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Abstract 
Symmetry of the underlying probability density plays an important role in 
statistical inference, since the sampling distribution of the sample mean for a 
given sample size is more likely to be approximately normal for a symmetric 
distribution than for an asymmetric one. In this article, two new measures of 
skewness are proposed and the confidence intervals for true skewness are ob-
tained via Monte Carlo simulation experiments. One advantage of the two 
proposed skewness measures over the standard measures of skewness is that 
the proposed measures of skewness take values inside the range (−1, +1). 
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1. Introduction 

Many of the common statistical inference methods rely on the approximate 
normality of the sample mean via the Central Limit Theorem (CLT) for 
sufficiently large number of samples (n). A rule of thumb says that the CLT can 
be used for n > 30 [1] [2] [3] [4]. Singh, Lucas, Dalpatadu, & Murphy [5] showed 
that this rule of thumb may be inaccurate for highly skewed distributions. Velu-
chamy [6] developed a graphical approach based on bootstrap for verification of 
normality of the sample mean.  

Skewness plays an important role in statistical analyses in almost all discip-
lines, and especially in finance. Johnson, Sen and Balyeat [7] applied a skewness 
adjusted binomial model to futures options pricing and derived the asymptotic 
skewness model properties. Their results showed that the futures options price, 
in the presence of skewness, depends not only on mean and standard deviation 
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(sd), but other parameters as well. Kun [8] investigated daily time series of four 
Shanghai Stock market indices and found inclusion of skewness in models to yield 
higher investor utility. Chateau [9] investigated the effects of skewness and kurtosis 
by starting with the Black’s normal model for the European put values, replacing the 
Gaussian distribution by the Gram-Charlier and the Johnson distribution, and 
showed that both skewness and kurtosis have significant impact on the model re-
sults. The effects of skewness on stochastic frontier models are discussed in [10]. 

Several measures of skewness are available in statistical literature [11], but 
most of these are based on the sample moments or quantiles, and as such are 
adversely affected by the presence of a few outliers. Robust skewness measures 
such as medcouple have been proposed and investigated in the literature [12]; 
the medcouple measures of skewness are a function of sample quantiles and or-
der statistics. A comparison of skewness and kurtosis measures is provided by 
[13]; a comparison of the standard t-test and a modified t-test for skewed distri-
butions is available in [14]. 

Skewness of a probability distribution refers to the departure of the distribu-
tion from symmetry. A symmetric distribution has no skewness, a distribution 
with longer tail on the left is negatively skewed, and a distribution with longer 
tail on the right is positively skewed [15].  

There are mainly three types of skewness measures available in the literature: 
Fisher-Pearson skewness, adjusted Fisher-Pearson skewness, and Pearson Type 2 
skewness. Fisher-Pearson skewness measures are functions of the second and 
third central sample moments: 
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The formulas for calculating Fisher-Pearson sample skewness used by popular 
statistical software packages [16] are shown below; the statistical software envi-
ronment R [17] can be used to compute all of the three types. 

Fisher-Pearson Skewness (Type 1): 
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Adjusted Fisher-Pearson Skewness (Type 2): 
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Pearson Type 2 skewness is a simple measure that is calculated from the sam-
ple mean, standard deviation, and the sample median m: 

( )
2 3

x m
Sk
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−

=                          (4) 

Hotelling and Solomon [18] have shown that 23 3Sk− ≤ ≤ ; a close look at the 
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proof shows that the “proof” is actually an intuitive argument for the population 
value of the Pearson Type 2 skewness, and not for the sample estimate, and 
hence 2Sk  may fall outside the range [−3, +3]. In this article, alternative meas-
ures of skewness are proposed that are based on nonparametric density 
estimates, and are compared to some of the commonly used skewness measures. 
A computational geometric measure of skewness is also introduced. 

2. Proposed Measure of Skewness 

Many introductory statistics text books include a rule of thumb regarding the 
relative positions of the mean, the median: for a positively skewed distribution, 
mean > median > mode, and for a negatively skewed distribution, mean < me-
dian < mode [19] [20] [21]. It was pointed out by von Hippel [22] that many vi-
olations of this rule exist, especially in the case of discrete probability distribu-
tions (see Figure 1(b), Figure 1(c)). 

Letting f (x) and F (x) denote the population probability density and cumula-
tive distributions functions of the random variable, with mean μ and median Q2, 
the proposed skewness measure is defined as the area under f (x) between μ and 
median Q2 (Figure 2). 

( ) ( )2Area skewness F F Qµ= − . 

 

 
Figure 1. Plots of the binomial distribution with (a) BIN, n = 7 and p = 0.5; (b) BIN, n = 
7 and p = 0.25 and (c) BIN, n = 7 and p = 0.75.  
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Figure 2. Examples showing area skewness computations. 
 

Area skewness, the probability that the random variable falls inside the true 
mean μ and the median Q2, can be computed in two steps: 

Step 1. The probability density is estimated from the sample; in this article, a 
nonparametric density estimate [23] [24] is used, but a parametric density esti-
mate can also be used. 

Step 2: A numerical integration method can then be used to compute the area 
between the sample mean and sample median; the trapezoid rule is used in this 
article for computing area skewness.  

Figure 2 shows two simulated examples of area skewness computation. Data 
from the first example (top graph) is simulated from a normal distribution with 
mean μ = 100 and standard deviation σ = 10; the true area skewness, in this case, 
equals 0, and the area skewness computed for the samples is −0.004. The second 
example in Figure 2 (bottom graph) is generated from the log-normal (LN) dis-
tribution which is defined as: Y is LN with parameters μ and σ if log(Y) is nor-
mally distributed with mean μ and standard deviation σ; here the log function is 
the natural log, i.e., the base is e. The LN (μ, σ) distribution has population 
mean, standard deviation, and skewness given by [25]: 
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True population mean, median and area skewness for the LN (μ = 5, σ = 1) 
distribution are: 

( )mean exp 5.5 244.6919= =  

( )median exp 5 148.4132= =  

standard skewness 6.1849=  

( ) ( )area skewness 244.6919 148.4132 0.1915F F= − =  

The sample area skewness value for the generated sample is 0.2047, and the 
standard skewness estimate is 4.3192. 

3. Monte Carlo Simulation for Comparison of Skewness  
Measures 

Three probability distributions with varying degrees of skewness are used in si-
mulation in this study:  

N (μ, σ)—normal distribution with mean μ and standard deviation σ. 
GAM (α, β)—gamma distribution with shape = α and scale = β, skewness = 

2 α . 
Tr (a, b, c)—Triangular distribution with parameters a, b, c [26] [27] with 

probability density and cumulative distribution given by 

( )

( )
( )( )

( )( )

( )

( )
( )( )

( )
( )( )

2

2

2
,  

2( ) ,  

,  

1 ,  

x a
a x c

b a c a
f x

b x c x b
b a b c

x a
a x c

b a c a
F x

b x
c x b

b a b c

−
≤ ≤ − −= 

− < ≤ − −
 −

≤ ≤
− −

= 
−

− < ≤ − −

. 

The skewness of the triangular distribution Tr (a, b, c) is given by 

( )( )( )
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Triangular distribution is selected for this study as it can be used to model 
both positively skewed and negatively skewed distribution. 

Table 1 shows the specific distributions and their skewness values used in this 
simulation, and Figure 3 shows plots of the two triangular distributions used in 
the simulations.  

The simulation experiment used in this study is carried out in the following 
steps: 

1) A random sample of size n is generated from the selected probability dis-
tribution. 

2) Each of the five skewness coefficients (proposed area skewness, Pearson  
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Figure 3. Plots of the two triangular distributions used in the simulations. 
 
Table 1. Probability distributions used in this simulation. 

 

Normal Gamma 
Triangular Distribution 

Tr (a = 0, b = 1, c) 

N (μ = 100, 
σ = 20) 

GAM (α = 2, 
β = 1) 

c = 0.5 c = 0.95 c = 0.05 

Standard Skewness 0 1.4142 0 −0.5606 0.5606 

Pearson Skewness 0 0.6823 0 −0.5217 0.5217 

Area Skewness 0 0.0940 0 −0.0564 0.0564 

 
skewness, and the sample-moments based Types 1-3 skewness coefficients are 
computed. 

Steps (1) and (2) are repeated 10,000 times and the 90%, 95%, and 99% confi-
dence intervals for true skewness are calculated from the 10,000 skewness values.  

The simulation experiment was run for n = 25, 50, 75, 100, for each of the 
three probability models, for each of the two sets of parameter values. The 
samples sizes chosen represent moderate to a large number of samples, and the 
true skewness values selected cover a wide range of skewness. Figures 4-23 show 
the histograms of the 10,000 skewness estimates and the confidence intervals. 
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Figure 4. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 25 samples from N (100, 20). 
 

 

Figure 5. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 50 samples from N (100, 20). 
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Figure 6. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 75 samples from N (100, 20). 
 

 

Figure 7. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 100 samples from N (100, 20). 
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Figure 8. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 25 samples from GAM (2, 1); standard skewness = 1.41, pearson skew-
ness = 0.68, area skewness = 0.09. 
 

 

Figure 9. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 50 samples from GAM (2, 1); standard skewness = 1.41, pearson skew-
ness = 0.68, area skewness = 0.09. 
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Figure 10. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 75 samples from GAM (2, 1); standard skewness = 1.41, pearson skew-
ness = 0.68, area skewness = 0.09. 
 

 

Figure 11. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 100 samples from GAM (2, 1); standard skewness = 1.41, pearson skew-
ness = 0.68, area skewness = 0.09. 
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Figure 12. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 25 samples from Tr (0, 0.5, 1). 
 

 

Figure 13. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 50 samples from Tr (0, 0.5, 1). 
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Figure 14. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 75 samples from Tr (0, 0.5, 1). 
 

 

Figure 15. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 100 samples from Tr (0, 0.5, 1). 
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Figure 16. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 25 samples from Tr (0, 0.95, 1); standard skewness = −0.56, Pearson 
skewness = −0.52, area skewness = −0.06. 
 

 

Figure 17. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 50 samples from Tr (0, 0.95, 1); standard skewness = −0.56, Pearson 
skewness = −0.52, area skewness = −0.06. 
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Figure 18. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 75 samples from Tr (0, 0.95, 1); standard skewness = −0.56, Pearson 
skewness = −0.52, area skewness = −0.06. 
 

 

Figure 19. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 100 samples from Tr (0, 0.95, 1); standard skewness = −0.56, Pearson 
skewness = −0.52, area skewness = −0.06. 
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Figure 20. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 25 samples from Tr (0, 0.05, 1); standard skewness = 0.56, Pearson 
skewness = 0.52, area skewness = 0.06. 
 

 

Figure 21. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 50 samples from Tr (0, 0.05, 1); standard skewness = 0.56, Pearson 
skewness = 0.52, area skewness = 0.06. 
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Figure 22. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 75 samples from Tr (0, 0.05, 1); standard skewness = 0.56, Pearson 
skewness = 0.52, area skewness = 0.06. 
 

 

Figure 23. Histograms and confidence intervals of skewness coefficients from 10,000 si-
mulations of n = 100 samples from Tr (0, 0.05, 1); standard skewness = 0.56, Pearson 
skewness = 0.52, area skewness = 0.06. 
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4. A Computational Geometric Measure of Skewness 

The probability density function estimated from the data can be modeled by a 
simple polygon P as shown in Figure 24 (thin solid line). Let lm be the vertical 
line segment at the sample mean (thick vertical line). Let Ch1 and Ch2 denote 
polygonal chains to the right and left of lm. By taking lm as a mirror we can con-
sider the reflected images of Ch1 and Ch2 denoted by I1 and I2, respectively. I1 
and I2 are drawn as dashed lines in Figure 24. Chains I1 and I2 form a simple 
polygon P*, which we call image polygon. The overlay of P and P* results in two 
types of areas: (i) Overlap Area OA, and (ii) Spilled Area SA. In the figure spilled 
area components are labeled as A, B, C, and D. For a symmetric distribution, 
spilled area will be small. If the distribution is asymmetric then the portion of 
spilled area will be large. This motivates us to use the proportion of spilled area 
as a measure of skewness.  

An algorithm for computing spilled area can be developed by using the data 
structures for representing simple polygon from computational geometry. A 
sketch of the algorithm for computing spilled areas is shown below. Efficient 
implementation of Step 5 and Step 6 needs techniques from computational geo-
metry. For this, the input polygon is represented in a doubly connected edge list 
data structure as reported in [28]. By navigating through this data structure, the 
intersection points corresponding to the overlay of P and P’ can be computed in 
linear time. 

Algorithm 1: Computing Spilled Area. 
Input: A simple polygon P constructed from samples points. 
Output: Spilled Area SA. 
Step 1: Find the mean vertical line segment lm. 
Step 2: Find polygonal chains Ch1 and Ch2 implied by lm from input polygon 

P. 
Step 3: Determine corresponding image chains I1 and I2. 
Step 4: Construct image polygon P* by combining I1 and I2. 
Step 5: Compute Overlap Area ( )*,AO P P=  . 
Step 6: Compute Union Area ( )*,AU P P=  . 
Step 7: Spilled Area SA = UA − OA. 

 

 

Figure 24. Construction of an Image Polygon. 
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We implemented the algorithm in python programming environment. For il-
lustration purposes, two different samples were generated from different normal 
distributions. The true geometric skewness measure for any normal distribution 
is 0, since the normal distribution is symmetric. The results for the two samples 
are presented below.  

The input polygon computed from the first sample is shown in Figure 25, and 
the overlap area is shown in Figure 26. 
 

 

Figure 25. Input polygon for sample 1. 
 

 

Figure 26. Input polygon for sample 2. 
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For sample 1, node count = 188, overlap area: 0.46, polygon area: 2.91, and the 
geometric measure of skweness = overlap area/polygon area = 0.1581. 

For the second simulated example, Figure 27 and Figure 28 show the input 
polygon and the overlap area, respectively. For sample 2, node count = 40, over-
lap area: 0.41, polygon area: 2.93, and the geometric measure of skweness = 
overlap area/polygon area = 0.1387. 
 

 

Figure 27. Input polygon for sample 2. 
 

 

Figure 28. Overlap area for the second sample. 
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5. Discussion and Results 

We have proposed two different skewness measures: area skewness and geome-
tric skewness. The standard skewness measures suffer from one drawback: they 
do not have known lower and upper bounds. The absolute values of both of the 
proposed skewness estimates fall in the range (0, 1). We have used Monte Carlo 
simulations to compute confidence intervals from the area skewness estimate, 
and we intend to do the same for the geometric skewness estimate in the near 
future. 
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