowicz 
Transformation, the unit vector n is drawn, orthogonal to both the incident rays 
ρ and ρ' (from the source S at the points Q and Q' of the edges) and to eachedge 
itself. Both s1 and s2 are the QP and Q'P vectors, which identify the observation 
point P For simplicity, let us take P on the x, y plane. Let be U(P) the wavefield 
in a point P of the x, y plane. The formal solution to the problem of the interior 
fringes is the sum of two boundary waves, namely: 

( ) ( ) ( )1 2B BU P U P U P= +                         (4) 

Only the shadowed region is of interest here. Because the symmetry of the 
problem, ρ = ρ' (e.g. the source S is on the z axis); under the approximation l << 
ρ and l << s, the unit vector n can be considered aligned with x-axis, namely only 
in the phase terms, s1 and s2 differ. Even under these stringent approximation 
two integrals such (3) in Equation (4) are not easy to solve. The method of the 
stationary phase (that falls when P approaches the “geometrical” boundary be-
tween illuminated and shadowed regions) gives a simple asymptotic solution to 
the problem. From the geometry in Figure 4, the phase is stationary when the 
incident rays at the edge and the oriented lines s1 and s2 are in the y = 0 plane, 
thus, the problem becomes plane and its geometry is shown in Figure 5 where 
the wire width l is drawn great compared with the “rays” length in order to 
shown the geometry and the approximations considered. Applying the method 
of the stationary phase [20] to an integral like (3) at each edge, the two boundary 
waves are: 

( ) ( ) ( )
( ) ( )

( )

1 2

1
1

1 1

2
2

2 2

exp cos1         exp 4
2 1 sin

cos
             exp 4

1 sin

B BU P U P U P

ik
i ks

s

i ks
s

ρ ϕλ π
π ρ ϕ

ϕλ π
ϕ

= +


= +   −


+ +  − 

       (5) 

The two expressions in Equation (5) have the asymptotic aspect of two cylin-
drical waves with angular factors that becomes infinity when s1 or s2 are aligned 
with the correspondent rays ρ on the y = 0 plane, as shown in Figure 6. The an-
gles φ1 and φ2 identify the directions of the segments oriented from P to the 
points of the edge in the two-dimensional problem. So, strictly speaking  
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Figure 4. The general geometry of the Maggi-Rubinowicz transformation. 
Case of an aperture SA having the boundary the simple line Γ on an opaque 
screen. The unit vector n is orthogonal to both the incident ray ρ and to the 
line Γ at the point Q. R represent the ray of the “geometrical wave” going in 
the illuminated region Ji from the source S to the observation point P. 

 

 
Figure 5. The Maggi-Rubinowicz Transformation applied to 
the diffraction of a rectilinear wire of width l. For the sake of 
simplicity in calculus, the light source S is on z-axis. The ob-
servation point P is in the plane x, z on an axis xo parallel to 
x-axis. The strip has the z-axis as symmetry axis, so ρ = ρ'. The 
unit vectors n and n' are both orthogonal to the edge of the 
wire and to the rays ρ and ρ' respectively. 

 
Equation (5) holds only near the center of the wire where the approximation l 
<< s1, l << s2, holds. The distances s1 and s2 are: 

( ) ( )2 22 2
1 2 2 22 ; 2o o o os z l x s z l x= + − = + +             (6) 

2 2

1 2 2 2
2 2

2 2
1 ; 1

2 2
o o o ol x l x

s z s z
z z

      − +
   ≈ + ≈ +   
         

          (7) 
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Figure 6. Applying the method of the stationary phase, the problem be-
comes two-dimensional. The asymptotic approximation introduced holds 
in a region of the geometrical shadow where the observation point P lies 
far from the boundary of the “geometrical shadowed area”. Under the ap-
proximation l << ρ, the unit normal vector n (that is orthogonal both to 
the incident ray at the edge and the edge itself) can be considered aligned 
with x-axis. Namely, a quasi-plane wave approximation is considered. No 
hypotheses are put on the distances between the diffracting wire and the 
observation point P. Between the wire-width and the “geometrical sha-
dowed area” holds the proportion l:z1 = lo(z1+ z2) where a line from the 
source S to the point P cut a segment x on the wire to respect its center 
and a segment xo from the center of symmetry of the “geometrical sha-
dowed area” on the observation plane. 

 
where the binomial approximation of the square root was done. Under this spe-
cial approximation, disregarding both amplitude and phase factor in Equation 
(5), the simple calculus of the optical path difference 2 1 s s s∆ = −  gives the 
maxima and minima inside the “geometrical shadowed area”: 

2 1
2

2 o ol x
s s s

z
∆ = − =                             (8) 

where s1 and s2 are the distances between the observation point and the edges of 
the wire having width l and the x-coordinate from the center of the wire is the 
intersection of a line drawn from the source S and the observation point P. With 
reference to Figure 6, in Equation (8) the xo-variable is the distance from the 
center O of the “geometrical shadowed area” of width lo, k is the wavenumber 
and z2 is the distance from the slit and the observation plane. From the geometry 
of Figure 6 the below proportionalities follow: 
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( ) ( )1 1 2 1 1 2: : ; : :o oz x z z x z l z z l= + = +                (9) 

Under the stringent approximations introduced, a simple inspection of Equa-
tion(8) with the relations in Equation (9) allow us an evaluation of the “geome-
trical shadowed area” under the condition 1 2z z+  fixed, and shows that the in-
terfringe (considered on the observation plane) is dependent on both distance z1 
and z2. The “quasi-plane” wave approximation simplified the calculus of a 
couple of integrals such as in Equation (3). Let us consider the x0 coordinate, in 
the image-plane as the “geometrical” projection of the x coordinate behind the 
diffracting wire, namely a distant source S. As a special case, we can consider the 
situation when the number of black interference fringes contouring the central 
luminous line is reduced to two. The condition that must be verified is that the 
interfringe distance between two dark lines is less than lo. Moreover, the distance 
between two minima is estimated 2 mm ± 0.5 mm and the “geometrical shadow” 
estimated in 3 mm ± 0.5 mm in substantial agreement with the above theory. 
With reflection on a front-silvered mirror the pattern is brought at a distance 
source-screen 6.5 m, about the same experimental situation of T. Young but not 
particular advantages were find. In the major part of the experiments a wave-
length about 405 nm was used. It follows from (8) for a slit of width 0.65 mm, a 
fixed distance z1 + z2 = 3.1 m (or z1 + z2= 6.54 ± 0.03 m after reflection into a 
front silvered mirror), a pattern having only two first minima contouring the 
central maximum is obtained at z1 ≥ 0.8 m. 

In the end, a “critical” experiment performed by the Author is leaved to the 
Reader’s consideration. A flat and blackened wire (i.e. 0.65 mm in width) is 
mounted between two crossed linear polarizers. You must ensure a mounting of 
the polarizers’ edges be carefully inside the wire. Light from a divergent beam of 
a solid-state laser is sent on this system and the diffraction fringes observed on a 
screen. Even when each system of external fringes appears unperturbed, the in-
ternal fringes (well visible without the polarizers) are completely suppressed. 
Regarding the diffraction as interference of the lights coming from the disconti-
nuity in the wavefront caused by the wire’s edges, now the light coming from the 
right edge no longer overlaps the light coming from the left edge because the 
polarizers are crossed. The overlap between the light on the left edge does not 
significantly affect the external fringes that are formed on the right and vice-versa. 
Obviously the above word “critical” is provoking, because Young’s theory of the 
boundary wave and the Fresnel’s theory of diffraction founded on Huygens 
principle are fully equivalent because they derive from the same integral formu-
la. 

6. Conclusions 

An attentive critical reading of Thomas Young experiments presents some per-
plexities because, in general, Thomas Young is not always conscious of the more 
important consequences of its own measurements. Indeed, after some funda-
mental observations at the beginning of its own paper, he “switches off” its  
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Figure 7. A very fine system of fringes viewed in about the same 
situation of Young’s experimental work. Here the source is mo-
nochromatic and spatial coherence is ensured. The wire is at a 
distance 0.8 m from the Laser and the distance z1 + z2 is about 
the same distance of Young “obscured room”. Only the diver-
gence of the beam is slightly greater than the sunbeam of 
Young’s experiment. 

 
attention from the interior fringes, to the exterior fringes, the only fringes con-
sidered by Isaac Newton. Therefore, he is more concerned with the comparison 
of the position of the fringes outside the shadow with Newton’s observations and 
measurements. Table III exper. 4 leaves a perplexity: IF the “breadth of the wire” 
is 0.083 inch, (namely, about 2.1 mm) at a distance from the aperture (the source 
of light) of about 32" (about 0.8 m), THEN the pattern of internal fringes is just 
seen using the divergent beam of the Laser used at the same distance as in 
Young’s experiment. At a distance of 0.8 m, the request for spatial coherence of 
the source (Equation (1) evaluated at a mean wavelength λ ≈ 500 nm) would 
have required a small hole with a diameter of less than 0.2 mm as previously 
evaluated. Figure 1 taken at the same distance from a greater source of 0.35 mm 
in diameter shows the low resolution of the central maximum in the shadow 
even the image viewed through the trans-lucid paper inevitably is blurred. In the 
end, Figure 7 shows a very fine system of interior fringes using a wire of width 2 
mm at the similar experimental situation of T. Young’s work, but in coherent 
light. In this paper: 

a) The coherence requirements in Young’s experiment were analyzed in de-
tail; 

b) In an attempt to work in a “reduced camera obscura” we have “touched 
with hand” as at a distance of about one meter from the source, the requirement 
of spatial coherence of the source becomes very stringent; 

c) A case of Fresnel Diffraction correctly describes what really Thomas Young 
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observed [21]; 
d) BDW theory, historically starting from Young’s point of view of diffraction 

phenomena, is applied to revisiting Young’s experiments with good agreement 
between theory and experiment. It is always with great admiration and humility 
if today we revisit the experiments of Optics made throughout the nineteenth 
century taking into account the practical difficulties of an observer working in 
an “obscured-room”. 
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