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Abstract 
Detecting genotype-by-environment (GE) interaction effects or yield stability 
is one of the most important components for crop trial data analysis, espe-
cially in historical crop trial data. However, it is statistically challenging to 
discover the GE interaction effects because many published data were just 
entry means under each environment rather than repeated field plot data. In 
this study, we propose a new methodology, which can be used to impute rep-
licated trial data sets to reveal GE interactions from the original data. As a 
demonstration, we used a data set, which includes 28 potato genotypes and 
six environments with three replications to numerically evaluate the proper-
ties of this new imputation method. We compared the phenotypic means and 
predicted random effects from the imputed data with the results from the 
original data. The results from the imputed data were highly consistent with 
those from the original data set, indicating that imputed data from the me-
thod we proposed in this study can be used to reveal information including 
GE interaction effects harbored in the original data. Therefore, this study 
could pave a way to detect the GE interactions and other related information 
from historical crop trial reports when replications were not available. 
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1. Introduction 

Replication is often required for valid data processing and statistical tests [1]. In 
addition, it provides a great prospect to dissect potential interaction effects 
among factors of interest like genotype-by-environment (GE) interaction [2]. It 
is very common for most multi-environment crop trial data like multi-location 
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and multi-year trial data sets to be reported by various institutions and made 
available for public users. However, most of the published crop trial data only 
include entry means under each environment rather than the original repeated 
field plot data. Without replications, it would be statistically challenging to 
detect GE interaction effects, which are highly related to yield stability, from the 
crop trial reports. Therefore, it would be a great addition to develop a new me-
thod that could be effectively used to detect GE interactions when original repli-
cated field trial data are not available. 

Because the entire original data can be treated as missing data, in order to 
successfully recover the potential genetic information, we will need an imputa-
tion method to generate “alternative replicated field data” that can be used to 
recover the information from the original data. There are two major categories 
of imputations: single imputation (SI) and multiple imputation (MI). With SI, 
missing values are filled by some type of predicted values like mean imputation, 
regression imputation, and/or matching methods [3] [4] [5]. Although SI has 
been widely used, one shortcoming is that it does not reflect the full uncertainty 
created by missing data and almost always underestimates the variance. For ex-
ample, the regression imputation method is based on an estimated regression 
model to predict or impute the missing values. This could cause relationships to 
be over-identified and suggest greater precision in the imputed values than is 
warranted. In order to deal with the problem of increased noise due to data im-
putation, MI, which repeats multiple times resulting in multiple imputed data 
sets, is recommended, especially when data are missing at random (MAR) [4]. 
With MI, the imputation uncertainty is accounted for by creating these multiple 
data sets. The MI follows three basic steps: imputation, analysis, and pooling [6] 
[7]. With MI bias can be reduced and estimates are more precise. MI has several 
desirable features. The first feature is that introducing appropriate random error 
into the imputing process makes it possible to get approximately unbiased esti-
mates of all parameters. The second feature is that repeated imputation allows 
researchers to get better estimates of the standard errors. The third feature is that 
MI can be used with any kind of data and analyses. 

Unlike many other missing data being imputed, it is well-known that the en-
tire original field measurements were unavailable except only entry means under 
each environment. Therefore, an important step is to propose probability densi-
ty function for each entry/genotype based on the published results that can be 
used to impute entire “original data” so that the genetic information including 
GE interactions harbored in the original data can be detected, accordingly. In the 
present study, our objectives included 1) to propose a new procedure to generate 
a new data set with repeated measurements from given entry means and 2) to 
numerically validate the new method with a data set containing six locations, 28 
potato genotypes, and three replications in each of six locations [8]. The purpose 
of this study is to provide an alternative method and computer tool to improve 
data analysis and statistical tests and thus to reveal more information harbored 
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in the historical crop trial data when replications were not available. 

2. Materials and Methods 
2.1. Linear Model for GE Analysis 

The linear model used for an observation hijy , which represents the environ-
ment h, the genotype i, and the block j nested to the environment h, can be ex-
pressed as follows:  

( )hij h i hi hijj hy E G GE B eµ= + + + + +                 (1) 

In order to detect GE interaction effects, replication with each environment is 
required. Without replication, the GE interaction effects and random error are 
confounded and they cannot be separated and the GE interaction and block ef-
fects should be omitted from model (1).  

2.2. Model Used for Data Imputation 

The linear model for an observation under a single environment can be de-
scribed as model (2) without including environmental and GE interaction ef-
fects: 

ij i j ijy G B eµ= + + +                       (2) 

In model (2), iG  may include GE interaction effect where it may exist. If we 
assume block effects and random error follow two independent normal distribu-
tions, then ijy  follows the following normal distribution in (3) 

( )2 2,~ij i By N Gµ σ σ+ +                     (3) 

Given the above distribution in (3), if we know iGµ +  and 2 2
Bσ σ+ , we can 

generate ijy  under each single environment. Blocking is used for local control 
of field variation within each environment; however, block effects may not im-
pact the results of variance components for genotypic effects and random error 
and prediction of genotypic effects if model (2) is applied. Therefore, to simplify, 
we can assume there are no block effects and they can be omitted during the data 
imputation process. If so, Equation (3) can be simplified as in the following 
normal distribution in (4) when there are not block effects:  

( )2~ ,ij iy N Gµ σ+                       (4) 

Actual values for , iGµ , and 2σ  are unknown. If we can substitute iGµ +  
and 2σ  with estimates ˆˆ iGµ +  and 2σ̂ , then we can impute each ijy  accor-
dingly.  

( )2ˆˆˆ ˆ~ ,ij iy N Gµ σ+                        (5)  

where µ̂  is an estimated population mean; ˆ
iG  is an estimated/predicted ge-

notypic effect for genotype i and 2σ̂  is an estimated variance for random error. 
In many trial reports, individual genotypic means under each environment were 
available and thus can be used to substitute iGµ +  and mean square error 
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(MSE) can be used to substitute 2σ . MSE value for each environment can be 
derived from the coefficient of variation or least significant difference (LSD). 

2.3. Data Source 

The data set (plrv) used for our imputation analysis, as a demonstration, is cur-
rently available in the R package agricolae [8]. The data set contains six envi-
ronments, 28 potato genotypes, and three replications in each environment. 
There were three agronomic traits in the data while only yield was used for this 
study. The major reason for using this data set as a demonstration is that it is 
publicly available [8] and interested parties can generate repeatable results via 
the codes developed by the author of this study.  

2.4. Data Imputation and Analysis 

Data imputation: Phenotypic means for yield for 28 potato genotypes at each of 
six locations were calculated. The unit used for potato was not provided in the 
package. Interested readers may contact the package developer for more detailed 
information. With the data, MSE for each environment was calculated by the 
ANOVA method subject to model 2. Both phenotypic means and MSE under 
each environment were used to generate imputed data. Assuming that data were 
normally distributed, individual observations with no block effects for each en-
vironment were imputed following the normal distribution Equation (5) with 
the use of the norm R function [9]. The process is repeated for each of six envi-
ronments. The number of replications for data imputation was the same one 
used in each original experiment. All imputed data sets are combined as a mul-
ti-environment data set for the following analysis. In order to compare the im-
pact of replications, the imputed data were repeated for 10, 20, 50, 100, 200, and 
500 times, respectively. Both results from individual imputed data sets and 
pooled results are reported and compared. 

Data analysis: First, phenotypic means for different genotypes in each envi-
ronment were calculated for the original data set and each multi-environment 
data set. Second, linear mixed model (LMM) approaches such as restricted 
maximum likelihood (REML) and minimum norm quadratic unbiased estima-
tion (MINQUE) [10] [11] can be used to analyze each imputed data set subject 
to model (1) mentioned above. Variance components for genotypic effects and 
GE interaction effects were estimated by MINQUE approach [12]. Genotypic ef-
fects and GE interaction effects were predicted using the adjusted unbiased pre-
diction (AUP) method [13]. Mean and its confidence interval (CI) of 95% for 
each parameter were calculated. All data analyses were conducted under the R 
environment [9]. The MINQUE package [14] with minque approach for va-
riance component estimation and AUP approach [13] for random effect predic-
tion was used for our imputed data analysis. The R scripts for data imputation 
and other related data analyses were developed by the first author of this study 
and will be available upon request. 
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3. Results 
3.1. Original and Imputed Phenotypic Means for 28 Potato  

Genotypes 

The phenotypic means for 28 potato genotypes under six environments calcu-
lated from the original data set are provided in Table 1. Generally, wider ranges 
among six environments were observed compared to the ranges among geno-
types within each environment (Table 1), indicating that environmental effects 
played a more important role on yield than genotypes. Some genotypes were 
observed to be more adapted to specific environments. For example, Canchan 
was more adapted to Hyo02 (47.78) but Desiree was less adapted to the same en-
vironment (8.89). On the other hand, genotype Desiree was more adapted to the 
environment SR03 (11.42) than Canchan to the same environment (2.42), indi-
cating that genotype-by-environment (GE) interactions also played an impor-
tant role on potato yield. Therefore, it will be interesting to investigate GE inte-
raction effects in the yield trial analysis. 

Phenotypic means and their 95% confidence intervals (ranges of 2.5% and 
97.5% percentiles) for 28 entries under each environment over 50 imputed data 
sets are provided in Table 2. Comparing the results in Table 2 and Table 1, the 
imputed means and original means were close to each other with a maximum dif-
ference of 1.35 and a mean difference of 0.28. The correlation coefficient between 
the original phenotypic means and imputed phenotypic means was almost 1.0.  
 
Table 1. Individual phenotypic yield means for 28 genotypes in each of six environments+. 

Geno Ayac Hyo02 LM02 LM03 SR02 SR03 

102.18 24.925 28.8889 32.037 46.778 13.5185 11.7696 

104.22 21.451 53.5185 39.198 50.418 16.0494 7.0988 

121.31 23.460 41.2963 38.395 63.704 2.5000 11.2551 

141.28 31.844 60.4630 33.951 77.568 19.2346 15.4774 

157.26 19.670 41.3889 45.160 76.986 23.9506 14.5556 

163.9 17.538 29.5370 28.889 32.029 12.7160 7.7954 

221.19 15.414 32.0370 31.025 43.453 8.5432 7.4376 

233.11 24.283 50.5556 29.198 47.333 13.1481 7.4815 

235.6 29.914 73.5185 40.370 56.136 14.8025 17.0679 

241.2 20.444 36.0185 35.741 46.247 11.0864 8.5053 

255.7 26.067 47.0370 32.679 40.792 19.1852 17.7778 

314.12 17.325 49.4444 34.506 57.246 8.5309 1.9876 

317.6 26.614 53.4259 42.346 64.012 14.8148 10.7425 

319.20 25.775 56.6667 32.963 86.808 21.2099 9.1235 

320.16 30.329 31.1111 35.284 43.290 13.6296 4.4444 

342.15 19.897 40.7407 27.531 38.800 17.5926 11.5185 
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Continued 

346.2 21.575 32.6852 25.556 32.037 18.0247 13.1733 

351.26 31.749 50.1852 29.259 72.024 20.3704 13.1070 

364.21 26.639 52.4074 37.901 57.066 13.5185 16.8261 

402.7 19.297 42.5000 31.235 49.765 12.8395 9.2284 

405.2 28.667 35.7407 32.346 43.259 16.7901 17.1166 

406.12 19.587 59.8148 37.778 53.588 13.8272 11.5046 

427.7 26.089 55.6482 44.444 58.336 21.2346 11.3889 

450.3 28.724 50.1852 36.889 72.242 15.4321 13.7037 

506.2 25.000 46.7593 45.556 53.250 18.1482 10.8848 

Canchan 21.327 47.7778 21.605 59.247 9.6296 2.4211 

Desiree 18.765 8.8889 20.370 27.427 10.0617 11.4202 

Unica 21.301 72.2222 47.840 57.535 18.2469 17.4787 

+: The original data set is available in R package agricolae [8]; however, the unit for yield is not provided. 
 

Table 2. Phenotypic yield means for 28 genotypes (IMean) over 50 imputed data sets and 
their 95% confidence intervals (LL = low limit and UL = up limit) in each of six 
environments. 

 
Ayac 

  
Hyo02 

  
LM02 

  
Gen IMean LL UL IMean LL UL IMean LL UL 

102.18 24.47 18.85 30.09 29.09 22.93 34.39 32.47 26.52 38.24 

104.22 22.00 13.82 28.95 53.60 48.06 59.64 39.66 35.18 44.78 

121.31 23.04 15.72 29.98 41.49 34.66 47.19 38.29 31.18 43.35 

141.28 31.98 24.26 41.22 60.93 53.87 67.61 34.02 26.18 40.85 

157.26 20.32 12.31 26.91 41.53 35.09 46.82 44.98 39.70 50.44 

163.9 17.74 10.57 25.27 29.37 22.24 35.28 29.05 23.40 34.71 

221.19 15.90 8.75 21.69 32.22 26.82 37.47 31.91 27.30 37.91 

233.11 25.14 17.51 33.23 51.06 45.00 56.81 29.66 24.40 36.44 

235.6 31.23 22.88 39.75 73.73 66.93 80.15 40.38 33.63 45.94 

241.2 20.20 12.34 30.88 35.60 28.76 42.78 36.10 30.37 41.68 

255.7 26.40 20.50 33.72 47.54 40.20 53.09 32.90 26.52 38.41 

314.12 17.55 9.54 24.42 49.81 43.79 55.57 34.67 29.46 40.45 

317.6 26.58 20.56 33.66 53.58 47.98 59.87 42.37 36.92 47.28 

319.2 25.94 18.23 32.33 55.52 48.78 62.70 32.76 28.03 37.06 

320.16 30.53 22.94 39.13 30.61 25.44 36.50 35.04 29.11 41.20 

342.15 19.52 11.79 27.26 40.08 34.42 46.37 27.91 22.04 33.05 

346.2 21.92 15.25 27.30 32.87 26.81 40.79 25.49 18.85 32.24 

351.26 30.57 24.79 36.35 50.19 45.26 56.09 29.39 22.07 34.91 

364.21 27.33 23.19 32.62 52.30 44.99 59.36 38.65 33.07 42.85 

402.7 19.29 12.64 26.46 41.01 35.50 47.04 31.70 25.34 37.72 

405.2 29.18 22.79 36.11 36.38 28.64 43.13 31.99 28.15 35.67 
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406.12 20.07 13.05 27.29 60.16 53.04 67.08 37.66 33.42 42.35 

427.7 25.77 18.44 32.38 55.40 49.12 61.77 44.01 39.21 50.36 

450.3 28.57 21.51 35.58 50.04 43.23 56.10 37.25 32.36 42.00 

506.2 24.83 18.20 32.41 46.97 40.56 53.82 45.57 38.51 53.65 

Canchan 21.92 14.10 28.43 48.28 40.48 56.56 21.42 16.69 27.67 

Desiree 18.28 11.12 24.61 10.22 3.63 16.61 20.69 16.46 24.98 

Unica 21.43 14.14 28.93 72.18 65.41 80.30 47.67 42.32 53.71 

 
LM03 

  
SR02 

  
SR03 

  
Gen IMean LL UL IMean LL UL IMean LL UL 

102.18 47.00 36.53 56.60 13.84 10.63 17.12 11.86 8.48 15.00 

104.22 51.63 43.26 58.41 16.08 12.86 18.61 7.21 3.50 10.21 

121.31 63.46 55.31 72.45 2.97 1.02 5.71 10.47 7.35 13.70 

141.28 77.17 67.40 87.48 19.25 15.80 23.17 15.42 12.33 18.43 

157.26 77.20 67.65 87.22 23.93 20.45 26.93 14.63 11.99 18.13 

163.9 33.23 22.55 42.02 13.01 9.49 15.72 7.92 3.62 12.18 

221.19 44.46 36.72 52.94 9.10 5.26 13.42 7.42 4.58 9.49 

233.11 46.83 36.72 57.52 13.15 8.88 16.68 7.25 4.19 11.01 

235.6 56.24 46.53 66.10 14.68 11.63 18.18 16.92 14.49 19.66 

241.2 46.70 35.90 57.77 11.07 7.97 13.83 8.53 5.25 10.82 

255.7 42.26 31.27 49.10 19.17 15.93 22.41 17.75 14.71 21.26 

314.12 57.11 48.55 64.42 8.52 4.88 13.27 2.69 0.20 6.33 

317.6 64.23 52.97 74.57 14.57 11.08 19.13 10.39 7.30 13.96 

319.2 87.69 78.07 98.44 21.08 17.90 24.63 9.14 6.31 12.98 

320.16 42.85 33.27 51.79 13.26 8.34 18.07 4.10 1.30 7.63 

342.15 39.43 30.52 50.67 17.37 11.90 20.86 11.34 6.70 15.04 

346.2 32.28 23.58 42.92 17.11 12.80 21.64 13.65 11.01 17.30 

351.26 71.25 61.39 80.55 20.08 16.31 23.39 12.46 8.93 16.09 

364.21 58.47 47.06 68.19 13.59 10.47 17.63 16.79 13.37 20.02 

402.7 50.14 41.20 58.47 12.79 9.63 15.60 9.17 5.97 12.59 

405.2 43.55 33.55 50.95 16.92 12.46 20.49 16.96 13.70 20.88 

406.12 52.28 40.17 61.89 14.33 11.09 17.32 11.50 8.13 14.65 

427.7 58.52 47.51 69.08 20.55 17.21 23.67 11.66 8.38 15.19 

450.3 71.99 59.88 82.25 15.66 12.61 19.29 13.36 10.92 17.11 

506.2 52.75 43.12 62.13 18.13 14.74 21.69 11.00 7.97 14.08 

Canchan 59.32 50.79 70.21 9.33 5.33 14.15 2.69 0.05 5.54 

Desiree 28.01 16.57 37.87 10.13 6.16 13.94 10.99 7.44 14.41 

Unica 57.72 48.24 68.64 17.73 13.35 21.47 17.82 14.98 21.00 
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The results implied that the imputed phenotypic data represented the original 
data. In addition, the simulated 95% confidence intervals were highly related to 
the mean square error (MSE) for each of six environments. The largest confi-
dence intervals were observed in environment LM-03 with the largest MSE of 
87.08 and while the smallest confidence in SR-03 due to the small MSE in this 
environment (Table 2).  

3.2. Imputed Entry Means for 28 Potato Genotypes 

Correlation coefficients between phenotypic means from the original data and 
five sets of imputed means were obtained and are presented in Figure 1. The 
correlation coefficients between original phenotypic means and five sets of im-
puted phenotypic means were around 0.98 while coefficients among five sets of 
imputed phenotypic means were around 0.96. The results showed that pheno-
typic means obtained from each individual imputed data set were also highly 
consistent, implying that the imputed phenotypic means well represented the 
original phenotypic mean data. 

3.3. Pooled Results 

Due to some degree of uncertainty of imputed data, multiple imputed data sets 
were applied to reduce the bias potentially caused by single imputed data. The 
question is how many imputed data would be sufficient to adjust the bias. As 
mentioned in this study, we generated 10, 20, 50, 100, 200, and 500 imputed 
data sets, which were used to obtain the pooled phenotypic means for 28 ge-
notypes under six environments, mean variance components for environment 
effects, genotypic effects, GE interaction effects, and random errors, and mean 
predicted environment effects, genotypic effects, and GE interaction effects. 
However, due to large amount of results, only summarized results were pro-
vided. 
 

 
Figure 1. Correlations among individual phenotypic means from the original data set and 
five imputed data sets. OM = individual means from the original data set. I1 to I5 = indi-
vidual means from the 1st five imputed data sets. 
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Figure 2 showed that phenotypic means from the original data set were highly 
correlated and consistent with pooled phenotypic means from multiple imputed 
data sets (correlation coefficients were almost close to 1). Figure 3 showed that 
predicted environmental effects from the original data were highly consistent 
with the pooled predicted environmental effects from different imputed data sets 
(correlation coefficients among these predicted environmental effects were close 
to 1). The same conclusions can be made for predicted genotypic effects (Figure 
4) and predicted GE interaction effects (Figure 5). These results suggested that 
10 repeated imputed data sets were sufficient to obtain unbiased phenotypic 
means and predicted environmental effects, genotypic effects, and GE interac-
tion effects. 

 

 

Figure 2. Correlations among individual phenotypic means from the original data set and 
individual phenotypic means from different multi-imputed data sets. OM = individual 
means from the original data set. IM10, IM20, IM50, IM100, IM200, and IM500 = pooled 
phenotypic means from 10, 20, 50, 100, 200, and 500 imputed data sets. 

 

 

Figure 3. Correlations among predicted environmental effects from the original data set 
and mean environmental effects from different multi-imputed data sets. OE = environ-
mental effects from the original data set. IE10, IE20, IE50, IE100, IE200, and IE500 = 
pooled environmental effects from 10, 20, 50, 100, 200, and 500 imputed data sets, respec-
tively. 
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Figure 4. Correlations among predicted genotypic effects from the original data set and 
mean genotypic effects from different multi-imputed data sets. OG = genotypic effects 
from the original data set. IG10, IG20, IG50, IG100, IG200, and IG500 = pooled genotyp-
ic effects from 10, 20, 50, 100, 200, and 500 imputed data sets. 

 

 

Figure 5. Correlations among predicted GE interaction effects from the original data set 
and mean GE interaction effects from different multi-imputed data sets. OG = GE inte-
raction effects from the original data set. IG10, IG20, IG50, IG100, IG200, and IG500 = 
mean GE interaction effects from 10, 20, 50, 100, 200, and 500 imputed data sets. 

 
In summary, the results from imputed data were highly consistent with those 

results from the original data set, which includes replication. The results used for 
our comparisons included phenotypic means, environmental effects, genotypic 
effects, and GE interaction effects. In addition, it appears that pooled results 
from 10 repeated imputed data sets were almost identical to the results from the 
original data set with replications. 

4. Discussion 

Crop trial data can provide important information to researchers. Revisiting the 
historical data and discovering more information will help researchers reveal 
more genetic information in different respects. As mentioned above, however, 
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many published trial data are summarized and the capability of using summa-
rized data rather than the original repeated field plot data can be limited due to 
the lack of repeated field data. Therefore, it is crucial to generate new data sets 
that can be used to reveal genetic information comparable to the results from the 
original data with replications. This was our motivation to propose a new me-
thodology in this study.  

The key component in data imputation is to determine appropriate probabili-
ty models, which can be used to generate simulated data to substitute multiple 
missing data points. Therefore, data imputation in this study can be considered 
as a simulation technique given particular probability models. Though the orig-
inal field data from multi-environment crop trials were not available, the results 
such as entry means, numbers of replications, and mean square error provide 
information to determine a probability density function for each genotype/entry 
under each environment. With such a probability model for each genotype/entry, 
the entire data with replications can be imputed. Once data are imputed, various 
statistical data analyses for the imputed data can be followed like a linear-mixed 
model analysis in this study. 

Due to the uncertainty of single imputed data set, multiple imputed data sets 
have been applied in this study to reduce the potential bias for each parameter. 
The question is how many independent imputed data sets are sufficient to 
represent the results from the original data set. Based on a demonstration data 
set, which is available in the R package agricolae, the correlation coefficient was 
around 0.98 between the phenotypic means from each of five individual imputed 
data sets and the phenotypic means from the original data while correlation 
coefficients was around 0.96 for the phenotypic means among five individual 
imputed data sets (Figure 1), showing that each imputed data set could be used 
to substitute the original data with replications. Our results also showed that 10 
imputed data sets could sufficiently adjust the bias for this demonstration data 
set. However, it is likely that more imputed data sets would be required for a 
large MSE. It is possible sometimes that MSE values are not available on trial 
reports, one possible solution is that using a wide range of MSE values to impute 
multiple data sets. Such finding is important when individual MSEs in different 
environments are not available.  

Though the method proposed in this study could help determine GE interac-
tion from imputed data sets and increase the likelihood for statistical test and 
result validation, the imputation methods are based on the assumption of nor-
mal distribution for the original data, on which ANOVA analysis and mean 
comparisons are based. Many original field trial data included repeated field 
block; however, this information is often unavailable in the report. Our study 
showed that results from the imputed data without block effects were highly 
consistent with the results from the original data including blocks. Therefore, for 
simplicity, block effects could be omitted during the process of imputing trial 
data. In addition, data were imputed based on the MSE under each environment; 
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however, it appears that imputed data based on individual MSE under each en-
vironment and MSE over environments yielded almost identical results, sug-
gesting either individual MSE or pooled MSE over environments could be used 
to impute trial data.  

Statistical tests for each parameter of interest could follow several approaches. 
The first possible approach is jackknife based technique [15]. The second possi-
ble approach is to use a confidence interval test. With a large number of imputed 
data sets, we could construct a confidence interval (CI) for 95% or 99% and a CI 
statistical test can be employed. With the second one, a large number of imputed 
data sets will be required to provide more reliable CI tests for parameters of in-
terest. Thus, the second approach could be computationally intensive if the 
original data set was large. However, with high-power servers and/or parallel al-
gorithms, the time used to generate and analyze a large number of imputed data 
sets could be trivial. 
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