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Abstract 
This paper studies the re-adjusted cross-validation method and a semiparamet-
ric regression model called the varying index coefficient model. We use the 
profile spline modal estimator method to estimate the coefficients of the pa-
rameter part of the Varying Index Coefficient Model (VICM), while the un-
known function part uses the B-spline to expand. Moreover, we combine the 
above two estimation methods under the assumption of high-dimensional 
data. The results of data simulation and empirical analysis show that for the 
varying index coefficient model, the re-adjusted cross-validation method is 
better in terms of accuracy and stability than traditional methods based on 
ordinary least squares. 
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1. Introduction 

The variance estimate, in this paper, is the residual variance of the model. In the 
process of statistical modeling, the variance estimation of the model has been 
extensively studied. Most of the research methods are simple two-stage method, 
in the first stage, the important variables in the model are selected by the method 
of variable selection; in the second stage, the variance is estimated by the ordi-
nary least squares method. In the first phase, the traditional variable selection 
method has two criteria, namely the Akaike Information Criterion (AIC) and 
the Bayesian Information Criterion (BIC). These two traditional methods use 
the empirical likelihood method to select the model with the smallest AIC and 
BIC values. At the same time, the variables contained in the model are the se-
lected optimal variables. However, this variable selection method is neither con-

How to cite this paper: Wang, M., Lv, H. 
and Wang, Y.C. (2019) Variance Estima-
tion for High-Dimensional Varying Index 
Coefficient Models. Open Journal of Statis-
tics, 9, 555-570. 
https://doi.org/10.4236/ojs.2019.95037 
 
Received: September 11, 2019 
Accepted: October 5, 2019 
Published: October 8, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2019.95037
https://www.scirp.org/
https://doi.org/10.4236/ojs.2019.95037
http://creativecommons.org/licenses/by/4.0/


M. Wang et al. 
 

 

DOI: 10.4236/ojs.2019.95037 556 Open Journal of Statistics 
 

tinuous nor ordered. Therefore, the variance of the model estimated by the tra-
ditional method will be large. Moreover, with the development of technology, 
high-dimensional data is applied to all aspects of life. The number of variables 
increases exponentially, and the calculation of the above two criteria also shows 
an exponential increasing trend, so the above method cannot be applied to high- 
dimensional data. 

In the past research, many important variable selection methods such as 
LASSO (Least Absolute Shrinkage Selection Operator) and SCAD (Smoothly 
Clipped Absolute Deviation) have been proposed. LASSO was proposed by Tib-
shirani (1996) [1]. For more details, see Fan and Peng (2004), Zhao and Yu 
(2006), Bunea (2007), Zhang and Huang (2008), Lv and Fan (2009), Fan and Lv 
(2011), and Kim (2008) [2]-[8]. In this method, a penalty term is added on the 
basis of the ordinary least squares method, and the coefficient value is reduced to 
0, so that the corresponding variable is excluded from the model. Another type 
of variable selection tool is DS (Dantzig Selector). This method was first pro-
posed by Candes and Tao (2005) [9] and can be easily reshaped into a linear 
model. Fan and Lv (2008) [10] sort the covariance matrix between covariate and 
response variables, and then select the first few variables with the largest correla-
tion coefficient to complete the variable selection. This method is called SIS 
(Sure Independence Screening). In later studies, some scholars extended the SIS, 
namely the iterative SIS (ISIS) method: the regression analysis was performed 
using the variables and dependent variables selected by SIS, and the regression 
residuals were replaced with response variables. Then continue to use the SIS 
method for a new round of variable selection. And repeat the above steps until 
all the important variables. For details, see Fan et al. (2009) [11]. After screening 
out the important variables, the second step of the simple two-stage method is 
generally calculated by least squares method. However, in order to overcome the 
root cause of the dimension, many scholars study the variance estimation in the 
case of high-dimensional data. Fan et al. proposed a re-adjusted cross-validation 
method (RCV) in 2012 to improve the simple two-stage approach. It is proved 
that the variance estimated by this method is stable and accurate. Zhao et al. 
(2014) [12] studied the variance estimation of linear models under certain as-
sumptions. Reid, Tibshirani, Friedman (2016) [13] studied the model residual 
estimation in LASSO regression and performed a large number of simulations. 
They considered that the variance estimation of the residual sum of squares 
based on adaptive regularization parameter selection has the properties of finite 
samples.  

A well-behaved variance estimation method can improve the prediction accu-
racy of the model and better explain the socio-economic phenomena. However, 
it is more important to choose a suitable regression model. There is also a large 
amount of literature on the study of regression models. When the data dimen-
sion is low, the parametric model and the nonparametric model are sufficient to 
solve the problem. But as the dimension increases, a more flexible semi-parametric 

https://doi.org/10.4236/ojs.2019.95037


M. Wang et al. 
 

 

DOI: 10.4236/ojs.2019.95037 557 Open Journal of Statistics 
 

model is more suitable. The literature research on semi-parametric models is 
mostly focused on the introduction of new models, such as linear models, 
add-on models, and so on. Hastie and Tibishirani (1993) [14] proposed the 
Variable Coefficient Model (VCM), which has been widely used in practical ap-
plications. In addition, some scholars studied the single index coefficient model 
(SICM). The Variable Coefficient Single Index Model (VICSIM) was proposed 
by Wong et al. (2008) [15]. Ma and Song (2014) [16] proposed the varying index 
coefficient model for the first time, which has overcome the problems that the 
variable coefficient model cannot solve. Most scholars apply variable selection 
methods such as SIS, LASSO, and SCAD to the parametric model, while the 
method used in nonparametric estimation are kernel estimation, local linear 
kernel estimation, and spline functions. For the estimation of semi-parametric 
regression models, such as partial linear regression model, variable coefficient 
model, single-index model, etc., the parameter part is estimated by Profile Least 
Square Estimation (PLSE), and its non-parametric part is still using the previous 
non-parametric method. For example, Xue and Liang (2010) [17] used the PLSE 
method of kernel estimation when estimating the non-parametric part of the 
single-index model. However, there are few literatures on varying index coeffi-
cients proposed in 2015, and the related estimation algorithms mainly use the 
profile least squares estimation method with B-spline to estimate the variable 
coefficient index model. Lv et al. (2016) [18] improved the PLSE, proposed a 
robust estimation procedure combining the logarithmic regression and the 
B-spline, and established the large sample property of the parameter estimation. 
The estimation of the unknown coefficient β  is estimated by the profile spline 
modal estimator method (PSME). Moreover, in order to obtain the progressive 
distribution of the unknown function ( )lm Z , they also proposed a two-stage 
method of local linear kernel estimation. 

The rest of the paper is organized as follows. In Section 2, we briefly introduce 
the varying index coefficient model, including the estimation method, the statis-
tical inference of the coefficients, and the RCV estimation of the model. In Sec-
tion 3, simulation studies are conducted to evaluate the finite sample perform-
ance of the proposed methods. In Section 4, a real data set is analyzed to com-
pare the proposed methods with the existing methods. A discussion is given in 
Section 5. 

2. Methodology 
2.1. Varying Index Coefficient Models 

The semiparametric model is widely used in regression models, especially the 
varying coefficient model (VCM) proposed by Hastie and Tibishirani in 1993, 
which has been widely used in real data. An important feature of the varying co-
efficient model is that the coefficients of its covariates are controlled by smooth 
functions, which can show nonlinear reactions. The form of the variable coeffi-
cient model is as follows: 
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( )
1

d

l l
l

Y m Z X ε
=

= +∑                        (2.1) 

where Y is a response variable, ( )T
1, , pX X X=   and [ ]0,1Z ∈  (for simplic-

ity) are explanatory covariates, ( ) ( ) ( )( )T
1 , , pm m m⋅ = ⋅ ⋅  is a p-dimensional 

vector of the unknown coefficient functions, and model error ε  is independent 
of ( ),X Z  with mean zero and finite variance 2σ . The variable coefficient 
model of Equation (2.1) faces two challenges in the case of today’s complex data. 
First, the variable Z has little effect relative to Y, so the interaction between the 
variables Z and X is difficult to detect; second, in many complex situations, Z is 
multi-dimensional, for example, studying the effects between chemical con-
stituents. Thus, the coefficient function ( )lm Z  in the VCM model will fall into 
the dimension curse. To overcome these two problems, Ma and Song proposed 
the Varying index Coefficient Model (VICM) in 2015. The varying index coeffi-
cient model is as follows: 

( ) ( )T

1
, ,

d

l l
l

Y m Z X m Z Xβ ε β ε
=

= + = +∑             (2.2) 

where ( )T
1, ,l l lpβ β β=   is the coefficient of the variable Z and lkβ  is the co-

efficient of kZ  in Z. The introduction of the varying index coeffcient model 
was based on Ma and Song’s study of this biomedical project that affects chil-
dren’s growth rates. 

2.2. Estimation Procedure for the VICM 

The estimation of the varying index coefficient models has two main aspects: 
one is the estimation of the parameter part β , and the other is the estimation of 
the function coefficient ( )l lm u  of the non-parametric part. In this paper, the 
estimation of the unknown coefficient β  is estimated by the profile spline 
modal estimator method (PSME). Once β  is fixed, the unknown function co-
efficient ( )l lm u  is estimated using B-spline. The specific estimation process of 
the varying index coefficient models is as follows. 

Let ( ){ }, , ,1i i iX Z Y i n≤ ≤  be the independent and identically distributed 
samples from model (2.2). Our main interest is to estimate the coefficient vec-
tors lβ  and the non-parametric functions ( )lm ⋅  for 1, ,l d=  . The estima-
tion of lβ  and ( )lm ⋅  in VICM is equivalent to maximizing 

( )1

T

1 1

1 d d

h i l i l il
i l

Y m Z X
n

φ β
= =

 − 
 

∑ ∑                (2.3) 

subject to the constraint 1lβ =  and 1 0lβ > , where ( ) ( )
1

1
1 1h t h t hφ φ−= , tφ  

is a kernel density function symmetric about 0 and 1h  is a bandwidth which 
determines the degree of robustness of the estimate. We use the standard normal 
density for tφ  throughout this paper to simplify the calculation. We use a basic 
approximation to estimate nonparametric functions. That is, we approximate 

( )lm ⋅  by the B-spline basis function because they have bounded support and  

are numerically stable. More specially, let ( ) ( ) ( )( )T

1 , ,
nq q J qB u B u B u=   be the  
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B-spline basis functions of order ( )2q q ≥ , where n nJ N q= +  and nN  is the 
number of interior knots for a knot sequence 

1 1 1 20 1
n n nq q N q N q N qξ ξ ξ ξ ξ ξ+ + + + += = = < < < < = = =  

, 

where nN  increases along with the sample size n. Consider the distance be-

tween two neighboring knots 1i i iH ξ ξ −= −  and { }1 1max
ni N iH H≤ ≤ += . Then, 

there exists constants 0C  such that 
{ } 0

1 1min
ni N i

H C
H≤ ≤ +

< ,  

{ } ( )1
1 1max

ni N i i nH H o N −
≤ ≤ + − = . Let ( ) T

l l lU Zβ β= , without loss of generality, 

we assume that ( )l lU β  is confined in a compact set [ ]0,1 . Then, nonparamet-

ric functions ( )l lm u  can be approximated by 

( ) ( ) ( )T
l l q l lm u B u λ β≈ , 1, ,l d=                  (2.4) 

where ( ) ( )( )T
, :1l s l ns Jλ β λ β= ≤ ≤ . Let ( ) ( ) ( )( )TT T

1 , , dλ β λ β λ β=  . Based 

on the above approximation, the objective function (2.3) becomes 

( )( )2 , ,
1 1 1

1 nJn d

h i s q il l s l il
i l s

Y B U X
n

φ β λ
= = =

 
− 

 
∑ ∑∑ .             (2.5) 

Subsequently, we estimate the parameter vectors lβ  and the nonparametric 
functions ( )lm ⋅  in two steps below.  

Step 1. Given β , we obtain estimate ( )λ̂ β  of ( )λ β  by maximizing the 
objective function (2.5). Then, the estimator of ( )l lm u  can be obtained by 

( ) ( ) ( ) ( ) ( )T
, ,

1

ˆ ˆˆ ,
nJ

l l s q l s l q l l
s

m u B u B uβ λ β λ β
=

= =∑ .         (2.6) 

In order to obtain efficient estimators of β , the “remove-one-component” 
method is employed. Specifically, for ( )T

1, ,l l lpβ β β=  , let ( )T
, 1 2 , ,l l lpβ β β= -  

be a 1p −  dimensional vector by removing the 1st component 1lβ  in lβ  for 
all 1 l d≤ ≤ . Then lβ  can be rewritten as 

( )
T

2 T
, 1 , 1 , 11 ,l l l l lβ β β β β− − −

 = = − 
 

, 
2

, 1 1lβ − < .        (2.7) 

Thus, lβ  is infinitely differentiable with respect to , 1lβ −  and the Jacobian 
matrix is 

2
, 1 , 1

, 1 1

1T
l l l

l
l p

J
I

β β β
β

− −

− −

 ∂ − − = =
 ∂
 

,               (2.8) 

where pI  is the p p×  identity matrix. We denote ( )TT T
1 , 1 , 1, ,l dβ β β− − −=   

and reformulate the parameter space of 1β−  as follows:  

( ){ }T 2T 1
1 1 , 1 , 1 , 1:1 : 1, p

l l ll d Rβ β β β −
− − − − −Θ = = ≤ ≤ < ∈ .       (2.9) 

Let ( )1β β β−=  with ( ), 1l l lβ β β −=  for 1 l d≤ ≤ . Since the estimation 
procedure of β  requires estimates of both lm  and its first order derivative 

lm . We can adopt the spline functions of one order lower than that of lm  to 
approximate the lm . Following Ma and Song (2014), a spline estimator of lm  
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is given by 

( ) ( ) ( ) ( ) ( ), , , 1 ,
1 2

ˆˆ ˆ,
n nJ J

l l s q l s l s q l s l
s s

m u B u B uβ λ β ω β−
= =

= =∑ ∑

        (2.10) 

where ( ) ( ) ( ) ( ){ } ( ), , 1, 1
ˆ ˆˆ 1s l s l s l s q sqω β λ β λ β ξ ξ− + −= − − −  for 2 ns J≤ ≤ . Thus, 

one has  

( ) ( ) ( )T
, 1 1

ˆˆ ,s l l q l lm u B u Dβ λ β−= , 

where ( ) ( )( )T
1 , 1 : 2q l s q l nB u B u s J− −= ≤ ≤  and 

( )

( )

1 2 1 2

2 3 2 31

2 1 2 1 1

1 1 0 0

1 10 0
1

1 10 0
n n

q q

q q

N q N q N q N q J J

D q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

+ +

+ +

+ − + + − + − ×

− 
 − − 
 −
 

− −= −  
 
 

− 
 − − 





    



. 

Step 2. After this re-parametrization, combine with the estimators lm  and 
ˆ

lm  for 1, ,l d=  , we can construct the profile spline modal objective function 
for the parametric components. Then, we can obtain the estimator 1β̂−  of 1β−  
by maximizing ( )( )1nL β β−  over 1 1β− −∈Θ , where 

( )( ) ( )( ) ( )1 2 , ,
1 1 1

1 nJn d

n h i s q il l s l il
i l s

L Y B U X
n

β β φ β λ β−
= = =

 
= − 

 
∑ ∑∑ ,     (2.11) 

which is equivalent to solve the following estimating equations: 

( )( )

( )( ) ( )

( )( ) ( )( ) ( ){ }

( )( ) ( )( ) ( ){ }

1 1

2 , ,
1 1 1

TT
1 1 1 1 1 1, 1

TT
, 1

1 ˆ

ˆˆ ,

ˆˆ ,

0

n

n

Jn d

h i s q il l s l il
i l s

i i i i

d id d id d i d i

L

Y B U X
n

m U X J Z D

m U X J Z D

β β β

φ β λ β

β β λ β β β

β β λ β β β

− −

= = =

−

−

∂ ∂

 
= − − 

 
 + ∂ ∂ 
 × 
 

+ ∂ ∂ 
 

=

∑ ∑∑







     (2.12) 

where ( ) ( )( )T
, ,1 ,1i i sl l nD D s J l dβ β= ≤ ≤ ≤ ≤  with  

( ) ( )( ), ,i sl l s q il l ilD B U Xβ β= , ( )ˆ ,lm β⋅  is given in (2.10) and 2hφ  is the first 

derivative of 2hφ . We obtain the estimate of 1β− , say, 1β̂−  and then obtain β̂  

via the transformation (2.7). Thus, we call the estimator β̂  as the profile spline 
modal estimator (PSME). 

3. Simulation Studies 
3.1. Results in Finite Sample 

In this section, we conduct simulation studies to evaluate the finite sample per-
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formance of the proposed methodology. We generate data from the following 
VICM: 

( ) ( ) ( ) ( )T T T
1 1 1 2 2 2 3 3 3, ,i i i i i i i i i i iY m Z X m Z X m Z X m Z Xβ ε β β β ε= + = + + +  (3.1) 

with ( )T
1 2 3, ,i i i iX X X X= , where iX  is generated from Bernoulli (p = 0.5), 

and ( )T
2 3,i iX X  is drawn from a bivariate normal distribution with mean 0, 

variance 1, and covariance 0.2. To generate ( )T
1 2 3, ,i i i iZ Z Z Z= , we first sample 

( )T* * *
1 2 3, ,i i iZ Z Z  from a multivariate normal with mean 0, variance 1, and covari-

ance 0.2, and then let ( )* 0.5, 1, 2,3ik ikZ Z k= Φ − = , where ( )Φ ⋅  is the CDF of 

the standard normal. The true loading parameters are set as ( )T
1

1 2,1,3
14

β = , 

( )T
1

1 3,2,1
14

β = , ( )T
1

1 2,3,1
14

β = . Set  

( ) ( ) ( ){ }* *
l l l l l lm u m u E m u= − , 1,2,3l =  

where ( ) ( ) ( ){ }*
1 1 1 110exp 5 1 exp 5m u u u= + , ( ) ( )*

2 2 25sin πm u u= , and  

( ) ( ) ( ){ }*
3 3 3 33 sin π cos 2π 4π 3m u u u= + − . Finally, iY , 1 i n≤ ≤ , are generated 

from the VICM (3-1), where ( )TT T T
1 2 3, ,β β β β= , and errors iε  follow 

( )( )20, ,i iN Z Xσ  with ( ) ( ){ } ( ){ }2 , 100 , , 100 , ,i i i i i iZ X m Z X m Z Xσ β β= − + . 

Although the estimation process of the varying index coefficient model is in-
troduced in Section 2.2, it is still difficult to directly estimate (2.12). Therefore, 
an iterative calculation algorithm is needed to estimate the unknown parameters 
and the unknown function coefficients. The specific algorithm is divided into 
the following two steps: 

Step 1. The initial value ( )1 2 3, ,β β β  of β  is obtained in the following four 
steps: 

1) Assuming that the unknown function lm  is a linear function, then

( ) ( )T

1
, ,

d

i i l l i l il
i

m Z X a b Z Xβ β
=

= +∑ . 

2) The estimated value ( )ˆ ˆ,l la v  of ( ),l la v  is estimated by minimizing 

( )
2

T

1 1

n d

i l l i il
i l

Y a v Z X
= =

 − + 
 

∑ ∑ , and thus the expression ( ) ( )0
12

ˆ ˆ ˆ ˆsgnl l l lv v vβ =  is 

obtained, where 1̂lv  is a part of l̂v . 

3) Let T 0ˆˆ
l i lU Z β= , then obtain the initial unknown function ( )ˆ ini

lm ⋅  from 

the varying coefficient model ( )
1

ˆ
d

l l l
l

Y m U X ε
=

= +∑ . 

4) Obtain 1
iniβ  by minimizing ( )

2
1 T

1 1
ˆ2

n n
ini

i l i l il
i l

Y m Z Xβ−

= =

 − 
 

∑ ∑ , i.e. the initial 

value. 
Step 2. Iterative calculations are performed by the asymptotic properties of the 

large sample parameter estimates and the theorems given by Ma and Song (2015) 
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[16]. Under certain assumptions, the estimated parameters satisfy the following 
asymptotic properties: 

( ) ( )

( )( ) ( ) ( )

1
20 1 0

1 1
1

1 2 0

1

ˆ , ,

, , , 1

n

i i
i

n

i i i i i p
i

n n X Z

n Y m Z X X Z o

β β β

β

−
⊗−

− −
=

−

=

 − = Φ 
 
 × − Φ + 
 

∑

∑
   (3.2) 

where ( ) ( )( ){ }T
0 0 0 T, , , ,1i i l l l l l lX Z m U X J Z l dβ β β Φ = ≤ ≤  



 , and  

( )Z Z P Z= −  in the above expression. Here Z  can be estimated by  

( )nZ Z P Z= − , where 

( ) ( )( )0
1

1

ˆ ˆˆ ,
d

n k J l l
l

P Z g U Xβ β
=

= ∑ .                (3.3) 

The estimation procedure of ( )0
1

ˆˆ ,Jg β⋅  in Equation (3.3) is similar to the es-
timation of the unknown function ( )ˆˆ ,lm β⋅ , except that the response variable Y 
is replaced by kZ  in the iterative estimation process. According to the asymp-
totic properties (3.2) we can get an equation and use this equation for iterative 
calculations. The iteration stops when the absolute difference (dif) from the last 
calculated unknown parameter is less than 10-4 or the iteration number (iter) is 
greater than or equal to 100. 

According to the idea of the above specific algorithm, we use R (64-bit) to 
write four functions such as Design matrix, transform, Jac, vicmest. Among 
them, vicmest is the main program for estimating unknown parameters, and the 
other three functions are intermediate conversion functions. First, we calculate 
the initial value 1 2 3, ,β β β  of β  through the first step. The results are shown 
in Table 1. It can be seen from Table 1 that the initial value calculated by Step 1 
is consistent with the trend of the actual value, but the deviation from the actual 
value is still large. Therefore, it is necessary to further calculate the estimated 
value by the second step. At this point, by running the four programs such as 
vicmest, the result of stopping the main program after 64 iterations is finally ob-
tained, and 68.45267 10dif −= ×  at this time. The specific calculation results of 
the estimated values β̂  of β  and their deviations are shown in Table 2. It 
can be seen from Table 2 that the value of a estimated by the profile spline mo-
dal estimator (PSME) is better, the deviation from the actual value (Bias) is 
smaller, and the mean deviation is less than 5%. 
 
Table 1. The initial values of β  calculated by step 1. 

Initial value 1β  2β  3β  

1 0.715 0.951 0.722 

2 0.345 0.287 0.897 

3 0.933 0.747 0.311 
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Table 2. The estimated value of β  and its deviation from the true value. 

200n =  11β  12β  13β  21β  22β  23β  31β  32β  33β  

True 0.534 0.267 0.801 0.801 0.534 0.267 0.534 0.801 0.267 

β̂  0.537 0.316 0.782 0.798 0.538 0.271 0.461 0.833 0.305 

Bias 0.003 0.049 −0.019 −0.003 0.003 0.004 −0.074 0.032 0.038 

 
From the main program vicmest, not only can the estimated value β̂  be ob-

tained, but also can we obtain gamm0, which is the coefficient after the expan-
sion of the B-spline basis function. Bring the calculated β̂  and the coefficient 
gamm0 into the Formula (2.10), get the value of the unknown function ( )ˆ ,lm β⋅  
and the predicted value of the response variable Y. The results of the gamm0 co-
efficient are shown in Table 3. An estimate of ( )ˆ ,lm β⋅  can be seen from Figure 
1, where the red curve represents the estimate and the black curve represents the 
actual value. It can be seen intuitively from Figure 1 that the fitting effect of the 
B-spline expansion is very good, not only the general trend of the unknown 
non-parametric function is well maintained, but also the accuracy of the estima-
tion is relatively high. As shown in Table 4, we calculate the root mean square 
error of the coefficient of ( )ˆ ,lm β⋅  by further calculation. It can be seen from 
Table 4 that the unknown function has a small deviation, and the RMSE is less 
than 0.28, which indicates that the estimation effect is better. Moreover, Y can be 
calculated after obtaining the estimated values β̂  and ( )ˆ ,lm β⋅ . Finally, the 
variance of error of the model (3.1) is calculated to be 5.777. 

3.2. Results in High-Dimensional Case 

In this section, we numerically simulate the variance estimation of the varying 
index coefficient model in high-dimensional conditions. 

The profile spline modal estimator (PSME) shows good estimation variance 
under low-dimensional data settings. However, in the case of high-dimensional 
data, it will fall into the dimension curse, and the deviation of the estimated 
variance will increase as the dimension increases. The re-adjustment cross-validation 
method proposed by Fan et al. (2012) [19] can be considered as an effective way 
to overcome the dimension curse in high-dimensional problems through theo-
retical proof and data simulation test. Naturally, this paper applies the re-adjusted 
cross-validation method (RCV) to the high-dimensional varying index coeffi-
cient model for the first time. There are two types of covariates in the varying 
index coefficient model (2.2). The first type is Z. If Z is from a single variable, its 
relationship with the covariate X is more difficult to detect. The second type of 
variable is the covariate X. What we are concerned about is the estimation of the 
variance of the varying index coefficient model when the first type of covariate Z 
is high-dimensional. 

We first perform data simulation. The setting of the real model is the same as 
model (3.1), with only the dimension of the covariant Z changed, that is, the first  
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Figure 1. Plots of the estimated nonparametric curves. 

 
Table 3. The coefficient of the B-spline basis function. 

 1iB  2iB  3iB  4iB  5iB  6iB  

1iB  −4.444 −4.808 −3.0887 3.912 5.004 3.973 

2iB  −2.083 −6.179 −4.543 4.683 5.185 4.876 

3iB  −6.294 −2.710 3.652 −5.970 7.624 5.766 

 
Table 4. Root mean square error (RMSE) of ( )ˆ ,lm β⋅ . 

 ( )1ˆ ,m β⋅  ( )2ˆ ,m β⋅  ( )3ˆ ,m β⋅  

RMSE 0.349 0.222 0.258 

 
type of covariate Z is set to a high dimensional variable. Where 

( )* 0.5ik ikZ Z= Φ − , 1,2, ,k d=  , that is, Z is a d-dimensional covariate. The 
setting of ( )l lm u  and the error term is also the same as model (3.1). 

In the case of high dimensional data, the independent variables are often 
highly correlated. However, not all independent variables are related to the de-
pendent variable Y. In fact, only a small number of covariates are associated with 
the dependent variable Y. For the selection of such high-dimensional variables, 
Fan et al. (2008) [10] proposed SIS method with Sure Screening properties based 
on the relevant criteria, which can first reduce the dimension d to a relatively 
small number. Therefore, all important variables could be filtered into the 
model. So that lower-dimensional model selection methods such as SCAD, 
Dangit selector, LASSO, or adaptive LASSO could be used. With lower-dimensional 
model selection method, some smaller coefficients can be compressed to zero, 
thereby removing the extraneous variables that are filtered by the SIS method. 
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The idea of SIS makes high-dimensional model selection possible, greatly 
speeding up the selection of variables, and making model selection problems ef-
ficient and modular. The SIS variable selection method can be used in conjunc-
tion with any model selection technique. Fan et al. (2010) [20] apply the SIS 
method to the Cox proportional hazard model. The Cox proportional hazard 
model is similar to the varying index coefficient model mentioned in this paper. 
They are all nonlinear models and both have the need to estimate the coefficients 
of the nonparametric function and its parameter parts. Therefore, we believe 
that in the case of high-dimensional data, it is feasible to use the SIS method to 
make the first variable selection of the varying index coefficient model. 

We use the SIS method proposed by Fan et al. (2008) [10] to select variables. 
The number of variables selected is tentatively 20. The calculation process is 
simulated using R software. We have written VicmRCV and the vicmest func-
tion for the estimation of the RCV process. The data simulation process was re-
peated 100 times, and a box plot of the variance as shown in Figure 2 was ob-
tained. In the figure, naïve represents a simple two-stage approach, while rcv 
represents a re-adjusted cross-validation method. 

It can be seen from Figure 2 that in the d dimension (the dimension of the 
variable Z, is as high as 100), the sample size is only 200, the variance of the 
re-adjusted cross-validation (RCV) two-stage method is better than the simple 
two-stage method. However, the calculated error variance value is large. To 
some extent, the estimation method of the estimated varying index coefficient 
model mentioned in Section 3.1 of this paper is not accurate enough and not 
robust enough as the estimated error variance value is large. 
 

 
Figure 2. Box plot of the variance calculated by using the simple two-stage method and 
the RCV method. 
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As shown in Table 5, changing the values of p and n gives more simulation 
results. Table 5 compares the normal two-stage method (Naive-SIS) with the 
RCV two-stage method (RCV-SIS) at 100n = , 50,100,500d = . By comparing 
the root mean square error estimated by the two estimation methods, we find 
that the mean square error (MSE) of the RCV two-stage estimation is smaller in 
each dimension than the MSE estimated by the ordinary two-stage method. That 
is, the model estimated by the RCV method is more accurate. But from Table 5, 
we can also find other laws. Conventionally, as the dimension p increases, the 
estimated accuracy decreases, which results in the root mean square error be-
comes larger. However, from the results of Table 5, this law is completely inap-
plicable in the ordinary two-stage method. When the dimension comes to 
maximum ( 500d = ), the root mean square error is the smallest, and its value is 
6.692. When 100d = , the MSE is the largest with a value of 8.273. In conclu-
sion, the order is disorganized, and the mean square error does not become lar-
ger as the dimension becomes larger in general cases. 

In fact, it is not difficult to explain this phenomenon because in the variable 
selection phase, for the SIS method, we select the variables with the co-correlation 
coefficients ranked in the top twenty (descending order). Since the fixed value 20 
is small relative to the covariate, the probability of selecting all important vari-
ables is relatively low. From the data in the RCV-SIS column in Table 5, it can 
be seen that the SIS method is much more stable after combining RCV. At d = 
50, the estimated MSE is the smallest with value of 4.838. In the case of three 
different dimensions, the error estimated by the RCV method is smaller than the 
mean square error estimated by the ordinary two-stage method. 

4. Real Data Analysis 

In this section, we will use the data collected by the Mayo Clinic. These data 
were obtained from trials conducted by the Mayo Clinic in primary biliary cir-
rhosis (PBC) from 1974 to 1984. Specific data can be found in the R language 
Survival package. The dataset included 424 PBC patients who were referred to 
the Mayo Clinic during the decade between 1974 and 1984. The data met the 
randomized placebo-based eligibility criteria. 

In the data set, the first 312 patients participated in the randomized trial while 
the other 112 patients did not participate in the clinical trial, but agreed to re-
cord the basic measurements and follow the medical recommendations. Six of 
the above samples lost follow-up shortly after diagnosis. Thus there are 106 cases 
and 312 random participants. We preprocessed the data set via R software.  
 
Table 5. Mean Square Error (MSE) for two different estimation methods at 100n = . 

 Naïve-SIS RCV-SIS 

50d =  8.171 4.838 

100d =  8.273 5.199 

500d =  6.692 5.043 
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We first remove some samples with missing values. The number of samples that 
were eventually brought into the calculation after deletion was 276. The specific 
variables are described in Table 6. 

As can be seen from Table 6, the response variable Y is the survival time of 
the patient. Since the difference among the response variables Y is large, we 
logarithmically convert the time Y to reduce the error. There are three covariates 
of X, which are the patient’s state X1 (Status), the patient’s age X2 (Age), and the 
patient’s gender X3 (Sex). Here we need to explain why we want to add gender 
variables. The gender variable was added because Huang Siyu (1985) [21] found 
that the incidence of men with primary biliary cirrhosis (PBC) was much lower 
than that of women. Therefore, we can know that gender has a great relationship 
with PBC. Another type of covariate Z has a total of 15 variables including al-
bumin (albumin), alkaline phosphatase (alk.phos), triglyceride (Trig), and plate-
let count (Platelet). Therefore, the varying index coefficient model constructed 
in this section is as follows: 

( ) ( )
3 15

, , *i I l ld ld il i
l d

Ln Y m Z X m Z Xβ ε β ε = + = + 
 

∑ ∑ .       (4.1) 

 
Table 6. Interpretation of experimental variables in primary biliary cirrhosis (PBC). 

Serial number Variables Description 

1 Time (Y) number of days between registration and the earlier of death 

2 Status (X1) status at end point, 0/1/2 for censored, transplant, dead 

3 Age (X2) in years 

4 Sex (X3) m/f 

5 Trt (Z1) 1/2/NA for D-penicillmain, placebo, not randomised 

6 Ascites (Z2) presence of ascites 

7 Hepato (Z3) presence of hepatomegaly or enlarged liver 

8 Spiders (Z4) blood vessel malformations in the skin 

9 Edema (Z5) 
0 no edema, 0.5 untreated or successfully treated  

1 edema despite diuretic therapy 

10 Bili (Z6) serum bilirubin (mg/dl) 

11 Chol (Z7) serum cholesterol (mg/dl) 

12 Albumin (Z8) serum albumin (g/dl) 

13 Copper (Z9) urine copper (ug/day) 

14 alk.phos (Z10) alkaline phosphotase (U/liter) 

15 Ast (Z11) aspartate aminotransferase, once called SGOT (U/ml) 

16 Trig (Z12) triglycerides (mg/dl) 

17 Platelet (Z13) platelet count 

18 Protime (Z14) standardised blood clotting time 

19 Stage (Z15) histologic stage of disease (needs biopsy) 
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Since the covariate Z has different physical meanings and different dimen-
sions, it is meaningless to simulate the model at this time. So we need to elimi-
nate the effects of different dimensions of the data through transformation. 
Therefore, these 15 variables should be standardized before the specific calcula-
tion, which is Z-Score standardization. 

Through previous studies, we have roughly learned that variables such as se-
rum bilirubin content (Z6), albumin content (Z8), urinary copper content (Z9), 
alkaline phosphatase content (Z10), prothrombin time (Z14) have a strong rela-
tionship with the response variable Y. We first use the SIS method to select the 
variables with the first 8 covariate correlations, and then use the simple 
two-stage method and the re-adjusted cross-validation (RCV) two-stage method 
to estimate the coefficient β  of the covariate Z and the model variance. The 
results are shown in Table 7. 

As can be seen from Table 7, when using SIS for variable selection, the im-
portant variables such as Z6 and Z9 are selected three times. Important variables 
have strong correlations in theoretical analysis. From this aspect, it can be seen 
that the SIS variable selection method can select all important variables with a 
high probability to a certain extent. The RCV can repeatedly select variables by 
selecting the first missing variable or deleting the extra variable that was selected 
for the first time. The model variance estimated by the RCV-SIS two-stage 
method is significantly better than the N-SIS simple two-stage method. In the 
high-dimensional case, the re-adjusted cross-validation method (RCV) has a 
better performance in the varying index coefficient model. The root mean 
square error and the resulting variance are smaller than the simple two-stage es-
timate. Therefore, the RCV-SIS two-stage method is more accurate in predicting 
the survival time of patients, and can provide more reasonable guidance and ad-
vice for follow-up medical treatments. 

5. Discussion 

In this paper, we study a new class of semiparametric regression models: varying 
index coefficient models. The estimation of the unknown coefficient β  is es-
timated by the profile spline modal estimator method (PSME), while the un-
known non-parametric function part is expanded with the B-spline. After 
studying the gradual nature of the coefficients, we estimate the coefficient β   
 
Table 7. PBC dataset estimation results. 

 N-SIS RCV-SIS 

AMS (variables selected) 
Z2, Z4, Z5, Z6, 

Z8, Z9, Z12, Z15 

The first stage: 
Z4, Z5, Z6, Z7, Z9, Z11, Z12, Z15 

The second stage: 
Z2, Z5, Z6, Z8, Z9, Z12, Z14, Z15 

MSE 2.184 1.661 

VARIANCE 2.674 1.495 
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using an iterative method. With data simulation, we found that the estimated 
β  of this method has a small deviation, and the unknown function part of the 
B-spline estimation has a good fitting effect as well. Finally, under the setting 
conditions of high-dimensional data, we carried out a two-stage RCV estimation 
of the varying index coefficient model. We find that the variance and mean 
square error estimated by the RCV method are superior to the simple two-stage 
method. In the final empirical phase, it was originally intended to model the 
PBC data using a survival model (semi-parametric varying coefficient additive 
risk model). However, through research literature, it is known that gender vari-
ables and state variables are closely related to the survival time of patients with 
primary biliary cirrhosis. The variable Z has a certain relationship with the three 
variables X (status, gender and age). Therefore, we used the varying index coeffi-
cient model to model the PBC data, and found that the variance and mean 
square error of the RCV method are better than the simple two-stage method. 

Further researches for the proposed method are needed. Firstly, further effort 
to investigate the asymptotic properties of the proposed method needs to be 
done. Secondly, this paper only estimates the variance and mean square error of 
the varying index coefficient model, but lacks the research on the coefficient β  
and the estimation of the nonparametric function of the parameter part of the 
model. Therefore, we can study more robust estimation methods in the future. 
In addition, we can focus more on the asymptotic properties of the non-parametric 
part of the varying index coefficient model. 
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