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Abstract 
The question of how many shuffles are required to randomize an initially or-
dered deck of cards is a problem that has fascinated mathematicians, scien-
tists, and the general public. The two principal theoretical approaches to the 
problem, which differed in how each defined randomness, has led to statisti-
cally different threshold numbers of shuffles. This paper reports a compre-
hensive experimental analysis of the card randomization problem for the 
purposes of determining 1) which of the two theoretical approaches made the 
more accurate prediction, 2) whether different statistical tests yield different 
threshold numbers of randomizing shuffles, and 3) whether manual or me-
chanical shuffling randomizes a deck more effectively for a given number of 
shuffles. Permutations of 52-card decks, each subjected to sets of 19 succes-
sive riffle shuffles executed manually and by an auto-shuffling device were 
recorded sequentially and analyzed in respect to 1) the theory of runs, 2) rank 
ordering, 3) serial correlation, 4) theory of rising sequences, and 5) entropy 
and information theory. Among the outcomes, it was found that: 1) different 
statistical tests were sensitive to different patterns indicative of residual order; 
2) as a consequence, the threshold number of randomizing shuffles could 
vary widely among tests; 3) in general, manual shuffling randomized a deck 
better than mechanical shuffling for a given number of shuffles; and 4) the mean 
number of rising sequences as a function of number of manual shuffles matched 
very closely the theoretical predictions based on the Gilbert-Shannon-Reed 
(GSR) model of riffle shuffles, whereas mechanical shuffling resulted in sig-
nificantly fewer rising sequences than predicted. 
 

Keywords 
Randomization of Cards, Number of Riffle Shuffles, Rising Sequences,  
GSR Model, Entropy and Information 

How to cite this paper: Silverman, M.P. 
(2019) Progressive Randomization of a 
Deck of Playing Cards: Experimental Tests 
and Statistical Analysis of the Riffle Shuffle. 
Open Journal of Statistics, 9, 268-298. 
https://doi.org/10.4236/ojs.2019.92020  
 
Received: March 22, 2019 
Accepted: April 25, 2019 
Published: April 28, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2019.92020
http://www.scirp.org
https://doi.org/10.4236/ojs.2019.92020
http://creativecommons.org/licenses/by/4.0/


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2019.92020 269 Open Journal of Statistics 
 

1. Introduction: The Card Randomization Problem 

Proposed solutions to the problem of determining the number of shuffles re-
quired to randomize a deck of cards have drawn upon concepts from probability 
theory, statistics, combinatorial analysis, group theory, and communication 
theory [1] [2]. The methods employed transcend pure mathematics, and have 
implications for statistical physics (e.g. random walk; diffusion theory; theory of 
phase transitions) [3] [4], quantum physics [5], computer science [6] [7], and 
other fields in which randomly generated data sequences are investigated. Not 
only mathematicians and scientists, but the general public as well have shown 
much interest in the card randomization problem, as reported in popular science 
periodicals and major news media [8] [9] [10] [11]. This paper reports what the 
author believes to be the most thorough experimental examination to date of the 
randomization of shuffled cards, using statistical tests previously employed in 
nuclear physics to search for violations of physical laws by testing different ra-
dioactive decay processes for non-randomness [12] [13] [14] [15]. 

1.1. Background 

Probability as a coherent mathematical theory is said to have been “born in the 
gaming rooms of the seventeenth century” in attempts to solve one or another 
betting problem [16]. Among the most ancient forms of gambling are card 
games, which developed initially in Asia but became popular in Europe after the 
invention of printing [17]. Depending on what one considers a distinct game, 
experts in the subject estimate the number of card games to be between 1000 and 
10,000 [18] [19]. Most card games are conducted under the assumption that the 
deck in play has been initially randomized. From a practical standpoint, a deck is 
considered random if players are unable to predict any sequence of cards fol-
lowing a revealed card. (Mathematically, there is on average 1 chance in n of 
guessing correctly the value of any unrevealed card in a deck of n randomly dis-
tributed cards). 

The standard way to mix a deck of cards randomly is to shuffle it, for which 
purpose the riffle shuffle is perhaps the most widely studied form. To execute a 
riffle shuffle, one separates (“cuts”) the deck into two piles, then interleaves the 
cards by dropping them alternately from each pile to reform a single deck. The 
process can be performed either by hand or mechanically by an auto shuffler, 
like the device shown in Figure 1 used to acquire some of the data reported in 
this paper. Clearly, a single riffle shuffle cannot randomize an ordered deck be-
cause the order of cards from each pile is maintained. Indeed, in a perfect riffle 
shuffle of an even-numbered deck, whereby the deck is cut exactly in half and 1 
card is dropped alternately from each pile, there would be no randomization at all. 
Instead, the sequences of cards resulting from a series of perfect riffle shuffles cycle 
through a fixed number of permutations leading back to the original card order. 
For example, a pack of 52 cards recycles after only 8 perfect “out-shuffles” (i.e. 
where the top card remains on top) [20]. However, under ordinary circumstances  

https://doi.org/10.4236/ojs.2019.92020


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2019.92020 270 Open Journal of Statistics 
 

 
Figure 1. Motor-driven mechanical card shuffler used to generate auto-shuffled card se-
quences. Two piles of cards placed as shown are displaced from below by rotating wheels 
so as to drop sequentially into the central chamber. 
 
where shuffles are not perfect, the order of the cards from each pile is degraded 
with each successive riffle shuffle. 

The central question comprising the card randomization problem is this: How 
many riffle shuffles are required to randomize a deck of cards? More accurately 
stated: After how many shuffles can one detect no evidence of non-randomness? 
Various researchers have studied this question theoretically and arrived at statis-
tically different answers, depending on the adopted measure of randomness. In 
the analysis of Bayer and Diaconis [1], the measure of randomness of the deck is 
the so-called variation distance (VD) [4] [21] between the probability density 

,n mQ  of n cards shuffled m times and the uniform density 1 !nU n=  of the 
permutation group nS  of n distinct objects. In the limit of large n, the VD 
analysis predicted that  

( ) ( )VD 2
3 log
2

m n n≈                         (1) 

shuffles should adequately randomize a deck of n cards. Thus ( )VD 52m  is 
about 8 - 9. According to [1], VD quantifies the mean rate at which a gambler 
could expect to win against a fair house by exploiting any residual pattern of the 
cards. The researchers also showed that the VD between ,n mQ  and nU  takes 
the form  

2
1 4 3

2
,

21 e d 0.115
2π

t

n m nQ U t
−−

−∞
− = − ≈∫              (2) 

for large n with m given by Equation (1). For complete randomness, the VD 
would equal 0.  

In a numerical analysis by Trefethen and Trefethen [2], the adopted measure 
of randomness was based on the Shannon entropy of the deck in the sense of in-
formation theory [22] [23]. If jp  ( )1, , !j n= 

 is the probability of the jth 
permutation of nS , then the Shannon entropy of the deck is given by 

!

2
1

log
n

j j
j

H p p
=

= −∑                         (3) 
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where, by completeness,  
!

1
1

n

j
j

p
=

=∑ ,                            (4) 

and the information associated with the set of probabilities { }jp  was defined as 

( )2log !nI n H= − .                        (5) 

According to [2] nI  in Equation (5) quantifies the rate at which an ideally 
competent coder could expect to transmit information if the signals were en-
coded in shuffled decks of cards. In the limit of large n, the information theoretic 
(IT) calculation predicted that  

( ) ( )IT 2logm n n≈                         (6) 

shuffles should adequately randomize a deck of n cards. Thus ( )IT 52m  is about 
5 - 6, in contrast to ( )VD 52m . The numerically obtained results of [2] were sub-
sequently proved theoretically by another research group [24].  

The structure of relation (5) provides a mathematical definition of the word 
“information” consistent with its general vernacular use. If there is no uncer-
tainty in the communication of any n-symbol message based on card sequence, 
then 1jp =  for each permutation j. In that case 0H =  and the information 

2log !nI n=  is maximum. If, however, every message received is completely 
uncertain as to card order, then 1 !jp n=  for each permutation j, and therefore, 
by use of Equation (4), the information 0nI = . Alternatively [25], physicists 
and other scientists usually associate the concept of information with entropy H, 
Equation (3). The rationale is that the greater the uncertainty (i.e. H) of a mes-
sage or physical system, the more information one gains by a binary decision (or 
measurement) that reduces the uncertainty. In a system with perfect order, H = 
0; the outcome of any measurement or decision is completely predictable, and 
therefore no new information is to be gained. Both definitions of information 
prove useful later in the paper (Section 3.4).  

Although the two analyses [1] and [2] led to statistically different distributions 
of randomness as a function of shuffle number, they both started from the same 
mathematical model of shuffling, referred to as the GSR shuffle, named for Gil-
bert and Shannon [26] and, independently, for Reeds [27]. The GSR shuffle in-
volves the following steps. The deck is cut roughly in half according to a binomi-
al distribution in which the probability that a pile contains k out of n cards is 
2 n n

kC−  where  

( )
!

! !
n
k

nC
k n k

≡
−

                        (7) 

is the binomial combinatorial coefficient. The two halves are then riffled togeth-
er such that the probability of a card being dropped from a pile is proportional 
to the number of cards in the pile. 

1.2. Outline of Paper 

The research literature on the randomization of cards by shuffling is vast. An 
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extensive list of references that survey the development of the problem, of which 
virtually all papers are theoretical analyses or numerical modeling by computer 
simulation, can be found in [28]. To the best of the author’s knowledge, there 
has been no comprehensive, systematic experimental examination of the card 
ordering and patterns produced by manual shuffling to test whether the results 
conform to the GSR model or support the published theoretical predictions.  

This paper reports on an extensive set of tests by which was measured the 
progression toward randomness of card sequences produced in multiple riffle 
shuffles manually and, for comparison, by a mechanical auto shuffler.  

The basic theory and experimental outcomes of the following measures of 
randomness are discussed in Section 2: 1) runs with respect to the mean, 2) runs 
up/down, 3) rank ordering, 4) serial correlation (lag 1), and 5) theory of rising 
sequences.  

Analysis of the data by information theory is discussed in Section 3. 
Conclusions are presented in Section 4. 

2. Experiment and Statistical Tests 

Experiments were undertaken to examine the permutations of card order in a 
deck of n = 52 cards as a function of shuffle number m for 0,1, ,m M=   im-
plemented N times. For the experiments reported here, the number of shuffles 
per set is M = 19 and the number of sets is N = 12. In addition to manual 
shuffles, the experiments were also carried out with the mechanical auto 
shuffler of Figure 1. The cards used in manual shuffling were not new, but 
had already been flexed many times previously in play and were therefore more 
pliant than stiff new cards. This requirement was irrelevant for auto shuffling, 
since the cards were flat, not flexed, when distributed by the machine into two 
piles. A sample of the data obtained from one set of M shuffles is shown in Table 
1.  

The experiment began with an ordered deck (column m = 0, highlighted in 
red), with card values increasing from 1 (top card) to 52 (bottom card). Permu-
tations of card order for each shuffle 1,2, ,m M=   are recorded sequentially 
in columns from left to right. A cursory examination of the table immediately 
reveals patterns of ascending sequences (highlighted in yellow) and descending 
sequences (highlighted in green) that extend across all the columns. Each of the 
N sets of card shuffles was subject to a variety of statistical tests to quantify the 
non-randomness of the permuted orderings indicated by these and other pat-
terns. 

2.1. Theory of Runs 

A run is defined as a succession of similar events preceded and succeeded by a 
different event. For example, the sequence of 12 symbols 

           b b a a a b b b a b a b  

contains:  
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Table 1. Card sequences after 19 riffle shuffles of an initially ordered deck. 

 
 

2 runs of  of length 1
2 runs of  of length 1
1 run of  of length 2
1 run of  of length 3
1 run of  of length 3

a
b

b
a
b

                       (8) 

or a total of 7 runs. If a sequence is random, then all permutations of symbol or-
der should have the same probability of occurrence. From this invariance prin-
ciple, as applied to a sequence containing an  symbols of type a, bn  symbols of 
type b, and a bn n n= +  symbols in all, it can be deduced that [29]: 
• the mean number of runs of a  of length precisely k (where 1k ≥ ) is 

( )( )
( )

! 1 1 !
! !

a b b
ka

a

n n n n k
r

n k n
+ − −

=
−

                    (9) 

https://doi.org/10.4236/ojs.2019.92020


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2019.92020 274 Open Journal of Statistics 
 

• the mean number of runs of a  of length k or greater (i.e. inclusive runs) is 

( )( )
( )

! 1 !
! !

a b
ka

a

n n n k
R

n k n
+ −

=
−

                     (10) 

• the mean number of total runs of both kinds is 

1 1
2 a b

a b
n n n

R R R
n

+
= + = .                    (11) 

Expressions for kbr , kbR  follow, mutatis mutandis, from Equation (9) and Eq-
uation (10). Proofs of these expressions are given in [30] [31]. 

Two methods were employed in this paper to generate runs of binary symbols 
from the experimentally recorded sequences of digital card values.  

2.1.1. Target Runs 
The card value ix  ( )1, ,i n= 

 at location i in the sequence resulting from a 
particular shuffle is compared with a target value X, here taken to be the mean 

1

1 26.5
n

i
i

X x
n =

= →∑                       (12) 

which reduces as shown for the case 52n =  with set of card values 

{ }1,2, ,52x = 
. If ix X< , the symbol 0 is assigned to location i; if ix X> , the 

symbol 1 is assigned to location i. Because the set { }ix  is comprised of integers, 
the event ix X=  cannot occur. Moreover, the set is equally partitioned:  

1 0
1
2

n n n= = , 

and the mean number of total runs, Equation (11), reduces to  

mean
2 27

2
nR +

= →                       (13)  

where the numerical value again applies to the case of 52n = .  
The associated variance (with corresponding standard deviation) is given by 

[29] 

2
mean

mean

1 11
4 1 4
3.57

n n
n

σ

σ

− ≈ − ≈ − 
→

                   (14) 

with numerical evaluation for 52n = . It can also be shown that the test statistic 

( )mean
mean

mean

0,1
R R

z N
σ
−

= →                    (15) 

for the observed total number of runs is approximately Gaussian for sufficiently 
large n. The symbol ( )0,1N  designates the standard normal distribution of 
mean 0 and variance 1. 

As an example, consider the 10-card decimal sequence generated by a uniform 
random number generator (RNG) over the integer range (1 ... 52): 

{ }29  47  45  32  6  34  44  36  38  5x =              (16) 
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The resulting binary series with target taken to be the mean (12) is then 

{ }mean 1  1  1  1  0  1  1  1  1  0y =                  (17) 

which comprises the following set of target runs 

2 runs of 0 of length 1
2 runs of 1 of length 4

                      (18) 

for a total of 4 runs with respect to the mean. 
For a long equipartitioned sequence ( 1 0 1n n=  ), the contribution of runs at 

the start or end of a sequence becomes negligible compared with the number of 
runs within the sequence, and Equation (9) and Equation (10) may be approx-
imated as follows [32] 

22ka k

nr +≈                            (19) 

12ka k

nR +≈ .                          (20) 

Equation (19) and Equation (20) are illustrative of the general exact relation  

( )1ka ka k ar R R += −                         (21) 

that follows from the definitions of kar  and kaR .  

2.1.2. Runs Up/Down (or Difference Runs) 
An alternative method of generating sequences of binary symbols that provides 
an independent test for non-random symbol patterns is to calculate sequential 
differences of the card values as follows 

( )1 1, , 1j j jy x x j n+= − = −
                (22) 

and assign 1 to a positive difference ( )0jy >  and 0 to a negative difference 

( )0jy < . Since there is no repeating integer in the set { }ix , the value 0jy =  
cannot occur. Thus, a sequence of 52 card values is transformed into a sequence 
of 51 binary difference values.  

For example, consider again the 10-card decimal sequence (16): 

{ }29  47  45  32  6  34  44  36  38  5x = .          (23) 

The resulting binary difference series is then 

{ }diff 1  0  0  0  1  1  0  1  0y =                 (24) 

which comprises the following set of up/down runs 

2 runs of 1 of length 1
2 runs of 0 of length 1
1 run of 1 of length 2
1 run of 0 of length 3

                   (25) 

for a total of 6 up/down runs. 
Comparison of binary sequences (24), (17) and corresponding runs tabula-

tions (25), (18) illustrates how the same decimal sequence (16) can lead to com-
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pletely different outcomes of up/down and target runs tests. Thus, the two kinds 
of runs procedures independently test the same decimal sequence for different 
symbol patterns.  

A major difference between the target runs and the up/down runs is that va-
riates in the former (e.g. series (17)) are realizations of Bernoulli random va-
riables (i.e. the probability of occurrence is the same irrespective of location 
within the series), whereas the variates in the latter (e.g. series (24)) are not. For 
up/down runs, the greater the length of a run, the less probable is the occurrence 
of yet another symbol of the same kind. The expectation values of up/down runs, 
therefore, differ from those of target runs. Instead, the expressions correspond-
ing to (9)-(11) are [29]: 
• the mean number of up and down runs of length precisely k (where 2k n≤ − ) 

is 

( ) ( ) ( )2 3 22 3 1 3 4
3 !kr n k k k k k

k
 = + + − + − − +

        (26) 

• the mean number of up and down runs of length k or greater (where 1k n≤ − ) 
is 

( ) ( ) ( )22 1 1
2 !kR n k k k

k
 = + − + − +

             (27) 

• the mean total number of up and down runs is 

( )u/d
1 2 1 34.33
3

R n= − →                    (28) 

with associated variance and standard deviation 

( )2
u/d

u/d

1 16 29
90
2.99

nσ

σ

= −

→
                     (29) 

Evaluations in Equation (28) and Equation (29) pertain to 52n = . The statistic 

( )u/d
u/d

u/d

0,1
R R

z N
σ
−

= →                    (30) 

is again approximately normally distributed. 

2.1.3. Runs Tests of Shuffled Cards 
The total numbers of target runs and up/down runs were calculated as a func-
tion of shuffle number for each of the N sets of M shuffles, such as exemplified 
by Table 1. Note that the ascending sequences (yellow) and descending se-
quences (green) respectively correspond to examples of up and down runs. The 
mean of the N values for each shuffle number was then calculated and converted 
to standard normal forms expressed by (15) and (30). Figure 2 shows plots of 

meanz  in frame A and u/dz  in frame B as a function of shuffle number. 
Examination of the figure shows that, when gauged by runs, the deck of cards 
becomes randomized after a threshold of about 7 - 8 shuffles, where, by the defini-
tion adopted here, the point of randomization occurs when the standard normal  
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Figure 2. Runs statistics as a function of number of shuffles obtained by hand (blue curve) 
and machine (red curve) for (A) runs relative to the mean and (B) runs up/down. Values 
within about ±1 standard deviation of the expected value 0 can be taken to indicate a 
randomly ordered deck. 
 
statistic 1z ≤ . Also, for shuffle numbers below threshold, decks shuffled by 
hand (blue curves) manifested greater disorder than decks mixed by the auto 
shuffler (red curves). 

2.2. Rank Correlation (or Rank Order) 

The Spearman rank correlation coefficient Sr  is a nonparametric measure of 
the association between two random variables X and Y as defined by their rank 
order in a sequence of n pairs [33]  

( )

2

1
S 2

6
1

1

n

i
i

D
r

n n
== −
−

∑
                       (31) 

in which 

( ) ( )i i iD r x r y= −                        (32) 

is the difference between the ranks assigned to samples ix  and iy  (When a 
distinction is necessary, lower case letters (e.g. x) represent realizations of the 
abstract random variable which is usually expressed by an upper case letter (e.g. 
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X)). 
Values of Sr  range from −1 to +1, respectively signifying perfect an-

ti-correlation (i.e. reverse rankings) and perfect correlation. It is 2
Sr , however, 

rather than Sr , that has a statistical interpretation; 2
Sr  is a measure of the va-

riability of the data attributable to the correlation between variables X and Y [34]. 
Thus a relatively high correlation coefficient such as S 0.7r = , means that only 
49% of the variability is accounted for by the association between X and Y.  

For independent variables (and therefore uncorrelated ranks), the expectation 
value and variance are respectively 

S 0r =                              (33) 

S

2 1
1r n

σ =
−

,                           (34) 

and the test statistic 

( )
S

S S
rank S 1 0,1

r

r r
z r n N

σ
−

= = − →                  (35) 

follows a standard normal distribution to good approximation [35].   
Applied to the shuffling of cards, the variable Y signifies the initial card se-

quence { } { }0
1, 2, ,52i m

y
=
=   and variable X signifies the card sequence 

{ } { }1, ,i nm
x x x=   of the mth shuffle. Since the face values of the cards range 

from 1 to 52, the rank of a card is equal to its face value. Therefore an equivalent, 
but simpler, way to perform the rank correlation test is to calculate the cross 
correlation of ranks 

( ) ( ) ( )rank
1 1

n n

j j j
j j

C r x r y jr x
= =

≡ =∑ ∑                   (36) 

where the second equality in (36) pertains specifically to the sequence of cards in 
a deck of n cards. The expectation value and variance of rankC  are respectively 

( )2
rank

1 1 36517
4

C n n= + →                     (37) 

( ) ( )22 2
rank

rank

1 1 1
444
1640.15

n n nσ

σ

= − +

→
                     (38) 

with numerical evaluations for 52n = . The test statistic  

rank rank
rank

rank

C C
z

σ
−

=                          (39) 

can be shown to be identical to that of Equation (35) [33]. 
Figure 3 shows a plot of rankz , i.e. Equation (35) or (39) averaged over the 

N sets of data for each shuffle number m for both manual (blue) and auto (red) 
shuffled cards. The correlation between the card sequence of the mth shuffle and 
the initial card sequence (m = 0) is interpreted as statistically 0 (i.e. for rank 1z ≤ ) 
starting at about m = 6 or 7.  
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Figure 3. Rank ordering statistics as a function of shuffle number for manually (blue) and 
auto (red) shuffled cards. Values within about ±1 standard deviation of the expected val-
ue 0 can be taken to indicate a randomly ordered deck. 

2.3. Serial Correlation Lag-1 

Serial correlation refers to the relationship between elements of the same series 
separated by a fixed interval. Given a sequence of elements { }jx  for 

1,2, ,j n= 
, the serial correlation coefficient lag-k is defined by [36] 

2

1 1
2

2

1 1

1

1

n n

j j k j
j j

k
n n

j j
j j

x x x
n

x x
n

ρ
+

= =

= =

 
−  

 =
 

−  
 

∑ ∑

∑ ∑
                   (40) 

where j kx +  is to be replaced by j k nx + −  for all values of j such that j k n+ > .  
For the purpose of testing correlations in card order following shuffling, the 

most useful serial coefficient is 1ρ , which measures the correlations between 
pairs of consecutive cards. It can be shown, however, that a test based upon the 
simpler statistic [37] 

1 1
1

n

j j
j

c x x +
=

= ∑                          (41) 

is equivalent to a test based on 1ρ . The mean and variance of 1c  are given by 
the following expressions [36] [37] 

2
1 2

1 1
S Sc

n
−

=
−

                        (42) 

( )( )1

4 2 22
2 1 1 2 1 3 2 42 4 4 4 2

1 1 2c
S S S S S S SS S

n n n
σ

− + + −−
= +

− − −
          (43) 

where 

1

n
k

k j
j

S x
=

= ∑ .                         (44) 
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For large n, the statistic 

1

1 1
serial

c

c c
z

σ
−

=                         (45) 

follows a standard normal distribution to good approximation. 
Figure 4 shows a plot of serialz , i.e. Equation (45) averaged over the N sets 

of data for each shuffle number m for both manually (blue) and auto (red) shuf-
fled cards. The correlation between the card sequence of the mth shuffle and the 
initial card sequence (m = 0) is interpreted as statistically 0 (i.e. for serial 1z ≤ ) 
starting at about m = 8 (manual) and m = 16 (auto).  

2.4. Rising Sequences 

A rising sequence, as defined in [1], is a maximal consecutively increasing subset 
of an arrangement of cards. For example, consider a hand of 8 cards with the 
sequence of face values: 1 6 2 3 7 8 4 5. By displaying the cards in the following 
way 

{ }
6 7 8

1 2 3 4 5
ix  
=  
 

               (46) 

one sees that the hand consists of two rising sequences (1,2,3,4,5) and (6,7,8) in-
terleaved together. Successive riffle shuffles tend to double the number of rising  

sequences up to a maximum number of ( )1 1
2

n +  in the limit of an infinite  

number of shuffles. Note that a rising sequence is different from an ascending 
sequence (i.e. a run up): 1) The elements of a run up merely ascend, but do not 
have to increment successively; 2) The elements of a rising sequence do not have 
to be contiguous (as in a run), but can be separated by other elements. 

It is shown in [1] that the probability of a particular permutation following a  
 

 
Figure 4. Serial correlation lag-1 as a function of shuffle number for manually (blue) and 
auto (red) shuffled cards. Values within about ±1 standard deviation of the expected val-
ue 0 can be taken to indicate a randomly ordered deck. 
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riffle shuffle depends only on the deck size n and the number r of rising se-
quences in the permutation. Specifically, the probability that the mth riffle shuffle 
of an ordered deck has r rising sequences is  

( ) 2
,

1
2

n r
n m nmnQ r C + −= .                      (47) 

The mean number of rising sequences in the permutation following m shuffles 
is then given by 

( ) ( ), ,
1

n

n m n n m
r

r rE r Q r
=

= ∑                    (48) 

where the Eulerian number [38] 

( ) ( )
1

1

1
1

r r j n n
n r j

n
E r j C

+
− +

−
=

= −∑                    (49) 

is the number of permutations containing r rising sequences. Substitution of 
Equation (49) into Equation (48) leads to the simpler expression [39] 

2 1

,
1

12
2

m
m n

n m mn
r

nr r
−

=

+
= − ∑ .                    (50) 

The sum of powers of an uninterrupted sequence of positive integers, such as 
contained in expression (50), is given by Faulhaber’s formula [40] 

( )
1

1

1 2

1 !
1 2 ! 1 !

nR n
n n n kk

r k

BR nr R R
n k n k

+
− +

= =

= + +
+ − +∑ ∑           (51) 

in which Bk is a Bernoulli number, defined by the generating function [41] 

( )( )
0

coth 2
2 !

1
e 1

k
k

t
k

B tt t t
k

∞

=

−= =
− ∑                (52) 

and given explicitly by  

( ) ( ) ( )

0 1

/2

11
2

0 3,5,7,

1 2π 2 ! 2,4,6,k k k

B B

k
B

k k kζ−

= = −

== 
− − =





         (53) 

where the Riemann zeta function is defined by (Ref. [41], pp. 329-330) 

( )
1

p

k
p kζ

∞
−

=

= ∑ .                       (54) 

In the limit R →∞ , the sum in the right side of Equation (51) becomes neg-
ligible, and therefore 

1

1

1lim
1 2

nR
n n

R r

Rr R
n

+

→∞ =

→ −
+∑ .                  (55) 

Substitution of relation (55) into (50) with 2mR =  leads to the asymptotic 
number of rising sequences after an infinite number of riffle shuffles 

( ), ,
1lim 1 26.5
2n m nm

r r n∞→∞
= = + →              (56) 
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as stated without proof at the start of this section. The numerical evaluation per-
tains to a deck with n = 52. 

The mean-square number of rising sequences for m shuffles can be calculated 
numerically from Equation (47) and Equation (49) 

( ) ( )2 2
, ,

1

n

n m n n m
r

r r E r Q r
=

= ∑                  (57) 

from which follows, also numerically, the theoretical (i.e. population) variance 
22 2

, , ,n m n m n mr rσ = − .                   (58) 

The author was unable to determine an analytical closed-form expression for (57) 
or (58). 

Table 2 summarizes the relevant statistics of rising sequences based on the 
GSR model as a function of shuffle number m for a deck of 52 cards. It is seen 
that about 13 shuffles are required to achieve the asymptotic result of Equation 
(56). In Figure 5 the theoretically predicted mean number of rising sequences  
 
Table 2. Statistics of Rising Sequences in a deck of 52 cards. 

Shuffle Number 
m 

Mean 

52,mr  
Mean Square 

2
52,mr  

Standard Deviation 

52,mσ  

0 1 1 0 

1 2 4 0 

2 4 15.9999 0.0041 

3 7.9489 63.2337 0.2224 

4 14.0994 199.9632 1.0814 

5 19.6053 387.4865 1.7657 

6 22.9482 530.6637 2.0110 

7 24.7104 614.9224 2.0785 

8 25.6034 659.9288 2.0958 

9 26.0515 683.0915 2.1001 

10 26.2757 694.8289 2.1012 

11 26.3879 700.7354 2.1015 

12 26.4439 703.6980 2.1016 

13 26.4720 705.1815 2.1016 

14 26.4860 705.9239 2.1016 

15 26.4930 706.2952 2.1016 

16 26.4965 706.4809 2.1016 

17 26.4982 706.5738 2.1016 

18 26.4991 706.6202 2.1016 

19 26.4996 706.6435 2.1016 

20 26.4998 706.6550 2.1016 
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Figure 5. Mean number of rising sequences for manual (blue) and auto (burgundy) shuf-
fling as a function of shuffle number. Superposed is the theoretical (red) mean and un-
certainty (±1 standard deviation) predicted for the GSR model of the riffle shuffle.  
 

,n mr  is compared with the observed numbers obtained by manually and auto 
shuffled cards averaged over the N data sets. Several features are to be noted: 
• In contrast to the statistical behavior graphically displayed in preceding fig-

ures which showed gradual randomization with increasing shuffle number m, 
the mean number of rising sequences underwent a relatively abrupt transi-
tion from a non-random state to the asymptotically random state at a thre-
shold shuffle number m = 7 or 8 for manual shuffles and m = 11 or 12 for 
auto shuffles. 

• For 4m < , the three curves (theory, manual shuffle, auto shuffle) yielded 
virtually identical results. 

For 5m ≥ , the rising sequences due to manual shuffling were statistically 
coincident with theoretical predictions, whereas shuffling by machine yielded 
too few rising sequences at each shuffle number up to the asymptotic number 

A 13m ≈ . This feature suggests one can randomize a deck better by shuffling it 
manually than by use of a mechanical auto shuffling device like that in Figure 1. 

3. Entropy and Information Loss 
3.1. Entropy of Rising Sequences 

As discussed briefly in Section 1.1, the Shannon entropy of a set of n symbols is 
given by 

!

2
1

log
n

j j
j

H p p
=

= −∑                     (59) 

where jp  ( )1, , !j n= 
 is the probability of the jth permutation of the !n  to-

tal number of ways to permute the symbols. By completeness, the set of proba-
bilities { }jp  satisfies Equation (4). Multiplied by a universal physical constant 
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(Boltzmann’s constant Bk ), the Shannon entropy, usually expressed in terms of 
natural logarithms, provides the basis for deriving the partition function—and 
therefore all the thermodynamic potentials—of equilibrium statistical mechanics 
[42]. From a physicist’s perspective, H is a universal measure of the disorder of a 
system, maximum randomization occurring when all jp  are equal. For a 
maximally randomized system of n = 52 symbols, 2log ! 225.58H n= ≈  bits. 

Although Equation (59) yields the entropy of a sequence of n distinct uncor-
related symbols, it does not predict the entropy correctly when the permutations 
are constrained by rules that create correlations among the symbols. To chart the 
increasing disorder in a system of n cards as a function of the number m of riffle 
shuffles one can calculate the entropy of all configurations of a fixed number r of 
rising sequences and then sum that entropy over the total number of rising se-
quences produced in the shuffle. In this case, the relevant probability function is  

( ) ( ) ( ), ,n m n n mp r E r Q r=                    (60) 

with expressions for ( )nE r  and ( ),n mQ r  given respectively by Equation (49) 
and Equation (47). This procedure leads to a much lower maximum entropy 
than Equation (59) because it respects the constraints imposed on possible or-
derings by the physical mechanism of the riffle shuffle. It has been shown that 
the possible outcomes to m riffle shuffles of an ordered deck are equivalent to 
the outcomes of cutting a deck into 2m  packets and interleaving the cards from 
different packets in such a way that the cards from each packet maintain their 
relative order among themselves [1] [39].   

Figure 6 shows the variation in ( ),n mp r  as a function of r for various in-
creasing values of m. In the limit of large m, which for all practical purposes  
 

 
Figure 6. Probability that m riffle shuffles of an ordered deck of n = 52 cards produces a 
card permutation with r rising sequences. Density functions are plotted for shuffle num-
bers m = 5 (red), 6 (orange), 7 (yellow), 8 (green), 10 (blue), 20 (black). The vertical 
dashed line marks the asymptotic shuffle number A 26.5m = . The probability function is 
discrete; connecting lines serve only to facilitate visualization.  
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starts at about m = 10 (blue curve), the distribution over r is a nearly perfect 
Gaussian function, shown by the dashed red curve in Figure 7, centered on the 
asymptotic number of rising shuffles, Equation (56), marked in the figures by a 
vertical black dashed line. The width (i.e. standard deviation) of the Gaussian is 
approximately 2.10, as given in Table 2 for 9m ≥ . 

The entropy of a deck of n cards as a function of shuffle number m, calculated 
from the probability distribution (60), takes the form 

( ) ( ), , 2 ,
0

log
n

n m n m n m
r

H p r p r
=

= −∑                 (61) 

and is plotted in Figure 8 for decks of size n = 14, 26, and 52. The transition 
between initial complete order ,0 0nH =  and maximum disorder is sharp like a 
phase transition, such as exhibited by the mean number of rising sequence in 
Figure 5. For n = 52, the maximum entropy 52, 7 3.12mH ≥ ≈  bits is reached by 
the 7th shuffle. 

3.2. Conditional Entropy 

Equation (61) yields the total entropy of a card deck subject to m riffle shuffles. 
However, it does not provide information on the randomization of specific card 
associations, which is the kind of information that serious players might rely on 
for advantage in competition or gambling. For this purpose, the conditional en-
tropy of pairs of ordered sequences was determined experimentally. 

Let X and Y be two discrete random variables spanning the same range of n 
sequential integers ( 1,2, ,i n=  ) with joint probability function ( ),XYp x y  and 
marginal probability functions 

 

 
Figure 7. Probability distribution (solid black curve with circle markers) of number of 
rising sequences in shuffle m = 10 of a 52 card deck. Superposed is a Gaussian distribu-
tion (dashed red curve) of asymptotic mean 26.5 and standard deviation 2.10. 

https://doi.org/10.4236/ojs.2019.92020


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2019.92020 286 Open Journal of Statistics 
 

 
Figure 8. Shannon Entropy (in bits) of the card sequences arising from m shuffles of an 
ordered deck of n cards for n = 14 (green), 26 (blue), 52 (red). The entropy function is 
discrete; connecting lines serve only to facilitate visualization. 

 

( ) ( )

( ) ( )

1

1

,

,

n

X XY
y

n

Y XY
x

p x p x y

p y p x y

=

=

=

=

∑

∑
                     (62) 

each satisfying the completeness relation. The entropy (mean uncertainty) in re-
ceipt of n transmitted symbols { }ix  or { }iy  is  

( ) ( ) ( )

( ) ( ) ( )

2
1

2
1

log

log

n

X X
x
n

Y Y
y

H X p x p x

H Y p y p y

=

=

= −

= −

∑

∑
                (63) 

The conditional entropy of the sequence { }ix , given that the sequence { }iy  
is known, is defined by [43]  

( ) ( ) ( ) ( )| 2 |
1

log
n

X Y X Y Y
x

H X Y p x y p x y p y
=

= −∑ ,         (64) 

where the condition probability ( )|X Yp x y  is  

( ) ( ) ( )| ,X Y XY Yp x y p x y p y= .               (65) 

(See also Ref. [22], pp 52-53.) The joint entropy of X and Y is then given by 

( ) ( ) ( ) ( ) ( ),H X Y H X H Y X H Y H X Y= + = + .       (66) 

Equation (66) states that the entropy of a joint event, e.g. X and Y, is the en-
tropy of the former plus the conditional entropy of the latter when the former is 
known. One may also define the quantity  
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[ ] ( ) ( )XYH H X H X Y≡ −                  (67) 

which is the decrease in entropy of the events X when it is known that events Y 
have occurred. Given the preceding interpretation, the function expressed by 
Equation (67) is taken to represent the information provided by knowledge of 
the events Y [43].  

In the analysis of permuted card sequences in the following two sections, the 
information function [ ]XYH  is one of the important quantities to be deduced 
experimentally. Substitution into Equation (67) of the conditional probability 

( )H X Y  from Equation (66) leads to the symmetric relation 

[ ] ( ) ( ) ( )XYH H X H Y H XY= + −                (68) 

which is particularly useful for calculation. 

3.3. Entropy of Sequences of Card Pairs: Theoretical 

To apply the preceding concepts to riffle shuffles, the experimental sequences of 
digital card values are transformed into two sets of binary values by the follow-
ing procedure, schematically shown in Figure 9. 
• Given a decimal sequence of card values { }ix  for 1,2, ,i n=  , create the 

binary sequence { }jb  for 1,2, , 1j n= −
 defined by 

11 if  1

0 otherwise
j j

j

x x
b + − == 


                   (69) 

• Transform the set { }jb  into the set { }kc  1,2, , 2k n= −
, where 

1
1
2k k kc b b+= − .                        (70) 

Transformation (69) generates a binary sequence of 1’s and 0’s, in which the 
symbol 1 signifies a pair of cards in numerical order (e.g. 4,5). Transformation  
 

 
Figure 9. Schematic of procedure for transformation of digital sequence { }ix  into bi-

nary sequence { }jb  and then into quaternary sequence { }kc  from which the pair asso-

ciation statistics are generated for calculating conditional probabilities and conditional 
entropy of ordered card pairs. Panels A, B, C, D represent the 4 possible outcomes of card 
pair associations. 
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(70) converts the binary sequence into a sequence of four values 1, 0, and 
1
2

± . 

Figure 9 illustrates the significance of the four symbols: 

Panel A: 
1
2

c = +  signifies that a 1 follows a 1.   

Panel B: 
1
2

c = −  signifies that a 0 follows a 1. 

Panel C: 1c =  signifies that a 1 follows a 0. 
Panel D: 0c =  signifies that a 0 follows a 0.  

Given the set { }kc , the following four pair-association statistics 

( ) ( )
2

0
1

0,0
n

k
k

n I c
−

=

= ∑                         (71) 

( ) ( )
2

1
1

0,1
n

k
k

n I c
−

=

= ∑                         (72) 

( ) ( )1
2

2

1
1,0

n

k
k

n I c
−

−
=

= ∑                        (73) 

( ) ( )1
2

2

1
1,1

n

k
k

n I c
−

=

= ∑ ,                       (74) 

in which 

( )
1
0

k
k

k

c
I c

cα

α
α

=
=  ≠

                      (75) 

count the number of events of the kinds represented respectively by panels A, B, 
C, D. To summarize, the statistic ( ),n α β  is the number of events of symbol 
α  followed by symbol β , where both symbols can take on values of 0 or 1. 
The statistics ( ),n α β  satisfy the sum rule 

( )
0,1
0,1

, 2 50n n
α
β

α β
=
=

= − →∑                     (76) 

evaluated numerically above for a deck of n = 52 cards.  
In this information theoretic analysis, it is useful to think of the α  symbols 

as the realizations of a “message” variable A that represents a received signal of 
1’s and 0’s, whereas the β  symbols are the realizations of a following “predic-
tion” variable B that represents a predicted signal of 1’s and 0’s. For each succes-
sive shuffle of the deck, the set of conditional probabilities ( )p β α  determines 
the conditional entropy ( )H B A , which is the uncertainty in predicting B given 
knowledge of A.  

It is straightforward to show that the conditional probabilities ( )p β α  can 
be estimated from the pair association statistics (71)-(74) as follows 

( ) ( )
( ) ( )

0,0
0 0

0,0 0,1
n

p
n n

=
+

                     (77) 

( ) ( )
( ) ( )

0,1
1 0

0,0 0,1
n

p
n n

=
+

                     (78) 
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( ) ( )
( ) ( )

1,0
0 1

1,0 1,1
n

p
n n

=
+

                     (79) 

( ) ( )
( ) ( )

1,1
11

1,0 1,1
n

p
n n

=
+

                     (80) 

in the limit of a sufficiently large number of sets of shuffles. Note that the order 
of symbols in the argument of ( )p β α  signifies that event α  precedes event 
β , which is the reverse of the order of symbols in the argument of ( ),n α β . 
Regrettably, this potential for confusion is the price required to maintain con-
ventional statistical notation.  

The a priori probabilities ( )Ap α  of a received symbol α  are given by 

( ) ( )
0,1

1 ,
2Ap n

n β
α α β

=

=
− ∑ ,                  (81) 

or explicitly 

( ) ( ) ( ) ( ) ( ) ( )0,0 0,1 1,0 1,1
0 , 1

2 2A A

n n n n
p p

n n
+ +

= =
− −

.      (82) 

Similarly, the a priori probabilities ( )Bp β  of a predicted symbol β  are 

( ) ( )
0,1

1 ,
2Bp n

n α
β α β

=

=
− ∑ ,                 (83) 

or explicitly 

( ) ( ) ( ) ( ) ( ) ( )0,0 1,0 0,1 1,1
0 , 1

2 2B B

n n n n
p p

n n
+ +

= =
− −

.       (84) 

The joint probability ( ),ABp α β  of a received symbol α  and predicted sym-
bol β  is given by 

( ) ( ) ( ) ( ),
,

2AB A

n
p p p

n
α β

α β α β α= =
−

             (85) 

where the second equality follows from combining relations (82) and (77)-(80). 
Given the probability functions constructed above, the a priori entropies of 

the received (A) and predicted (B) signals are 

( ) ( ) ( )2
0,1

logA AH A p p
α

α α
=

= − ∑                 (86) 

( ) ( ) ( )2
0,1

logB BH B p p
β

β β
=

= − ∑                 (87) 

and the total entropy of A and B is 

( ) ( ) ( )2
1,0
1,0

, log ,AB ABH AB p p
α
β

α β α β
=
=

= − ∑ .            (88) 

The information, or decrease in uncertainty of values of B as a result of knowing 
values of A, is then given by Equation (68) 

[ ] ( ) ( ) ( ) ( ) ( )BAH H B H B A H A H B H AB= − = + − .        (89) 

The entropy and information are in units of bits (“binary digits”). In statistical 
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physics, where natural logarithms are usually used rather than logarithms to 
base 2, entropy and information are in units of nats. 

3.4. Entropy of Sequences of Card Pairs: Experimental 

An experiment was performed in which an initially ordered deck of n = 52 cards 
was subject to N = 11 sets of M = 19 riffle shuffles per set implemented by the 
auto shuffler in Figure 1, thereby generating M columns of card permutations 
for each set such as illustrated in Table 1. The cards were shuffled mechanically, 
rather than manually, so that the riffle shuffles would be executed as uniformly 
as possible. The pair association numbers ( ),n α β  for each of the M shuffles 
were then averaged over the N sets to yield the mean numbers of pair associa-
tions summarized in Table 3 and plotted in Figure 10 as a function of shuffle 
number m.  

For a completely ordered deck prior to shuffling (m = 0), there are 2 50n − =  
occurrences of 1α =  followed by 1β = , as shown by the plot of ( )1,1n  (red 
curve) in Figure 10. This number drops rapidly with increasing shuffle number, 
becoming effectively 0 by about 8m ≈ . Correspondingly, the occurrence of 0α =   
 
Table 3. Mean pair association numbers for a 52-Card Deck. 

Shuffle Number m ( )0,0n  ( )0,1n  ( )1,0n  ( )1,1n  

0 0.00 0.00 0.00 50.00 

1 5.82 12.00 12.27 19.91 

2 14.27 11.91 12.36 11.45 

3 20.91 10.64 11.09 7.36 

4 26.64 10.27 10.27 2.82 

5 30.27 8.91 8.91 1.91 

6 34.00 7.55 7.27 1.18 

7 38.36 5.36 5.36 0.91 

8 39.18 5.18 5.27 0.36 

9 41.00 4.45 4.36 0.18 

10 42.91 3.45 3.45 0.18 

11 43.55 3.00 3.09 0.36 

12 43.64 3.00 3.00 0.36 

13 43.82 3.00 3.00 0.18 

14 44.00 2.91 2.91 0.18 

15 46.00 2.00 2.00 0.00 

16 46.91 1.55 1.55 0.00 

17 46.55 1.73 1.73 0.00 

18 47.64 1.18 1.18 0.00 

19 46.73 1.64 1.64 0.00 
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Figure 10. Pair association numbers ( ),n α β  as a function of number of auto-shuffles. 

Symbols 1 and 0 respectively represent an ordered and non-ordered two-card sequence. 
Thus ( )1,1n  = number of 2 ordered pairs (e.g. 1,2; 2,3) (red); ( )0,0n  = number of 2 

non-ordered pairs (e.g. 2,1; 3,5) (blue); ( )1,0n  = number of non-ordered pairs follow-

ing an ordered pair (e.g. 1,2; 3,5) (orange); ( )0,1n  = number of ordered pairs following 

a non-ordered pair (e.g. 3,5; 1,2) (green). Black squares mark the actual points; colored 
connecting lines merely facilitate viewing. 
 
followed by 0β =  rises rapidly with increasing m, approaching ≈48, as shown 
by the plot of ( )0,0n  (blue curve). The plots of ( )0,1n  (green curve) and 
( )1,0n  (orange curve), which start at 0 and then fall off gradually from a max-

imum of about 12 at m = 1, are virtually indistinguishable.  
The conditional probabilities ( )p β α , deduced from the pair-association 

statistics by means of Equations (77)-(80), are plotted as a function of m in Fig-
ure 11. In each panel, the conditional probabilities satisfy the completeness rela-
tion 

( )
0,1

1p
β

β α
=

=∑                       (90) 

for 0,1α = .  
The plots in panel A, which show the conditional probabilities of prediction 

variable β  given received variable 0α = , begin at m = 1 because there is no 
event 0 in a completely ordered deck (m = 0). As the shuffle number m increases, 
the number of ordered pairs decreases, and ( )0 0p  approaches 1 while ( )1 0p  
approaches 0. In panel B, the probabilities are conditioned on a received variable 
1. As the number of 0 events increase with m, it follows again that ( )0 1p  ap-
proaches 1 and ( )11p  approaches 0. For a gambler or competitive player, the 
probability ( )11p  is particularly useful, since it quantifies the chance of a third 
card in order (e.g. 1,2,3), given prior receipt of two cards in order (e.g. 1,2). Em-
pirically, this conditional probability is seen to be about 20% at the 5th shuffle.  
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Figure 11. Conditional probabilities ( )p β α  as a function of shuffle number for 11 au-

to-shuffled sets, each comprising 19 riffle shuffles. Values of α  signify preceding “mes-
sage” events; values of β  signify following “prediction” events. The symbol “1” marks 
occurrence of an ordered pair (e.g. 4,5); the symbol “0” marks occurrence of a non-ordered 
pair (e.g. 5,4). 

 
The entropy ( )H B  of the prediction variable and information  
( ) ( )H B H B A−  are summarized in Table 4 and plotted in Figure 12. The plot 

of information (red curve) was multiplied by a factor 10 to enhance visibility. 
The black double arrow marks the standard deviation of the information at 
shuffle number m = 12. As shown by Table 4, the information at all shuffle 
numbers is within 1±  standard deviation of 0.  

Since the randomness of a deck of cards is ordinarily expected to increase with 
the number of shuffles, as shown explicitly in Figure 8 for the entropy of rising 
sequences, the decrease of ( )H B  with shuffle number in Figure 12 calls for an 
explanation. In the initially ordered deck, all sequential pairs of cards are in or-
der, and therefore both the message variable A and prediction variable B for any 
pair take the value 1 (as demonstrated in Figure 9). With each successive shuffle, 
successive pairs of cards become less and less ordered and variables B and A in-
creasingly take the value 0. Thus, as shown in Figure 11, the conditional proba-
bilities become increasingly predictable as they asymptotically approach either 1 
(100% chance of an ordered pair occurring) or 0 (100% chance of an ordered  
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Table 4. Entropy and Information of Auto-Shuffled 52-Card Deck. 

Shuffle Number m Entropy H(B) 
Conditional 

Entropy H(B|A) 
Information  

H(B) − H(B|A) 
Information Std 

Dev 

1 0.9386 0.9382 0.0004 0.0494 

2 0.9892 0.9883 0.0010 0.0180 

3 0.9353 0.9333 0.0021 0.0611 

4 0.8242 0.8269 −0.0027 0.0767 

5 0.7463 0.7451 0.0013 0.1158 

6 0.6521 0.6458 0.0063 0.1920 

7 0.5323 0.5326 −0.0003 0.1770 

8 0.4953 0.4977 −0.0024 0.1381 

9 0.4370 0.4340 0.0029 0.1516 

10 0.3695 0.3733 −0.0038 0.1293 

11 0.3474 0.3569 −0.0096 0.1421 

12 0.3474 0.3569 −0.0096 0.1421 

13 0.3334 0.3417 −0.0083 0.1386 

14 0.3290 0.3292 −0.0001 0.1165 

15 0.1385 0.1290 0.0094 0.1905 

16 0.1201 0.1182 0.0019 0.1781 

17 0.2119 0.2092 0.0028 0.1002 

18 0.0623 0.0551 0.0072 0.1701 

19 0.0702 0.0545 0.0156 0.2276 

 

 
Figure 12. Total entropy (blue) in bits of “prediction” events as a function of number of 
shuffles. Information (red) in bits—multiplied by 10 for visibility—due to knowledge of 
preceding “message” events. The black double arrow marks the sample standard devia-
tion of ( )0.014 10≈ ×  for the 12th shuffle. The entire information curve lies within ±1 

standard deviation, signifying that uncertainty of card pairs was not significantly reduced 
by knowledge of preceding pairs. 
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pair not occurring). Consequently, pair association variables B and A are so de-
fined that their outcomes become more certain and their entropies (i.e. uncer-
tainties) decrease as the deck becomes increasingly randomized.  

To put into perspective the empirical results of this information theoretical 
analysis, it is to be recalled that 1 bit of information, as initially construed by 
Shannon who largely created the subject of information or communication 
theory [22], corresponds to the reduction of uncertainty by 1 binary-valued de-
cision—e.g. a “yes or no” or “1 or 0”. As pointed out in Section 1, the word in-
formation carries two different meanings, both of which are relevant here:  

1) Information, as ordinarily defined by scientists, is associated with uncer-
tainty, i.e. entropy H. Thus, the decrease in entropy ( )H B  for about the first 
10 shuffles, as seen in Figure 12, represents a steady loss in information as the 
outcome (1 or 0) becomes more predictable.  

2) Information can also be construed as a measure of the reduction in uncer-
tainty in one variable (e.g. B) as a result of knowledge of another variable (e.g. A). 
From this perspective, Figure 12 shows that the card order of a preceding pair 
provided no statistically useful information for predicting the card order of the 
following pair at any shuffle number m > 0. The reason is that ( )H B A  de-
creased with m to the same extent as did ( )H B .   

4. Conclusions 

In this paper the sequential permutations of an initially ordered deck of cards 
mixed by riffle shuffles executed manually or mechanically were tested for dif-
ferent statistical measures of random patterns, including 1) runs, 2) rank order-
ing, 3) pair correlations, 4) rising sequences, and 5) entropy and information 
loss. The various statistical measures probed different aspects of the symbol pat-
terns within each permuted sequence. Consequently, different measures could 
result in different threshold shuffle numbers at which the deck could be said to 
have been randomized for the purposes of competitive card playing or gambling.  

Table 5 summarizes the threshold shuffle numbers for randomization ac-
cording to different statistical measures. It is to be stressed that these threshold 
values, taken from the empirical plots of the associated sample statistics, are ap-
proximate since the point at which a deck of cards can be said to be completely 
mixed is a subjective judgment. For variates (like rank ordering) expressed in 
standard normal form with asymptotic Gaussian distribution, the point of com-
plete mixing was estimated visually to occur at a shuffle number for which the 
sample statistic 1z ≤ . For variates (like rising sequences) that underwent an 
abrupt change from a state of order to state of disorder, the point of complete 
mixing was estimated visually to occur at a shuffle number at which the apparent 
asymptotic limit was reached. 

As seen in Table 5, there is a fairly wide spread among the different tests in 
values of the threshold shuffle number. For example, for manually shuffled cards 
the measure z of randomization by rank ordering indicates a complete mixing by  
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Table 5. Number of shuffles to achieve satisfactory mixing. 

Statistical Test Hand Shuffles Auto Shuffles 

Runs (relative to mean) 10 10 

Runs (up/down) 8 8 

Rank Ordering 6 6 

Serial Correlation (lag 1) 8 16 

Rising Sequences 8 12 

Conditional Probability p(1|1) - 9 

Conditional Probability p(1|0) - 11 

Entropy (Information) H(B) - 17 

 
about the 6th shuffle, whereas the runs test statistic z is close to 0 at about the 8th 
shuffle. For the statistical variable of rising sequences, the manually shuffled 
cards met the criterion of complete mixing at about the 8th shuffle, as predicted 
in [1], whereas the same criterion was met at about the 12th shuffle for mechani-
cally shuffled cards. Large differences in threshold values obtained from differ-
ent test variables arose because the tests examined different aspects of the resi-
dual patterns embedded in the permutations of card order.  

However, so as not to misinterpret (or over-interpret) these results, the reader 
should bear in mind that the statistical tests in themselves do not indicate that 
any residual pattern would actually be useful to a card player. For example, Ta-
ble 1 shows instances of ascending and descending sequences even up to the 19th 
shuffle, at which point such patterns are almost assuredly uninformative. On the 
other hand, the residual order remaining at the 7th shuffle, indicated by the con-
ditional probability functions plotted in Figure 11, might possibly be useful to 
an astute and skillful player. The variable results of Table 5 notwithstanding, it is 
probably safe to say that 4 shuffles—which have been reported to be standard 
protocol at casinos [44]—are too few (as suggested by the plots of runs in Figure 
2 and rising sequences in Figure 5).  

Of the various statistical measures applied to the experimentally generated 
card sequences, the author is aware of only one measure—mean number of ris-
ing sequences—for which a theoretical distribution function pertaining to a par-
ticular shuffle model is known. The probability function of this distribution, 
Equation (60), is based on the GSR model of riffle shuffling. Although there are 
many references in the statistical literature and on the internet to the theory of 
riffle shuffling (such as those cited in the References to this paper), the author 
knows of no previously published experimental test with actual cards, rather 
than simulations by computer. In this regard, the nearly exact match of the 
theoretically predicted and experimentally measured mean number of rising se-
quences shown in Figure 5 for manually shuffled cards provides an experimen-
tal confirmation of the distribution (60) and therefore evidence in support of the 
GSR model as a satisfactory description of how humans actually perform riffle 
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shuffles. 
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