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Abstract 
This paper presents four rings square, circular, and hexagonal photonic crys-
tal fiber (PCF) geometry for analyzing different optical properties in a wave-
length ranging from 800 nm to 1600 nm. These three types of geometry have 
been used for analyzing Effective area, Propagation constant, Confinement 
loss and Waveguide dispersion. Silica glass is chosen as background material 
and the cladding region is made of four air hole layers. COMSOL Multiphys-
ics (v.5) software is used to simulate these proposed PCF geometries. From 
the numerical analysis, it is found that the effective area is small for hexagonal 
PCF geometry and large for square PCF geometry (11.827 µm2, 10.588 µm2 
and 9.405 µm2 for square, circular, and hexagonal PCF geometry respectively). 
From the analysis, the Confinement loss is approximately zero at wavelength 
ranges from 800 nm to 1250 nm and approximately zero waveguide disper-
sion is achieved from 900 nm to 1500 nm for all the three PCF structures. 
Again, negative dispersion approximately −30.354 ps/(nm∙km) is achieved for 
circular PCF structure at the wavelength of 900 nm. 
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1. Introduction 

Photonic crystal fiber (PCF) is among the most special optical light guides. The 
core region always has high refractive index (silica glass) where the cladding re-
gion is usually provided by micro structured arrangement of air holes along the 
fiber [1]. Conventional fibers have harsh design rules as the core size is limited as 
well as limitation on material selection where light propagates through it using to-
tal internal reflection (TIR) concept [2], as a result light can propagate a small 
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distance. But in photonic crystal fibers, the light propagation consequence is some-
what different [3]. To propagate maximum light through the core region requires 
high refractive index than cladding and this phenomenon achieves by adding 
micro structured array of holes in the clad region [4] [5]. According to the guid-
ing mechanisms, PCFs are usually categorized into two types: index guiding and 
photonic band gap guiding. For both types of PCF, specific fiber properties 
like effective area [6], dispersion [7], nonlinearity [8] and birefringence [9], con-
finement loss [10], propagation constant [11] etc. can easily be varied by chang-
ing holes size, arrangement of spacing and shape. All these exclusive optical 
properties of PCFs have contributed to advance development of these structures 
in numerous uses in the fields of optical communications [7] [10], nonlinear 
optics [8] and high-power technology [12]. Effective refractive index is an im-
portant term for PCF which has relation with the evaluation of different prop-
erties of optical communication [13]. This refractive index is obtained in com-
plex form which is varied with the wavelength of light in PCF. Again, this varia-
tion of refractive index also varies these important optical properties such as ef-
fective area, waveguide dispersion, confinement loss, propagation constant etc. 
[4]. Confinement loss depends on the imaginary value of effective refractive in-
dex and effective area, waveguide dispersion as well as propagation constant de-
pend on the real part of effective refractive index. It is possible to design applica-
tion oriented guiding properties, by tuning the diameter and pitch of the air 
holes in the cladding [14]. The large effective mode area PCFs are required in 
optical transmission systems [15] and they are required to support broadband 
optical transmission as well as to minimize the coupling losses through the fi-
bers. A design of a highly nonlinear dispersion-shifted fiber (HNDSF) with an 
effective area of 9.3 µm2 is offered [16], and this advanced HNDSF structure can 
offer also low attenuation, and bending losses. Besides, fiber dispersion and con-
finement loss also play very important roles in broadband communications sys-
tems. This is rigorously achieved by ensuring ultra-flattened dispersion charac-
teristics of fibers [17] as well as low confinement loss [7]. Hence, there are only a 
number of published papers dealing with PCFs having both better effective area 
and dispersion-flattened characteristics at the same time [18] [19]. So, there is still 
scope to design PCF of different structures with low confinement loss as well as 
low dispersion. 

The main goal of the work is to design four rings square, circular and hex-
agonal geometry as simple as possible for analyzing effective area, propagation 
constant, confinement loss, waveguide dispersion etc. in a wavelength ranges from 
800 nm to 1600 nm. These structures ensure small effective mode area, low disper-
sion and low confinement loss in a wide wavelength range and the proposed struc-
tures are relatively simpler than the existing designs. 

2. Materials and Methods 

In this thesis, we have designed photonic crystal fiber of square, circular and hex-

https://doi.org/10.4236/opj.2017.711021


M. B. Hossain et al. 
 

 

DOI: 10.4236/opj.2017.711021 237 Optics and Photonics Journal 
 

agonal structure with four layers of air holes in COMSOL (version 5). The Silica 
glass (n = 1.46) material is used as a background material. We have taken four 
layers of air holes to guide the light in the core region. 

The first (inner) layer is elliptical with diameter, d1 = 0.35 um in x axis and 
0.7 um in y axis. The other three layers are circular shape with diameter d2 = d3 
= d4 = 1.4 um and pitch, Ʌ = 2 um. A perfectly matched layer (PML) absorbing 
boundary condition is applied after the air hole layers. 

Our proposed structures are simulated for same air hole diameter, pitch to 
evaluate the optical properties such as effective area, propagation constant, con-
finement loss, and waveguide dispersion under wavelength ranges from 800 nm 
to 1600 nm. Effective area is the fiber area that covers transverse dimension of 
the fiber. A low effective area provides high density of power in the core region 
required for non-linear effects to be significant. The effective area can also be 
related to spot-size, with the Gaussian width w, though. The effective area can be 
calculated directly from COMSOL Multiphysics. The effective mode area Aeff is 
established [6]: 

( )22 4d d d deffA E x y E x y= ∫ ∫ ∫∫                    (1) 

Here, the effective mode area Aeff in μm2 and electric field amplitude is E in 
the medium. 

The propagation constant of an electromagnetic wave is a measure of the 
change undergone by the amplitude of the wave as it propagates in a given di-
rection. The propagation constant β is given by [11]: 

2effnβ λ= Π                                (2) 

where, neff is the effective refractive index and λ is the wavelength of the input 
light. 

Confinement loss is one of the most important parameters in the fiber trans-
mission. The loss in light confinement due to the periodic arrangement of clad-
ding in PCF is called the confinement loss. Confinement loss is calculated from 
the following equation [14]: 

( )8.686 o m effL K I n=                            (3) 

where, K0 = 2π/λ and it is the propagation constant in free space and Im (neff) is 
the imaginary part of effective refractive index. 

When the fraction of light power propagating through the cladding region 
faster than the core region, then waveguide dispersion occurs. Waveguide dis-
persion is calculated from the following equation [14]: 

( )2 2d deffD c nλ λ= −                          (4) 

where, λ is the wavelength and c is the velocity of light in free space. 
At the first step, we used COMSOL Multiphysics software for creating four 

rings square, circular, and hexagonal photonic crystal fiber structures. After de-
fined all parameters, the simulation is run. After simulating, we got the structur-
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al view of the respective design, confinement of the electric field in the core region 
of those respective designs. COMSOL Multiphysics software simulation gives us 
the complex effective refractive index which has a real part and an imaginary 
part. In the second step, we used these values to calculate effective area, propaga-
tion constant, dispersion and confinement loss using Microsoft Office Excel, and 
MATLAB was used to plot the outcome. 

3. Results and Discussions 

COMSOL Multiphysics software simulation gives us the fundamental effective 
refractive index data for square, circular and hexagonal photonics crystal fiber 
structure at a wavelength ranges from 800 nm to 1600 nm. For each structure, 
the silica glass (n = 1.46) material is used as a background material and we have 
taken four layers of air holes. 

The first (inner) layer is elliptical shape with diameter, d1 = 0.35 um in x axis 
and 0.7 um in y axis. The other three layers are circular shape with diameter, d2 
= d3 = d4 = 1.4 um and pitch, Ʌ = 2 um. We tried to focus on the variation of 
effective area, confinement loss, waveguide dispersion, and propagation constant 
etc. due to change of structure of PCFs. 

Figures 1-3 represent transverse geometry and fundamental mode field for 
the square, circular and hexagonal PCF geometry. 

Figure 4 illustrated the effective area variation with respect to wavelength 
from 800 nm to 1600 nm for square, circular and hexagonal geometry. The ef-
fective area increases with the increases of wavelength for all the three structures. 
The effective area is large for square PCF geometry and small for hexagonal PCF 
geometry. The effective area is found 11.827 µm2, 10.588 µm2, 9.405 µm2 for 
square, circular, and hexagonal PCF geometry respectively at wavelength 1550 
nm. 
 

    
(a)                                                     (b) 

Figure 1. Analyzed square PCF model in COMSOL Multiphysics: (a) Transverse geometry; and (b) Fundamental 
mode field of the square PCF geometry. 
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(a)                                                     (b) 

Figure 2. Analyzed circular PCF model in COMSOL Multiphysics: (a) Transverse geometry; and (b) Fundamental 
mode field of the Circular PCF geometry. 

 

 
(a)                                                    (b) 

Figure 3. Analyzed hexagonal PCF model in COMSOL Multiphysics: (a) Transverse geometry; and (b) Fundamental 
mode field of the Hexagonal PCF geometry. 

 
Figure 5 illustrated the propagation constant variation with respect to wave-

length from 800 nm to 1600 nm for square, circular and hexagonal geometry. 
The propagation constant decreases with the increases of wavelength for all the 
three structures and the variation of propagation constant among the three struc-
tures are so close that we can’t differentiate the three curves from the figure. For 
all the three structures the highest propagation constant is at wavelength 800 nm 
and lowest value is at 1600 nm. 

Figure 6 illustrated the confinement loss variation with respect to wavelength from 
800 nm to 1600 nm for square, circular and hexagonal geometry. The Confinement 
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Figure 4. Effective area variation with respect to wavelength from 800 nm to 1600 nm for 
square, circular and hexagonal geometry. 
 

 
Figure 5. Propagation constant variation with respect to wavelength from 800 nm to 1600 
nm for square, circular and hexagonal geometry. 
 

 
Figure 6. Confinement loss variation with respect to wavelength from 800 nm to 1600 
nm for square, circular and hexagonal geometry. 
 
loss is approximately zero at wavelength ranges from 800 nm to 1250 nm and 
after that, it increases with the increases of wavelength for all the three struc-
tures. Large confinement loss is seen for hexagonal PCF geometry and low con-
finement loss is seen for circular PCF geometry. For the square PCF geometry  
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Figure 7. Waveguide dispersion variation with respect to wavelength from 800 nm to 
1600 nm for square, circular and hexagonal geometry. 

 
the Confinement loss is nearly 1.592 × 10−16 dB/km, for the circular PCF geome-
try the confinement loss is 6.88 × 10−16 dB/km, for the hexagonal PCF geometry, 
the confinement loss is 0.58 × 10−16 dB/km in wavelength 1550 nm. 

Another very significant optical parameter is waveguide dispersion. Figure 7 
illustrated the waveguide dispersion variation with respect to wavelength from 
800 nm to 1600 nm for square, circular and hexagonal geometry. Waveguide 
dispersion is high initially for all the three PCFs and after that, it changes ab-
ruptly. Approximately zero waveguide dispersion is achieved from 900 nm to 1500 
nm for all the three PCF structures. The waveguide dispersion is approximately 
103.333 ps/(nm∙km), 56.646 ps/(nm∙km), 51.66 ps/(nm∙km) at wavelength 1550 
nm. 

We have got only negative dispersion for circular PCF structure and it is −30.354 
ps/(nm∙km) at the wavelength of 900 nm. 

4. Conclusion 

In this research work, four-layer square, circular and hexagonal photonic crystal 
fiber have been designed. The research is focused on the variation of optical prop-
erties like propagation constant, confinement loss, effective area, and waveguide 
dispersion by varying the structure of PCFs. The simulation results have shown 
that the effective area is small for hexagonal PCF geometry and large for square 
PCF geometry. From the analysis, the Confinement loss is approximately zero at 
wavelength ranging from 800 nm to 1250 nm and approximately zero waveguide 
dispersion is achieved from 900 nm to 1500 nm for all the three PCF structures. 
Besides, negative dispersion, approximately −30.354 ps/(nm∙km), is also achieved 
for circular PCF structure at the wavelength of 900 nm. 

5. Future Work 

In this paper, simulation is carried out for square, circular, and hexagonal photon-
ics crystal fiber geometry to analysis the effective area, confinement loss, wave-
guide dispersion, propagation constant etc. In the next work, relative sensitivity, 
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coupling length and birefringence for different PCF geometries will be taken in-
to account during simulation. Finally, the PCF fabrication process will be stu-
died and the proposed PCF structures will be fabricated. 
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