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ABSTRACT 

An exact and fast analytic method based on power series is established to predict the modal field distributions, Peter- 
mann-2 spot size, the normalized propagation constant corresponding to fundamental and first higher order mode in 
graded index fibers with any arbitrary power law profile. The variation of normalized cut-off frequencies of some LPlm 
modes in graded index fibers with different profile exponents are also shown here and an empirical relation between 
them is determined. 
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1. Introduction 

First few modes of graded index fiber find some impor- 
tant applications in the field of optical communication in 
recent times. LP11 mode was used to design fiber sensors 
to separate temperature variation from longitudinal strain 
by intermodal interference [1]. Optical fiber mode filters 
in dual mode transmission system have also been devel- 
oped using LP01-LP11 modes [2]. As a wavelength filter, 
the LP01-LP11 mode coupler offers much narrower spec- 
tral width than a coupler whose constituent fibers are 
single-mode. This coupler may also be used as a mode 
converter for dispersion compensation application [3]. 
The transmission characteristics of dual mode and dual 
polarization of CO-OFDM system are studied using LP01- 
LP11 mode [4,5]. In recent times, there is considerable 
effort on developing few mode fibers to enhance the sys- 
tem capacity based on mode division multiplexing and 
multiple-input multiple-output digital signal processing 
[6-8]. 

Earlier, graded index fibers were analyzed numerically 
with beam propagation method [9], finite difference 
method [10], matrix methods [11] etc. to study their mo- 
dal properties and various propagation characteristics. 
Beam propagation method, finite difference, finite ele- 
ment methods involve complex algorithms; moreover, 
these are inaccurate as one approaches cut-off region.  

Matrix methods are problematic for profiles with sharp 
index difference. In the literature, there are some ap- 
proximate analytic methods also like variational analysis 
[12,13], Chebyshev power series method [14,15] etc. The 
analytic methods involve cumbersome algebraic calcula- 
tions followed by some computation; due to approxima- 
tions these methods are not so accurate. There are some 
works based on direct power series method [16,17] solu- 
tion but those were confined to the fundamental mode 
only. 

In this paper, our approach is to apply the power series 
method (PSM) in a most general way to solve the wave 
equation for graded index fiber. For step index fiber 
(SIF), the modal solutions of Helmholtz equation are 
Bessel’s functions arising from recursion relations in 
power series method. We have shown that for graded 
index fiber also, one can find a simple series solution 
with the recursion relation slightly modified and the de- 
rived series is also convergent. Depending on the power 
exponent value, one part of the recursion relation is dif- 
ferent; the rest is the same as in Bessel function.  

We have solved scalar Helmholtz equation governing 
the power flow in a graded index waveguide by deriving 
general recursion relations for any mode, any arbitrary 
profile exponent and developing a simple algorithm. 
Since the current interest is in Two Mode Fibers where 
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LP01 and LP11 modes both exist, it is important to find the 
range within which these modes can exist. We have 
compared our data with one analytic method like Che- 
byshev Power Series (CPS) technique, as it is already 
established as an approximate analytic method for the 
calculation of different propagation characteristics of 
graded index fiber in LP01 and LP11 mode [14,15]. We 
found that Chebyshev technique results are in close ac- 
cordance with our values. It is clear from our results and 
comparison of computation time with Chebyshev tech- 
nique, that, PSM is one accurate, fast and simple method 
for the determination of modal fields and related quanti- 
ties of a graded index fiber with any arbitrary geometric 
profile function. 

We have studied modal field distributions, Petermann- 
2 spot size, normalized propagation constants, cut-off 
frequencies for LP01-LP11 modes. Earlier works on 
cut-off frequency calculations based on matrix method 
[18], perturbation method [19] and variational method 
[20], are compared with our approach. The calculation of 
cut-off frequency by PSM shown in this paper proves to 
be an exact method in comparison to earlier methods.  

In Section 2, we have shown the necessary recursion 
relations while solving the Helmholtz equation with PSM, 
incorporating the role of the profile exponent. Results are 
shown in Section 3. In Section 3.1, we have shown the 
modal field distribution of LP01 and LP11 modes for a 
particular normalized frequency and also presented the 
values of Petermann-2 spot size. In Section 3.2, the de- 
pendence of normalized propagation constant on nor- 
malized frequencies has been illustrated for LP01-LP11 
modes. In Section 3.3, we have shown the variation of 
normalized cut-off frequencies with profile exponent 
values using PSM. In Section 3.4, we have compared our 
LP11 mode cut-off frequency data with results existing in 
literature and in Section 3.5, we have derived a conven- 
ient empirical formula relating the above two quantities.  

2. Theory 

2.1. Modal Solution in an Optical Fiber 

In the weakly-guiding approximation, Helmholtz Equa- 
tion governing light propagation in an optical fiber is 
[21] 

 
2 2

2 2 2 2
02

d 1 d
0

dd

l
a k n R

R RR
           2R

  (1) 

where R r a , r is radial co-ordinate, a is core radius; 
 is the refractive index distribution in the fiber;  n R

0 2k π  ,  is free space wavelength;   is the propa- 
gation constant; l is a parameter coming from the azi- 
muthal part after separation of variables.  is any trans- 
verse field component, either E-field or H-field. 



In fibers with graded index core,  falls from 

n1—the refractive index value on the axis of the fiber to 
n2—the refractive index value at the core-cladding inter-
face. Then 

 n R

     2 2 2 2
1 1 2n R n n n f R             (2) 

  qf R R  is called profile function. The exponent q in 
 f R  gives the shape of the core index profile. The 

distribution 1q   is called triangular profile; 2q   is 
called parabolic profile. q    stands for uniform core 
with index n1; when the cladding index is uniform (hav- 
ing the refractive index value n2) as in our case, it is a 
step index fiber. The power or exponent q of R setting 
the profile shape is very important in fibers allowing 
more than one mode to propagate. It controls numerical 
aperture, intermodal dispersion, zero dispersion wave- 
length etc. in multimode fibers. 

 n R  is defined as in (2), (1) becomes 

 
2 2

2 2
2 2

d 1 d
0

dd

l
U V f R

R RR R

              (3) 

where  1 22 2 2
0 1U a k n    and  1 22 2

0 1 2V k a n n  . V 
is called normalized frequency and U is called normal- 
ized propagation constant. Equations (1) or (3) has two 
linearly independent solutions. For a particular l, the so- 
lutions are denoted as LPlm. 

The mode with highest  is the fundamental mode, 
denoted as LP01 mode. LP11 is the next higher order 
mode. Within the core, one has to find the solution of (3) 
with   qf R R . 

Outside the core i.e. in the cladding,   1f R  ; Equa- 
tion (3) becomes 

2 2
2

2

d 1 d
0

dd

l
W

R RR R

 
2

              (4) 

where . The solution of (4) is standard 
modified Bessel function. In region I, that is within the  

2 2W V U  2

core let the solution be  lm R


  and in region II, that 

is in the cladding, the solution is    lm lmII
R K WR  . 

 lm R

1

 satisfies the following boundary conditions 
at the interface between region I and region II that is at 
R  : 

   
   

Ι

Ι Ι

lm lm

lm lm

R K WR

R WK WR

 

  
ΙΙ

Ι

          (5) 

2.2. Power Series Method  

Using power series technique, , the solution of (3) 
in region I, can be expanded in the following form  

 Ι R

 Ι
0

k n
n

n

R a R






              (6) 

As in the solution of Bessel’s Equation, we take 
00 a , then k l  and . 1 0a 
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For any q,  0 1 2 !la  l . Here we have used the same 
normalization factor used in the solution of Bessel’s 
equation, because for , the series must converge to 
Bessel function.  

q  

The recursion relation consists of two parts 

1) 
  

2
2 ,

2
n

n

U a
a n

n l n


 


1q                   (7) 

2) 
  

2 2
2 2 ,
2

n n q
n
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   




1n q 

2

         (8) 

where . Evidently, for even q, all the odd 
coefficients are zero. For odd q, the odd coefficients are 
zero up to ; all the coefficients are non-zero for 

. 

2 2U V W 

n q
n q

Using the standard recurrence relation for the modified 
Bessel function, one gets at 1R  :  

 
 

   
 

1l l

l
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or 

 
 

   
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To find out the value of unknown W, the above equa- 
tion is to be solved at the interface for a given value of V, 
starting with an initial value of W. Then the values of all 
coefficients are known from (7)-(8). Putting these values 
in (6) we get :   R

 
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0

0
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The Petermann-2 spot size is given by: 

 
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          (11) 

The normalized propagation constant is defined as 

2 2b W V                  (12) 

The normalized cutoff frequency cV  is an important 
characteristic of a fiber as it demarcates between the 
range of one mode and its next higher mode. The cut-off 
condition of a mode is  or . U V 0W

Applying this condition in (9b) which gives proper 
limiting values of  lK W , one obtains  

 
 
R

l
R






 


               (13) 

Using this relation, one can get the values of  for 

different q corresponding to different LPlm modes. 

cV

3. Results and Discussions 

Using PSM, we first solved the second order Helmholtz 
Equation (3) keeping l non-zero so as to get a general 
solution for any mode and considering different profile 
exponents both odd and even. Then using this solution 
we obtained different waveguide parameters like Peter- 
mann-2 spot size, normalized propagation constant, nor- 
malized cutoff frequency etc. 

To find unknown W, we start with an initial value of W 
for a normalized frequency V and a particular profile 
exponent q. We evaluate the coefficients from recursion 
relation (7)-(8); that gives  and  at R = 1. 
This is matched with 

 R  R
 K WR  at R = 1. It was observed 

that 500 terms are sufficient even for q as high as 200. 
However, we kept about 2000 terms in the series, 
matching is done with accuracy of the order of 10−8 and 
the run time is found to be less than a second.  

In Section 3.1, we have shown the modal field distri- 
butions for LP01-LP11 modes and determined Peter- 
mann-2 spot size which is a measure of the spread of the 
fields around the axis.  

In Section 3.2, we have shown the variation of the 
normalized propagation constant b with normalized fre-
quency V; this gives an idea about the dispersion in the 
fiber. 

To find normalized cut-off frequencies, we evaluate 
 R  and  R  at 1R   using recursion relations 

(7)-(8) and putting U V .  
We have compared our results with those obtained by 

Chebyshev method already reported in our earlier paper 
[15]. It was shown there that the values of propagation 
characteristics of LP11 mode in parabolic and triangular 
index fibers obtained by CPS technique using four Che- 
byshev points closely matched with standard numerical 
values. 

In our graphs, following line properties are used for 
different q values: 

Solid red line (–) for PSM with ; 1q 
2q Solid blue line (–) for PSM with ; 

Solid green line (–) for PSM with ; 5q
q 


Solid magenta line (–) for PSM with ; 10
 Solid black line (–) for PSM with . q

Dots () represent the values obtained by Chebyshev 
power series method for the corresponding profile (in 
Figures 1(a) and (b)). 

3.1. Modal Field Distributions of LP01 and LP11 
Mode  

The variations of fundamental and first higher order mo- 
dal fields for various profile functions with normalized 
radius are shown in Figures 2 a) and (b).  (  
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(a)                                                           (b) 

Figure 1. (a) Variation of normalized propagation constant b with normalized frequency V: LP01 mode; (b) Variation of 
normalized propagation constant b with normalized frequency V: LP11 mode. 
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(a)                                                           (b) 

Figure 2. (a) Variation of Ψ with R for LP01 mode for different profile exponents; (b) Variation of Ψ with R for LP11 mode for 
different profile exponents. 
 

3.2. Variation of Normalized Propagation  
Constant with the Normalized Frequency 

From the figures, it can be concluded that as the value 
of q increases the radial fields of both the modes fall 
more rapidly inside the core for lower values of q. For 
both the modes, the curves are found to spread outward 
in the cladding region as q value decreases. 

An important parameter that is connected with the nor-
malized propagation constant b is the cut-off normalized 
frequency V; the condition b = 0 (i.e. when 0 2k n  ) is 
known as cut-off of the mode. The study of b is also re-
quired to derive waveguide dispersion. Tables 2(a) and 
(b) and Figures 1(a) and (b) describe the variation of b 
with V for different values of profile exponent q includ-
ing the step index case also. For a particular q, b in-
creases gradually with V and for a particular value of V, 
it also increases with q. 

The Petermann-2 spot size is one of the important 
characteristics of graded index fiber as it can be used to 
determine some quantities like splice loss etc.; it is ob- 
tained using the modal fields. Tables 1(a) and (b) show 
the values of WP2 for different q corresponding to LP01 
and LP11 modes in graded index fiber. 

Petermann-2 spot size decreases more rapidly with in- 
crease in V for lower q values. In LP01 mode, this pa- 
rameter is almost independent of q at V = 3.5; for LP11 

mode, it is almost independent at V = 6. 

It was also observed that even for q as high as 200; the 
profile is far from step index. To get the results for SIF 
with power series, one has to put  in (8) i.e. to 
convert the series to Bessel function. 

0V 
Petermann-2 spot size was determined with Cheby- 

shev Power Series technique in [15] for LP11 mode; it 
was also compared with an accurate numerical calcula- 
tion. Those results are very close to our results with 
Power Series technique in this paper. WP2 consistently 
falls with increasing V. However, results of [22] are quite 
contradictory; their WP2 values oscillates with V. 

3.3. Cut-Off Frequencies (Vc) for Different  
Profile Exponents (q) with PSM 

Tables 3(a)-(d) show the cut-off V values for some LPlm 
modes for different q. App ying PSM we have deter-  l    
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Table 1. (a) WP2-V values for different profile exponents corresponding to LP01 mode with PSM; (b) WP2-V values for differ- 
ent profile exponents corresponding to LP11 mode with PSM. 

(a) 

V SIF q = 10 q = 5 q = 2 q = 1 

1.5 1.693311 1.786419 1.932361 2.607155 4.390023 

2.5 1.053490 1.029151 1.026754 1.092383 1.316376 

3.5 0.885940 0.844047 0.819666 0.808168 0.873235 

4.5 0.808222 0.759407 0.725133 0.684378 0.700277 

(b) 

V SIF q = 10 q = 5 q = 2 q = 1 

4.5 0.690709 0.678510 0.687513 0.774498 1.153140 

5.0 0.659583 0.641401 0.642257 0.694095 0.883329 

5.5 0.636086 0.613903 0.609247 0.639964 0.763316 

6.0 0.617664 0.592592 0.583831 0.600094 0.688334 

 
Table 2. (a) b-V values: Direct power series and Chebyshev power series values for different profile exponents correspond- 
ing to LP01 mode; (b) b-V values: Direct power series and Chebyshev power series values for different profile exponents cor- 
responding to LP11 mode. 

(a) 

b  10 

q = 1 q = 2 q = 5 q = 10 SIF V 

PSM CPS PSM CPS PSM CPS PSM CPS PSM CPS 

1.5 0.08003 0.01978 0.44982 0.39781 1.23977 1.21801 1.70903 1.70616 2.29247 2.29363 

2.0 0.52833 0.48246 1.51312 1.51521 2.85799 2.80607 3.48971 3.50600 4.16163 4.17226 

2.5 1.22910 1.17283 2.65096 2.65315 4.24024 4.24106 4.90687 4.90635 5.53917 5.53937 

3.0 1.95427 1.86334 3.63123 3.62508 5.29965 5.29614 5.93874 5.93676 6.51471 6.50876 

3.5 2.48001 2.61020 4.42868 4.41503 6.09932 6.09548 6.70157 6.69554 7.21408 7.20588 

4.0 3.00773 3.17750 5.07116 5.05030 6.70890 6.70673 7.27130 7.26328 7.72734 7.71876 

4.5 3.66228 3.45257 5.55778 5.56318 7.18134 7.18160 7.70549 7.69641 8.11308 8.10499 

(b) 

b  10 

q = 1 q = 2 q = 5 q = 10 SIF V 

PSM CPS PSM CPS PSM CPS PSM CPS PSM CPS 

4.5 0.06315 0.06811 1.43795 1.44307 3.49219 3.49274 4.42809 4.43333 5.30955 5.31843 

5.0 0.47897 0.48561 2.17288 2.18286 4.30371 4.30392 5.21179 5.21798 6.02413 6.03408 

5.5 0.94260 0.95310 2.82141 2.83590 4.97320 4.97185 5.84482 5.85111 6.59208 6.60212 

6.0 1.38940 1.40350 3.38566 3.40447 5.52854 5.52486 6.36082 6.36686 7.04917 7.05878 

6.5 1.80248 1.81903 3.87569 3.89882 5.98919 5.98651 6.78579 6.78575 7.42163 7.42760 

7.0 2.17860 2.19636 4.30259 4.33006 6.38564 6.37542 7.13940 7.14474 7.72867 7.73685 
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Table 3. (a) q-Vc values: Cut-off frequencies for LP0m modes; (b) q-Vc values: Cut-off frequencies for LP1m modes; (c) q-Vc 
values: Cut-off frequencies for LP2m mode; (d) q-Vc values: Cut-off frequencies for LP3m mode. 

(a) 

Mode q =  q = 200 q = 10 q = 5 q = 2 q = 1 

LP01 0 0 0 0 0 0 

LP02 3.8317 3.8508 4.1743 4.4394 5.0675 5.9483 

LP03 7.0155 7.0505 7.5912 8.0245 9.1576 10.773 

LP04 10.173 10.224 10.958 11.567 13.197 15.535 

(b) 

Mode q =  q = 200 q = 10 q = 5 q = 2 q = 1 

LP11 2.4048 2.4168 2.6492 2.8861 3.5180 4.3815 

LP12 5.5200 5.5477 6.0267 6.4271 7.4514 8.9330 

LP13 8.6537 8.6969 9.3781 9.9396 11.425 13.575 

LP14 11.791 11.850 12.718 13.449 15.408 18.248 

(c) 

Mode q =  q = 200 q = 10 q = 5 q = 2 q = 1 

LP21 3.8317 3.8510 4.2429 4.6534 5.7439 7.2180 

LP22 7.0155 7.0508 7.6758 8.2127 9.6450 11.715 

LP23 10.173 10.225 11.042 11.733 13.590 16.301 

LP24 13.324 13.390 14.390 15.244 17.555 20.930 

(d) 

Mode q =  q = 200 q = 10 q = 5 q = 2 q = 1 

LP31 5.1356 5.1616 5.7139 6.3008 7.8475 9.9188 

LP32 8.4172 8.4598 9.2287 9.9079 11.760 14.415 

LP33 11.620 11.678 12.632 13.455 15.702 18.981 

LP34 14.796 14.870 16.001 16.982 19.661 23.588 

 
mined the exact values of Vc for any arbitrary profile 
exponent. In our previous work with CPS technique [15] 
Vc (LP11) was obtained as 3.5180 for  and 4.3816 
for . Some of our results of Vc are compared with 
earlier published results [18-20]. 

2q 
1q 

3.4. Comparison of Cut-Off Frequency Data  

In this section, we compare our cut-off frequency results 
of LP11 mode for different q with the results existing in 
literature. 

From all these data in Table 4, it is evident that this 
direct power series method provides accurate results for 
all power-law profiles in graded index fiber. 

3.5. Empirical Fit of q-Vc Data 

We have tried an empirical form of the following type to  

Table 4. q-Vc values: Comparison of cut-off frequencies for 
LP11 modes Ref. [18]-Matrix method; Ref. [19]-Perturba- 
tion method; Ref. [20]-Variational method. 

Vc 
q 

Our results Ref. [18] Ref. [19] Ref. [20] 

1 4.3815 4.381 4.390 4.572 

2 3.5180 3.518 3.518 3.613 

3 3.1808 3.181 3.184 3.238 

5 2.8861 2.886 2.900 2.910 

10 2.6492 2.650 2.686 2.650 

20 2.5268 2.529 2.583 2.520 

 2.4048 2.405 2.487 2.397 
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describe the nature of dependence of Vc on q, 

  1
1

N
m

c m
m

a
V q

q 


                (13) 

N is the number of parameters used. We have fitted 
 data keeping three and four parameters respec-

tively. The results of different fits are shown in Tables 
5(a) and (b) and Figures 3(a) and (b). 

- cq V

We have evaluated the values of Vc using the empirical 
form (13) considering three and four parameters sepa- 
rately for two LPlm modes taking different q. From Ta- 
bles 5(a) and (b), it is clear that the results obtained fit 
best with three parameters for LP11 mode and with four 
parameters for LP02 mode. 

For LP11 mode: 

Three parameter fit: a1 = 2.403844, a2 = 2.0504123, a3 
= −0.527509; maximum error = 0.1714% 

For LP02 mode: 
Four parameter fit: a1 = 3.831020, a2 = 3.788971, a3 = 

−3.848937, a4 = 2.180391; maximum error = 0.6252% 
The error in this calculation of Vc using (13) lies  

within 0.2% in case of LP11 and within 0.7% in case of 
LP02, which is far better in comparison to previous works 
[17,18]. Moreover, from Figures 3(a) and (b) it is clear 
that the estimated values of Vc fit fairly well with those 
obtained from PSM. So, relation (13) can be considered 
to give a reasonable estimate of Vc for different q corre- 
sponding to different LPlm modes. 

4. Conclusion 

We have established a general power series method for 
graded index fibers with a power law profile. It is based 
on modification of the recursion relations in power series 
solution of Bessel’s equation and an algorithm to find the 
co-efficients of the series. Finding the solution comes 
down to constructing the series with only a simple sum- 
mation. Here the method has been employed to calculate 
the propagation characteristics and the cut-off frequen- 
cies for graded index fibers of different core index dis- 
tributions. This method is, no doubt, an accurate one—it 
has no approximations. It does not pose problems near 
cut-off or in case of sharp discontinuity. The only care  

 
Table 5. (a) q-Vc values: Cut-off frequencies of LP11 mode for different q; (b) q-Vc values: Cut-off frequencies for LP02 mode 
for different q. 

(a) 

3-parameter 4-parameter 
q Vc (PSM) 

Vc (empirical) Error % Vc (empirical) Error % 

200 2.4168 2.4164 0.0185 2.4215 0.1956 

30 2.4859 2.4867 0.0334 2.4876 0.0691 

10 2.6492 2.6490 0.0082 2.6434 0.2185 

5 2.8861 2.8836 0.0877 2.8763 0.3391 

3 3.1808 3.1799 0.0270 3.1810 0.0055 

2 3.5180 3.5240 0.1714 3.5429 0.7079 

1 4.3815 4.3805 0.0238 4.3768 0.1075 

(b) 

3-parameter 4-parameter 
q Vc (PSM) 

Vc (empirical) Error % Vc (empirical) Error % 

200 3.8508 3.8722 0.5565 3.8499 0.0242 

30 3.9559 3.9563 0.0091 3.9531 0.0702 

10 4.1743 4.1481 0.6270 4.1736 0.0166 

5 4.4394 4.4205 0.4250 4.4523 0.2906 

3 4.7357 4.7550 0.4076 4.7471 0.2408 

2 5.0675 5.1269 1.1726 5.0358 0.6252 

1 5.9483 5.9348 0.2269 5.9514 0.0529 
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(a)                                                           (b) 

Figure 3. (a) Variation of cut-off frequencies for LP11 modes. Cross: [q-Vc] data; Solid line: 3-parameter; (b) Variation of 
cut-off frequencies for LP02 modes. Cross: [q-Vc] data; Solid line: 4-parameter. 
 
one has to take is the convergence of the series for dif- 
ferent q value. As q increases, number of terms to be kept 
in the series expansion required for convergence in- 
creases.  
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