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Abstract 
This work is geared towards detecting and solving the problem of multicoli-
nearity in regression analysis. As such, Variance Inflation Factor (VIF) and 
the Condition Index (CI) were used as measures of such detection. Ridge Re-
gression (RR) and the Principal Component Regression (PCR) were the two 
other approaches used in modeling apart from the conventional simple linear 
regression. For the purpose of comparing the two methods, simulated data 
were used. Our task is to ascertain the effectiveness of each of the methods 
based on their respective mean square errors. From the result, we found that 
Ridge Regression (RR) method is better than principal component regression 
when multicollinearity exists among the predictors. 
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1. Introduction 

Regression Analysis is a statistical tool used in studying if there is existence of 
relationship, of any forms, either linear or nonlinear between the two variables, 
subject to certain constraints, such that one of the two variables can serve well to 
predict for the other. Meanwhile, it is important to note that our focus in this 
study is on the linear form of such relationship. Thus, when we talk of regres-
sion, we only consider the linear regression, which may either be simple, mul-
tiple and or, multivariate in nature depending on the levels (or number) of va-
riables on either side of the equation. When we compare a single dependent with 
a single independent variable, the regression is said to be simple, so we have 
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simple (linear) regression. But, if only one dependent variable is being compared 
with more than one independent variables, the regression is said to be multiple 
in form; and thus we have multiple (linear) regression. The multivariate regres-
sion (which is outside the scope of this research), only comes to play if we are 
comparing more than one level of the dependent variable with two or more le-
vels of the independent variables.  

1.1. Fundamental Principles 

Consider the multiple regressions model: 

0 1 1 2 2    i i i p pi iY X X X eβ β β β= + + + + +
                (1) 

In matrix form, (1) becomes: 

Y X β′= +∈                            (2) 

where in (1); j sβ ′  1,2, ,j p∀ =   are the regression coefficients; ( )1Y n×  matrix 
represents the outcome (response or dependent) variable and i sX ′ , 1,2, ,i n∀ =   
are the explanatory (predictor or independent) variables, which are fixed and ie  
is the error term, which with i sY ′  are assumed to be random. With assumptions 
that: ( ) 0iE e = ; ( ) 0jiE e e =  ji∀ ≠ ; ( ) 2

 i iE e e σ= , which implies random-
ness, independence and homoscedasticity of error terms respectively. Indicating 

( )20,~ie IID N σ . Other interesting assumptions are Zero Covariance between 
𝑒𝑒𝑖𝑖and each of the i sX ′  variable; i.e.  

( ) ( ) ( )1 2, , , 0i i i pCov e X Cov e X Cov e X= == = ; 

no specification bias; the model should correctly be specified and no exact linear 
relationship between any two predictor variables. However, violating any of 
these assumptions brings about serious problem in regression analysis. Hence, 
causes of multicollinearity which constitutes a major problem sets in as a result 
of violation of the said assumptions [1], which constitute the pivot of our discus-
sion in this section. 

Multicollinearity is an important concept in regression analysis, given the se-
rious threat it poses on the validity or the predicting strength of the regression 
model. It is usually regarded as a problem arising out of violation of the assump-
tion that the explanatory variables are linearly independent. It is a phenomenon 
that plays its way in regression, especially multiple regressions when there is a 
high level of inter-correlation or inter-associations among the independent va-
riables.  

It is therefore a type of disturbance in the regression model which if allowed, 
the statistical inferences made about the model become misleading simply be-
cause the estimates of the regression coefficients are faulty or unreliable. Multi-
collinearity is a condition in multiple regression models whereby two or more 
covariates become redundant. The redundancy implies that what one indepen-
dent variable (X) explains about the dependent variable (Y) is exactly what the 
other independent variable explains. In this case, the estimates of the regression 
coefficients for such redundant predictor variables would be completely erroneous.  
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1.2. Possible Causes of Multicollinearity 

1) Multicollinearity generally occurs when two or more explanatory variables 
are directly and highly correlated to each other. 

2) It may also set in when one or more of the predictors represent the mul-
tiples of or computed from some other predictor variables in the same equation. 

3) It may also be experienced when repeating or including almost the same 
predictor variable in the same model. 

4) It may as well occur when in situations of nominal variables; the dummy 
variables are not properly use.   

However, the following have been identified as the primary sources of multi-
collinearity; 

1) When a regression model is over defined; that is, including more than ne-
cessary predictor variables in the model;  

2) The data collection method is faulty; or better still choosing in appropriate 
sampling scheme used for data collection or generation; 

3) Placing a spurious or unnecessary constraint on the model or in the popu-
lation; 

4) When the regression model is wrongly specified. 

1.3. How Is Multicollinearity Detected? 

There are a number of ways by which multicollinearity may be detected in a 
multiple regression model, which include:  

1) when the correlation coefficients in the correlation matrix of predictor va-
riables become so high that is close to one, or the value of correlation coefficient 
between two highly correlated predictor variables is close to one.   

2) when the coefficient of determination (R2) value is so close to unity for a 
particular predictor variable that is regressed on other independent variables to 
such an extent that the variance inflation factor (VIF) becomes so large [2]. 

3) When one or more eigenvalues of the correlation matrix becomes so small 
that is close to zero then multicollinearity is at work. 

4) Another rule of thumb to detecting the presence of multicollinearity is that 
while one or more eigenvalues of the predictor variables become so small, to the 
extent of getting so close to zero but the corresponding condition number (ϕ) 
becomes very large [3] [4] [5].  

5) Comparing the decisions made using overall F-test and t-test might provide 
some indication of the presence of multicollinearity. For instance, when the 
overall significance of the model is good using F-test, but individually, the coef-
ficients are not significant using t-test, then the model might suffer from multi-
collinearity 

1.4. Possible Effects of Multicollinearity 

The effects of existence of multicollinearity in regression are of concerns that it 
gives rise to circumstance whereby: 

https://doi.org/10.4236/ojs.2019.92012


M. A. Raheem et al. 
 

 

DOI: 10.4236/ojs.2019.92012 162 Open Journal of Statistics 
 

1) The partial contribution of each of the explanatory variable remains con-
founded leading to difficulties in interpreting the model; 

2) The variances as well as the coefficients of the predictor variables becomes 
un duly bogus (or inflated), thereby making precise estimation of the parameters 
becomes impossible;   

3) The presence of multicollinearity gives rise to considerably high mean 
square error, paving ways for committing type-1-error; 

4) The ordinary least square (OLS) estimators as well as their standard errors 
may be sensitive to small changes in the data, in order words, the results will not 
be robust; and 

5) Finally, [6] observes that as multicollinearity increases, it complicates the 
interpretation of the variable because it becomes more difficult to ascertain the 
effect of any single variable, due to the variable interrelationships. 

Since obtaining robust estimates of regression coefficients possess significant 
level of difficulties with ordinary least square (OLS) method, we in this research, 
we hope to explore other possible regression models; principal component re-
gression (PCR) and ridge regression (RR) methods as alternative techniques to 
estimating the model parameters, with a view to enhancing precision in esti-
mating the parameters of the regression parameters when multicollinearity is 
suspected among the predictors without need for dropping any of the variables 
and that to determine which of the two methods perform better based on the 
mean square errors of the two models. Meanwhile, the use of condition number 
as well as variance inflation factor is endearing to us to check if multicollinearity 
exists among the covariates after estimating via OLS approach. 

The remaining part of this paper is organized as follows; Section 2 has the 
brief discussion on the methodologies adopted while Section 3 presents the re-
sults and general discussion on the findings of the research. 

2. Methodology  

This section discusses statistical techniques which are applied and compared 
with Ordinary Least Square (OLS) method in multiple linear regressions. These 
methods are Principal component regression (PCR) and Ridge regression (RR), 
their formulations as well as the underlining assumptions governing each of 
them are discussed. 

2.1. Principal Component Regression (PCR) 

This is one of the methods for solving problem of multicollinearity such that 
better estimates of the model parameters and consequently, better and a more 
robust prediction could be made as compared to ordinary least squares. With 
this method, the original variables are transformed into a new set of orthogonal 
or uncorrelated variables called principal components of the correlated matrix. 
This transformation ranks the new orthogonal variables in order of their impor-
tance and the procedure then involves eliminating some of the principal com-
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ponents to effect a reduction in variance. The major goal of PCR include; varia-
ble reduction, selection, classification as well as prediction. It would be recalled 
that this method is two procedural in application; first principal component 
analysis is applied, then the set of “k” uncorrelated or orthogonal component 
factors are used to replace the original p set of predictor variables. According to 
[7], PCR is a two-step procedure, in the first step, one computes principal com-
ponents which are linear combinations of the explanatory variables while in the 
second step, the response variable is regressed on to the selected principal com-
ponents. Combining both steps in a single method will maximize the relation to 
the response variables. 

Let the random vector of the predictor variable be:  

1 32 ,, , , pX X X XX ′  =   , with the covariance matrix Σ  and eigenvalues 

1 2 3 0pλ λ λ λ≥ ≥ ≥ ≥ ≥
. The linear combination: 

iiY e X′= ;                           (3) 

Subject to the constraints: 

( ) ; 1, 2, ,i iiVar Y e e i p′Σ ∀ ==                     (4) 

( ), , 1, , , ;; 2i j jiCov Y Y e e i j p i j′= Σ ∀ = ≠               (5) 

The principal components are those uncorrelated linear combinations  

1 2 3, , , , PY Y Y Y  whose variances are as maximal as possible. 
Looking closely at the model (2), suppose X X′ = Σ  is rewritten as P P′Λ , 

with Λ  being the ( )p p∗  diagonal matrix of the eigenvalues of the design ma-
trix or variance covariance matrix, Σ  and 1 2 3, , , , pP e e e e=     representing 
associated normalized eigenvectors for the eigenvalues for Σ , such that: 

PP P P I′ ′= =  (Identity matrix)                  (6) 

Rewriting the (2) by inserting (6) Z XPP β ε′= + ; which then becomes: 

Z Y ε= Φ +                            (7) 

where Y X P′=  and P β′Φ = ; thus, Y Y P X XP P P P P P P′ ′ ′ ′ ′ ′= = Σ = Λ = Λ . 
The columns of Y, defined as the linearly uncorrelated components of the origi-
nal random vector X are now the new set of orthogonal predictor variables; also 
known as the principal components. These now serve as the new covariates in 
the regression model, called principal component regression. Obtaining the es-
timates of the model using OLS, we have: 

1 1ˆ Y Y Y Z Y Z− −′ ′ ′Φ = = Λ                        (8) 

Such that the covariance of π̂  is 

( ) ( ) ( )12 1 2 1 1 1
1 2

ˆ
kV Y Y diagσ σ λ λ λ− − − − −′Φ = = Λ = + + +

       (9) 

This new variance estimate is now expected to produce a minimum variance, 
which eventually leads to having an improved and reliable estimate of the para-
meters, thus making a robust decision. According to [8], one of the simplest 
ways collinearity problem could be rectified in practice, is by the use of Principal 
Component Regression (PCR); claiming that from the experience, PCR usually 
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gives much better result than the least square for prediction purpose.   

2.2. Ridge Regression Method 

This method was originally suggested by [9] as a procedure for investigating the 
sensitivity of least-squares estimates based on data exhibiting near-extreme mul-
ticollinearity, where small perturbations in the data may produce large changes 
in the magnitude of the estimated coefficients. 

The ridge regression estimate of the coefficients, jβ ; 1,2, ,j k=   are given 
by 

( ) 1ˆ
R X X rI X Yβ −′ ′+=                     (10) 

where 0r ≥  is a constant called biasing factor, which needs to be set by the re-
searcher; such that when r = 0, the ridge regression automatically reduces to or-
dinary least square. This is implies that ridge regression is an improved form of 
OLS, with minor transformation.  

Thus:  

( ) ( ) ( ) ( ) ( ) ( )1 1ˆ ˆ,R RE X X rI E X Y X X rI X X E Pβ β β− −′ ′ ′ ′= + = + =    (11) 

where ( ) 1
RP X X rI X X−′ += ′ . This results point to the fact that ridge regression 

is a biased estimator of β̂ , which is the necessary condition for getting away 
with the problem of estimating the model parameter.  

Meanwhile the variance-covariance matrix of Rβ  is obtained as: 

( ) ( ) ( )( )1 1 2ˆ
RVar X X rI X X X X rIβ σ− −′ ′ ′= + +             (12) 

Giving rise to the mean square error: 

( )ˆ
RMSE Bias varianceβ = + ; i.e. ( ) ( )2ˆ ˆ

R RBias Varβ β+         (13) 

According to [10], ridge regressions are known to have favourable properties 
as shown by [9] Rβ  has smaller mean square error than the ordinary least 
square estimators β̂ , provided 2σ  is small enough so that the validity of the 
regression model holds. [11] [12] also pointed out that the ridge regressions are 
known as shrinkage estimator. 

3. Results and Discussion 

In this work, we illustrate with an example to predicting gas productivity (Y) 
using density (X1), volumetric temperature (X2), sulphur content (X3), feedback 
flow (X4), output feedback temperature (X5), catalyst temperature in regenerator 
system (X6) and catalyst/feedback ratio (X7) as the independent variables.   

Now since some of the variables are significantly related as shown in Table 1, 
it then becomes impossible to determine which of the variables accounts for the 
variation in the dependent variable. This is because of high correlation among 
the predicting variables, resulting in less stability in the estimates of the regres-
sion parameters [13]. The results of the correlation matrix above showed a highly  
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Table 1. Correlation matrix between independent variables. 

 X1 X2 X3 X4 X5 X6 X7 

X1 1       

X2 −0.14 1      

X3 0.96** −0.24 1     

X4 −0.25 0.05 −0.28 1    

X5 0.10 −0.20 0.19 0.33 1   

X6 −0.44 −0.49* −0.46 −0.67 0.16 1  

X7 0.67** −0.17 0.66** −0.13 −0.09 −0.30 1 

*P-value < 0.05, significantly correlated at 5%, **P-value < 0.01, significantly correlated at 1%. 
 
significant possible relationships between X1 and X3 (r-0.96, P-value = 0.004), X3 
and X7 (r = 0.66, P-value = 0.004). These results showed that there is presence of 
multicollinearity among these independent variables. 

3.1. Multicollinearity Diagnostic 

The existence of multicollinearity was investigated using Variance Inflation 
Factor (VIF), variables proportion and condition index. The result obtained is 
shown in Table 2. It could be confirmed that X1 and X3, have VIF greater than 
10 which shows that there is collinearity problem.  

Variance Inflation Factor (VIF) 
The following VIF values were obtained from each of the Independent Va-

riables: 

( ) ( ) ( )
( ) ( ) ( )
( )

1 2 3

4 5 6

7

VIF 20.74,VIF 3.639,VIF 38.95,

VIF 2.58,VIF 2.82,VIF 5.58,

VIF 2.24

X X X

X X X

X

= = =

= = =

=

 

The result of VIF revealed presence of multicollinearity at VIF (1) and VIF (3) 
are greater than 10. This result confirmed a high level of multicollinearity among 
the independent variables.  

The Condition Index (ϕ) = max

min

λ
λ

; the ratio of maximum eigenvalue to 

minimum eigenvalue. 
7.492 749200

0.00001
= . Since 1000φ >  (749,200 > 1000), the results also sup-

ported that obtained from VIF. 
Mean Squared Error (MSE) 
For any given regression model: 

SSE EMS
n p

=
−

                        (14) 

where: SSE: Sum of square error of the linear regression model; n p− : Degree 
of freedom; n: is the number of data point; p: Number of parameters in the model. 
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Table 2. Means square error for ordinary least, principal component and ridge regres-
sion. 

OLS PCR RR 

0.70554 0.70553 0.68624 

3.2. Summary of the Regresion Model 

Ordinary Least Square (OLS) 
GP 126.121 175.414 DTY 0.037 VT 2.121SC 0.064 FF

0.042 FT 0.085 CT 1.718 FR
= − + − +
− + +

 

Principal Component Regression (PCR) 
GP 51.400 2.336 DTY 0.336 VT 0.385 SC 0.552 FF

0.480 FT 0.674 Ct 0.049 FR
= − + − +
− + −

 

Ridge Regression (RR) 
GP 54.1387 28.0014 DTY 0.0029 VT 0.5137 SC 0.0045 FF

0.0087 FT 0.1236 CT 0.62374 FR
= − + + +
+ + −

 

3.3. Comparison of OLS, PCR AND RR 

Computing the mean Square Error for each of the model we obtain the following 
result. The result can be summarized in Table 2. From the table, it could be con-
firmed that among the three estimates, ridge regression seems to produce the 
least mean square error; followed by the PCR and OLS. Though the difference 
between the MSE for PCR and OLS seems insignificant, this may be due to the 
data size used for the analysis.  

Table 3 provides the results on the collinearity test obtained for the seven 
variables. In it we also have the VIF, Eigen-value and the conditional index.  

4. Summary and Conclusion 

Having fitted the respective regression models to the available data, we investi-
gated the adequacies of the three models using the MSE square errors (see Table 
2). It could be seen ridge regression gave the least error means square Error. 
Hence Ridge regression is considered superior. 

Meanwhile, given the results obtained from the analyses, one may conclude 
there is no much difference in the error values, especially with the PCR and OLS; 
this may be due to the nature of the data used for the analysis. However, based 
on the results presented in Table 2, apparently the ridge regression performed 
better than principal components since it gave the smaller MSE value compared 
to PCR and OLS. The seeming insignificant difference between the MSE for PRC 
and OLS could be attributed to minimal level of multicollinearity between the 
covariates, except with 1 7X X ; 1 3X X  and 3 7X X  (see Table 1). The fact that 
the RR’s MSE is smaller compared to the other two is the confirmation of its ef-
ficiency power to perform well irrespective of what the hidden correlations 
among the covariates are.  

https://doi.org/10.4236/ojs.2019.92012


M. A. Raheem et al. 
 

 

DOI: 10.4236/ojs.2019.92012 167 Open Journal of Statistics 
 

Table 3. Computations on collinearity test. 

VIF Eigenvalue Contn. Index Intercept X1 X2 X3 X4 X5 X6 X7 

- 7.492 1.0 0.00 0.000 0.000 0.001 0.000 0.000 0.000 0.0000 

20.736 0.507 3.846 0.00 0.000 0.000 0.026 0.000 0.000 0.000 0.002 

3.639 0.001 112.352 0.00 0.000 0.0003 0.0177 0.0137 0.0110 0.00 0.680 

38.953 0.003 153.825 0.00 0.0004 0.0067 0.0005 0.3735 0.0001 0.000 0.030 

 
Further, we observe that despite the little quantitative difference, there lie 

some advantages as well as disadvantages between the two methods. The advan-
tages of RR method over PCR are that it is easier to compute and also provides a 
more stable way of moderating the model’s degrees of freedom than dropping 
variables [14]. Meanwhile, it is important to note that PCR affords us the op-
portunity of testing a hypothesis to determine the most significant of the com-
ponent variables. 
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