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Abstract 

This study firstly improved the Generalized Autoregressive Conditional He- 
teroskedast model for the issue that financial product sales data have singular 
information when applying this model, and the improved outlier detection 
method was used to detect the location of outliers, which were processed by 
the iterative method. Secondly, in order to describe the peak and fat tail of the 
financial time series, as well as the leverage effect, this work used the skewed-t 
Asymmetric Power Autoregressive Conditional Heteroskedasticity model based 
on the Autoregressive Integrated Moving Average Model to analyze the sales 
data. Empirical analysis showed that the model considering the skewed dis-
tribution is effective. 
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1. Introduction 

Time series models play very important roles in many business decisions. In the 
current big data era, all walks of life are faced with the problem of modeling and 
time sequence prediction. For example, the e-commerce platform needs to pre-
dict the future sales of all commodities; in the pre-sales industry, both online 
and offline pre-sales require significant time series forecasting. These data are 
non-linearly correlated in time series, with most of them affected by product 

How to cite this paper: Yang, Q. and 
Wang, Y.S. (2019) Application of the Im-
proved Generalized Autoregressive Condi-
tional Heteroskedast Model Based on the 
Autoregressive Integrated Moving Average 
Model in Data Analysis. Open Journal of 
Statistics, 9, 543-554. 
https://doi.org/10.4236/ojs.2019.95036 
 
Received: August 14, 2019 
Accepted: September 3, 2019 
Published: September 6, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2019.95036
https://www.scirp.org/
https://doi.org/10.4236/ojs.2019.95036
http://creativecommons.org/licenses/by/4.0/


Q. Yang, Y. S. Wang 
 

 

DOI: 10.4236/ojs.2019.95036 544 Open Journal of Statistics 
 

promotion, inventory situation and market competition among other, which 
may lead to outliers in time series. Meanwhile, sales during the holiday promo-
tion period are relatively volatile and flat, resulting in an asymmetry of yield 
fluctuation and the rate of return usually does not follow the normal distribu-
tion, showing skewness and peak thick tail. Therefore, how could such data be 
modeled and predicted remains an open question. 

Let’s start with classic time series models, such as the Autoregressive Inte-
grated Moving Average model-Generalized Autoregressive Conditional Hete-
roskedast (ARIMA-GARCH) model [1] and normal Asymmetric Power Autore-
gressive Conditional Heteroskedasticity (APARCH) model [2] based on the Au-
toregressive Integrated Moving Average (ARIMA) model [3]. On the one hand, 
although the model can solve the heteroscedastic effect in the residual sequence, 
it provides no solution for singular information when data are applied to the 
Generalized Autoregressive Conditional Heteroskedast (GARCH) model [4]. On 
the other hand, the classical time series model in parameter estimation is usually 
based on the assumption of normal distribution, which does not fit well the dis-
tribution of volatility in practical applications. The explosive growth of new al-
gorithm development makes this issue even more worthy of attention. 

Therefore, in this study, an improved GARCH model, termed the Pro-GARCH 
model, was proposed to solve the problem of singular information in the data. 
The improved method is described below. First, in the GARCH (p, q) model, the 
rank of the Hessian matrix H is defined as 1 1R p q= + + . We performed QR 
decomposition on the Hessian matrix H, i.e. H QR= ; R (QR) represents the 
rank of the matrix after QR decomposition. Application of data to the model 
( ( )1R R QR≠ ) leads to the generation of singular information, and the rank of 
the matrix after QR decomposition is now increased by one, i.e. ( )2 1R R QR= + , 
so that 2 1R R= , which allows to solve the problem of singular information. 
Since the rank of the matrix is changed after QR decomposition, the estimated 
value of a given parameter is not affected. Secondly, because the matrix is singu-
lar, the inverse matrix of the Hessian matrix was obtained by determining the 
generalized inverse of the matrix, yielding the Pro-GARCH model. Furthermore, 
a skewed-t APARCH model [5] based on the ARIMA model [3] was proposed. 
After assessing JD sales data, the results showed that the model was superior to 
the classical time series model in the accuracy of parameter estimation and pre-
diction, and could more accurately describe the skewness problem in the se-
quence. 

The remainder of the article is as follows. In the second part, the definitions of 
Pro-GARCH model and skewed-t APARCH model based on the ARIMA model 
will be provided. In the third part, the modeling process of skewed-t APARCH 
model based on the ARIMA model will be described. In the fourth part, we ap-
plied the novel and traditional classical time series models to JD sales data, re-
spectively, and compared the results. Empirical analysis showed that the model 
is better than other models. 
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2. Model 
2.1. The Pro-GARCH Model 

The Pro-GARCH (p, q) model we proposed is:  
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where, { }tx  is the deterministic information fitting, tη  is independent and 
follows the standard normal distribution, and 0 0α > , 0iα > , 0iβ >  and 

1i iα β+ < . The improved GARCH (p, q) model can also be rewritten as the 
ARMA (p, q) model for 2

tε , i.e. 
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where, 2
t t tv hε= −  [4]. 

With an outlier in the data, the actual sequence is not tε , but an observation 
sequence te , defined as  

( ) ( )2 2
t t t te B I Tε ω ξ= +                        (3) 

where ( )tI T  is the indicator function, tω  and ( )Bξ  denote the magnitude 
and dynamic model of the outlier effect, respectively. 

2.2. The Partial T-APARCH Model Based on the ARIMA Model 

The skewed-t APARCH model [5] based on the ARIMA model [3] can be de-
fined as: 
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where, ( )1 dd B∇ = − , ( ) 11 p
pB B Bφ φΦ = − − −  is an autoregressive coeffi-

cient polynomial for a stationary reversible ARIMA (p, q) model;  
( ) 11 p

pB B Bθ θΘ = − − −  is the moving smoothing coefficient polynomial for 
the stationary reversible ARIMA (p, q) model; tµ  is the conditional mean, 
( )0,1D  represents a distribution with mean and variance of 0 and 1, respec-

tively; ( )0, 0, 0 1, , , 0, 1 1j i ij pω δ β α γ> ≥ ≥ = ≥ − < < ; tη  is independent, 
identically distributed and follows the skewed ( )0,1, ,t v ξ  distribution. The 
purpose of the power function in Equation (4) is to improve the transformation 
of model fitting. 
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3. Processing 

1) We built the ARIMA model [6] as follows. a) Data preprocessing. First, the 
Pro-GARCH model and the improved outlier detection method [7] were used to 
detect IO type outliers of the data. Then, the iterative method [8] was used to 
process the outliers and generate new data; Secondly, the stability and pure ran-
domness of the new time series data were tested. b) Model identification. After 
calculating the sample autocorrelation coefficient and partial correlation coeffi-
cient, the appropriate ARIMA model was selected to fit the observation se-
quence. c) Model prediction and diagnosis. The established model was used to 
predict future trends of time series values and evaluate the model by analyzing 
whether parameter estimates are significant and the residual is a white noise se-
quence. 

2) Autocorrelation and heteroscedasticity test for the residual sequence of the 
ARIMA model were performed by a statistical method using the Portmanteau Q 
test and the LM test [1]. 

3) Model identification. After constructing the ARIMA model, the residual 
sequence was modeled by APARCH (1, 1), selecting skewed-t distribution. 

4) Model diagnosis. Whether the residual sequence was a white noise sequence 
and the parameter estimation significant was assessed. 

5) Model prediction. The final fitted model was obtained and evaluated. 

4. Results 

In this section, the construction process of the skewed-t Asymmetric Power 
Auto-regressive conditional heteroskedasticity (APARCH) model based on the 
ARIMA model is introduced in detail. Compared with the ARIMA-GARCH and 
normal APARCH models, respectively, based on the ARIMA model, the validity 
of the skewed-t APARCH model based on the ARIMA model was demonstrated. 
All simulations in this paper were performed in R. 

4.1. Data Preprocessing 

We analyzed the sales data of Jingdong. Figure 1 shows the presence of outliers 
in the data. Therefore, we first used the Pro-GARCH model and the improved 
outlier detection method to process outliers and generated new data. This result 
was satisfactory. Among them, the data obtained after processing the abnormal 
values are shown in Figure 2 and were recorded as { }_train x . 

4.2. Model Establishment 

The pure randomness test results showed that the P value of the LB test statistic 
was very low under the first-order to sixth-order delay (see Table 1). Therefore, 
we determined that the sequence belonged to a non-white noise sequence and 
could model the data.  

The stability of the sequence { }_train x  was verified by the timing diagram 
method. As shown in Figure 2, the sequence was non-stationary. After using the  
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Figure 1. Data with outliers.  

 

 
Figure 2. Data after outlier processing. 

 
Table 1. P value of LB test statistics. 

Delay order P value Delay order P value 

1 2.38e - 13 4 <2.2e - 16 

2 <2.2e - 16 5 <2.2e - 16 

3 <2.2e - 16 6 <2.2e - 16 

 
ARIMA (p, d, q) model to fit the sequence { }_train x , the first-order difference 
of the sequence { }_train x  is shown in Figure 3. As shown in Figure 3, the 
sequence { }1_train x  after the first-order difference was stationary, so in the 
ARIMA (p, d, q) model, the order of the difference was 1, i.e. d = 1. 

Figure 4 shows the autocorrelation (ACF) and partial correlation (PACF) 
plots of the sequence { }1_train x . The system’s automatic ordering was com-
pared with the ACF and PACF graphs. With p = 1 and q = 1, the model fitting 
was most reasonable; therefore, the ARIMA (p, d, q) model most suitable for 
this sequence was the ARIMA (1, 1, 1) model. Regarding the heteroscedasticity 
test, since the P values of the LM and Portmanteau Q tests were low (see Table 
2), the residuals were heteroscedastic. Due to space constraints, only the first six 
P values were reported in this paper. 
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Figure 3. Data { }1_train x  after first-order difference. 

 

 
Figure 4. Autocorrelation and partial correlation plots for { }1_train x . 

 
Table 2. P values for LM and portmanteau Q tests. 

Delay order P value of the LM test P value of the Portmanteau Q test 

1 2.081e - 05 2.025e - 05 

2 3.748e - 05 2.479e - 06 

3 0.0001276 2.002e - 06 

4 0.0003327 1.911e - 06 

5 1.669e - 06 8.294e - 10 

6 1.788e - 06 1.874e - 09 

 
Therefore, this study selected the ARIMA (1, 1, 1)-GARCH (1, 1) and 

APARCH (1, 1) models based on the ARIMA (1, 1, 1) model for modeling the 
sequence under normal and partial t distributions. Table 3 provides the para-
meter estimation results of the new model.  

4.3. Evaluation Criteria 

In order to evaluate the accuracy of the model, mean error (MSE), mean abso-
lute error (MAE), root mean square error (RMSE) and mean absolute percen-
tage error (MAPE) were used. The smaller the variance of each loss function, the  
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Table 3. Model parameter estimation results. 

ARIMA-GARCH 
APARCH (1, 1) - N APARCH (1, 1) - skewed t 

Based on the ARIMA model Based on the ARIMA model 

ar1 −0.375 0.367*** 0.367*** 

ma1 0.431 −0.951*** −0.951*** 

omega 0.012*** 0.022*** 0.006* 

1α  0.161*** 0.174*** 0.138*** 

1β  0.794*** 0.797*** 0.883*** 

1γ  - 0.08 0.122 

δ  - 1.385*** 1.302*** 

Skew - - 0.925*** 

Shape - - 4.196*** 

Note: “***”, “**”, “*”, “.” indicate that the parameters are significant. 

 
smaller the prediction error, and the more accurate the prediction. The calcula-
tion formula was as follows: 
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where, 2
tσ  is the realized volatility, estimated using high frequency data, and 

2ˆtσ  is the predicted volatility at time t; N is the number of the performance 
evaluation data. 

4.4. Prediction Results 

Tables 4-6 provide the standardized residual test of the ARIMA (1, 1, 
1)-GARCH (1, 1) and APARCH (1, 1) models based on the ARIMA (1, 1, 1) 
model under the assumption of normal and partial t distributions, respectively. 
Table 7 shows the prediction effect of the 20 steps of the model. Figure 5 pro-
vides the standardized residual QQ diagrams of ARIMA (1, 1, 1)-GARCH (1, 1) 
and APARCH (1, 1) models based on the ARIMA (1, 1, 1) model in normal and 
partial t distributions, respectively.  

Four evaluation indicators were assessed, including parameter estimation sa-
liency, standardized residual test, evaluation criteria and standardized residual 
QQ map. 1) parameter estimation of the skewed-t APARCH (1, 1) model based 
on the ARIMA model was more significant. 2) Considering the standardized  
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) The standardized residual QQ plot of ARIMA (1, 1, 1)-GARCH (1, 1) mod-
el; (b) The standardized residual QQ diagrams of APARCH (1, 1) models based on the 
ARIMA (1, 1, 1) model in normal distributions; (c) the standardized residual QQ dia-
grams of APARCH (1, 1) models based on the ARIMA (1, 1, 1) model in partial t distri-
butions. 
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Table 4. Standardized residual test of the ARIMA (1, 1, 1)-GARCH (1, 1) model. 

 Statistic P-Value 

Ljung-Box Test R Q (10) 4.569693 0.9180108 

Ljung-Box Test R2 Q (10) 8.465982 0.5834181 

LM Arch Test R TR2 9.115951 0.6929961 

 
Table 5. Standardized residual test of the normal APARCH model based on the ARIMA 
model. 

 Statistic P-Value 

Ljung-Box Test R Q (10) 10.1409 0.4282198 

Ljung-Box Test R2 Q (10) 9.741699 0.4634398 

LM Arch Test R TR2 10.24594 0.5943943 

 
Table 6. Standardized residual test of the skewed-t APARCH model based on the ARIMA 
model. 

 Statistic P-Value 

Ljung-Box Test R Q (10) 10.46054 0.4010589 

Ljung-Box Test R2 Q (10) 16.42381 0.08812606 

LM Arch Test R TR2 17.94269 0.1174418 

 
Table 7. Analysis of the prediction effect of the model. 

 MAPE MSE MAE RMSE 

ARIMA-GARCH model 0.402 0.097 0.286 0.311 

ARIMA-normal APARCH 0.414 0.108 0.303 0.329 

ARIMA-skewed-t APARCH 0.399 0.1 0.284 0.317 

 
residuals test, all three models completely eliminated the ARCH effect and the 
correlation between sequences, so they could not be rejected. 3) The skewed-t 
APARCH (1, 1) model based on the ARIMA model was slightly higher in accu-
racy compared with the other two models. 4) The skewed-t distribution had a 
better fitting effect in the standardized residual map, indicating that the influ-
ence of introducing bias on model fitting was significant. Therefore, the 
skewed-t APARCH (1, 1) model based on the ARIMA model had a better pre-
diction ability. Therefore, the final prediction model was as follows: 

1 2 21.367 0.367 0.9511t t t t tx x x ε ε− − −= + + +                (9) 

( )1.3021.302 1.302
1 1 10.006 0.138 0.122 0.883t t t tσ ε ε σ− − −= + + +         (10) 

where, the skewness is 0.925 [9], the model coefficient is greater than 0 and sa-
tisfies 1 1γ− < < . Equations (9) and (10) are the mean and variance equations, 
respectively. 

Further, the residual, predicted confidence interval and 95% confidence in-
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terval of the partial-t APARCH (1, 1) model based on the ARIMA (1, 1, 1) 
model are depicted in Figure 6. The residual was almost completely within the 
confidence interval, indicating that model prediction was more accurate; the 
volatility of the model is presented in Figure 7. 

5. Discussion 

First, the Pro-GARCH model solves the singular information problem in data. 
Secondly, as shown in Figure 5, the skewed-t APARCH model based on the 
ARIMA model could better capture the peak thick tail, skewness and leverage 
effect in the sequence. Finally, Table 3 and Table 7 show that the model is supe-
rior to the ARIMA-GARCH and APARCH models based on the ARIMA model 
under the assumption of normal distribution in the significance of parameter es-
timation and accuracy of prediction, respectively. 
 

 
Figure 6. Residual, predictive confidence interval and 95% confidence interval plots. 

 

 
Figure 7. Model volatility. 
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6. Conclusions 

In this study, the Pro-GARCH model and the improved outlier detection me-
thod were used, and the iterative method was used to process outliers in the time 
series to obtain a new time series. The ARIMA-GARCH and normal APARCH 
models based on the ARIMA model, and the skewed-t APARCH model based on 
the ARIMA model were compared. Some concluding observations can be sum-
marized as follows: 

1) Using the Pro-GARCH model and the improved outlier detection method 
to process data and selecting absolute deviation of the median (MAD) as a ro-
bust estimation of the standard deviation of the model, the location of outliers 
could be found most accurately; 

2) Compared with the ARIMA-GARCH and normal APARCH models based 
on the ARIMA model, the skewed-t APARCH model based on the ARIMA 
model could better capture the spikes and thick tails, skewness and leverage ef-
fects, and the model had elevated prediction ability; 

3) No prediction method could stand out in any time series. Although the 
skewed-t APARCH model based on the ARIMA model showed good predictive 
power, it did not achieve the expected results, and there were certain losses; this 
model is not flexible and cannot be applied to multiple products simultaneously. 
This is a huge challenge for time series modelers and requires further research. 
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