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Abstract 

Multiple response surface methodology (MRSM) most often involves the 
analysis of small sample size datasets which have associated inherent statistic-
al modeling problems. Firstly, classical model selection criteria in use are very 
inefficient with small sample size datasets. Secondly, classical model selection 
criteria have an acknowledged selection uncertainty problem. Finally, there is 
a credibility problem associated with modeling small sample sizes of the order 
of most MRSM datasets. This work focuses on determination of a solution to 
these identified problems. The small sample model selection uncertainty 
problem is analysed using sixteen model selection criteria and a typical 
two-input MRSM dataset. Selection of candidate models, for the responses in 
consideration, is done based on response surface conformity to expectation to 
deliberately avoid selection of models using the problematic classical model 
selection criteria. A set of permutations of combinations of response models 
with conforming response surfaces is determined. Each combination is op-
timised and results are obtained using overlaying of data matrices. The 
permutation of results is then averaged to obtain credible results. Thus, a 
transparent multiple model approach is used to obtain the solution which 
gives some credibility to the small sample size results of the typical MRSM 
dataset. The conclusion is that, for a two-input process MRSM problem, 
conformity of response surfaces can be effectively used to select candidate 
models and thus the use of the problematic model selection criteria is 
avoidable.  
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1. Introduction and Literature Review 

Multiple response surface methodology (MRSM) is when an industrial process 
with more than one response variable is investigated and studied through the 
analysis of reliably generated response models and corresponding response sur-
faces at some region of operability. Processes with two inputs provide a special 
case of MRSM problems whose response surfaces can be constructed in three 
dimensions and therefore can be analysed for conformity.  

Hill & Hunter [1] are credited with originally identifying the existence of 
MRSM in their review paper in response surface methodology. In their review of 
developments in response surface methodology research from 1966 to 1988, 
Myers et al. [2], conclude that most problems encountered in literature and 
practice are in fact MRSM problems as opposed to single response models (un-
ivariate case). Khuri [3] single handedly wrote a full review of MRSM. Mukho-
padhyay & Khuri [2] and Khuri [4] afforded sections of MRSM in their latest 
response surface methodology reviews. 

Myers et al. [5] emphasise that MRSM should always include canonical and 
response surface analysis before optimisation. Khuri [3] [4] clearly argues that 
traditional response surface techniques that apply to single response models, in 
general, are not adequate to analyse multiple response problems. Khuri [3] and 
Mukhopadhyay & Khuri [2] emphasize the use of multivariate statistical me-
thods in every stage of MRSM processes so that the responses are considered 
simultaneously in every aspect, especially where correlation exists between the 
responses. Figure 1 shows the MRSM contextual framework as developed from 
literature.  

The first of three problems with industrial MRSM work is the uncertainty in-
herent in the process of model selection (Wit et al., [7], Steel [8], Moral-Benito 
[9]) and this worsens when sample sizes are small. Hjort and Claesken [10] state 
that the uncertainty associated with the model selection process can make the 
inference based on the final model to be seriously misleading. Danilove and 
Magnus [11] add that standard errors that are estimated under such circums-
tances are known to underreport variability. This problem can be solved by 
avoiding the use of model selection criteria in the selection of best models from 
candidate models. 
 

 
Figure 1. Multiple response surface methodology contextual framework. 
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The second problem concerns the small sample size bias problem of classical 
model selection criteria. MRSM is largely a regression modeling and model se-
lection problem. Model selection is done through model selection criteria. Seg-
houane and Bekara [12] state that the derivations of most model selection crite-
ria like Mallow’s Cp [13], Akaike’s AIC [14] and Schwarz’s SBC [15] rely on 
asymptotic approximations which are not valid for small sample sizes. Most 
MRSM experimental datasets fall within the small sample size context. The use 
of such criteria for the small sample size context problems results in increased 
bias.  

Attempts have been made to correct some of the classical model selection cri-
teria for the small sample size context. Suguira [16] corrected the Akaike’s in-
formation criterion (AIC) for small samples by making the assumption of a fi-
nite true model and avoiding the asymptotic argument in his derivation of the 
corrected AIC (AICc). Hurvich and Tsai [17], after some simulation tests, con-
firmed that AICc achieves dramatic reductions in bias in small sample sizes 
compared to AIC and even Schwarz’s SBC. They recommend its use in place of 
AIC for small sample size problems. McQuarrie and Tsai [18] corrected Hannan 
and Quinn [19]’s consistent criterion for small sample sizes to come up with the 
corrected HQ (HQc). Sawa [20] also did a small sample correction to Schwarz’s 
SBC to come out with BIC. Seghouane and Bekara [12] did a small sample cor-
rection to their Kullback-Leibler symmetric divergence information criterion 
(KIC) to come up with corrected KIC (KICc). Literature is quite silent in the ap-
plication of such research findings in MRSM. Both Myers et al. [5] and Khuri [4] 
do complain on the lake of uptake of research findings by MRSM practitioners. 
The extent to which the small sample size bias problem has been solved by the 
small sample size correction efforts can be analysed using an MRSM dataset. In 
1999 Pan [21] released his proposal of using bootstrapping for model selection 
with small samples. There are also proposals to look into model averaging 
(Yuang and Yang [22], Xie [23]). 

In accordance with the information-theoretic approach, a “best model” for 
analysis of data depends on sample size as smaller effects can often only be re-
vealed as sample sizes increase. The amount of information in large datasets 
greatly exceeds the information availed by small datasets. 

The small sample size bias problem and the one of model selection uncertain-
ty are related in that they all have to do with the use of model selection criteria in 
choosing the best model. If the use of model selection criteria is avoided for the 
use of an approach with more certainty, both problems will be solved. 

The third problem with industrial MRSM work is that most studies fall within 
small data analytics since they are based on analysing response models generated 
from datasets emanating from running designed experiments. Such experiments 
are designed to be cost effective and at the same time are expected to provide 
optimum information. It is true that most MRSM studies in industrial work use 
experimental designs which are within the small sample size context, sometimes 
below the order of (10 + k), to minimize cost. For example, most of the MRSM 
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industrial examples used in Myers et al. [5] and [24] do not have experimental 
runs (n) > k * 40. This critical problem has not been dealt with in MRSM re-
search studies so far. Khuri [4] does not even mention this problem in his pro-
posals of areas of future research in MRSM. This problem is dealt with by using 
a solution methodology that has more rigour and transparency. 

The three problems encountered by MRSM practitioners related to the small 
sample MRSM dataset sizes are shown in Figure 2.  

This paper focuses on the problems encountered with the use of model selec-
tion criteria in selecting best models with particular interest in MRSM. In other 
words, the focus is on obtaining the best result instead of the best models to use 
in optimization. In this way, 

1) Sets of candidate models are selected based on conformity of response sur-
faces for each response, 

2) Permutations of response model combinations are made,  
3) Simultaneous “optimisation” is performed of response model combina-

tions, and 
4) The best result is obtained even by averaging.  
The use of conformity of response surfaces to select candidate models for op-

timisation instead of model selection criteria is investigated in this paper. The 
use of conformity of response surfaces enables avoidance of model selection cri-
teria and thus indirectly solves the model selection criteria uncertainty problem. 
In the same manner, the avoidance of the use of model selection criteria in mod-
el selection indirectly solves the worry of the small sample size bias problem. The 
selection of response candidate models based on their conformity of response 
surfaces enables the determination of candidate model combinations for opti-
misation. The permutation of response model combinations converts to the 
permutation of results which can be averaged to obtain the best result. This mul-
ti-model approach maintains the rigour required in model selection to ensure 
convincing and credible solutions for the small sample size problems in MRSM. 
The proposed MRSM theoretical framework of the current study is shown in 
Figure 3. 
 

 
Figure 2. Showing the small sample size MRSM problems. 
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Figure 3. Multiple response surface methodology theoretical framework. 
 

The remainder of this paper is organized as follows. Section 2 introduces the 
typical small sample MRSM dataset, which will be subjected to analysis in this 
study. Section 3 analyses the typical small sample MRSM dataset with sixteen 
model selection criteria taken from literature exposing the selection uncertainty 
problem in MRSM small sample sizes. In Section 4, the MRSM small sample size 
problem is resolved by a multi-model approach and the results are analysed. 
Section 5 looks at the validation of the results in line with the original problem 
of obtaining cure times of rubber covered mining conveyor belts for a Southern 
African manufacturer. Section 6 discusses findings and Section 7 concludes and 
proposes direction of future research.  

2. The Dataset 

The MRSM experimental design and results used for the current study are 
shown in Table 1. The experimental design is a two-factor central composite de-
sign [25] [26]. The experimental runs were done to determine the best cure 
times for different industrial and mining conveyor belt thicknesses for a South-
ern African rubber covered mining conveyor belts manufacturing company. The 
two input parameters into the belt curing process are cure time (T) and rubber 
thickness (RT). The measured quality responses are adhesion of belt compo-
nents (in N/mm) and hardness of cured rubber cover (in Shore A). 

This dataset is chosen for use in this investigation because, in addition to be-
ing a typical small sample MRSM dataset, two factor experiments produce re-
sponse models that have response surfaces that can be analysed. Where factors 
are more than two, it is difficult to construct response surfaces of models in 
three dimensions. So two factor processes are a special case of MRSM where it is 
possible to check response model fitness to data, prediction performance and 
analyse response surface model conformity to expectations before selection of 
“best” model for consideration in multi-objective optimisation. More complex 
problems require more complex ways to solve them.  

3. All Possible Regressions Modeling 

All possible regressions modeling is applied to the dataset in Table 1 to obtain 
thirty one (2p−1, where p is the total number of regressors) models for each of the 
two responses, that is, adhesion and hardness. ANNEXURE A shows the thirty 
one models of each response in detail.  

4. The Model Selection Uncertainty 

This section analyses the problem of uncertainty that characterises the model 
selection criteria of response models. The multi-selection criteria approach is  
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Table 1. Experimental design and averaged results from the MRSM experiment. 

Run Random 
X1 

(T = TIME) 
X2 

(RT = RUBBER THICKNESS) 
Ave. Adhesion 

(N/mm) 
Ave. Hardness 

(˚shore A) 

1 7 16 7.2 10.60 60 

2 9 30 7.2 13.34 63 

3 11 16 22.8 6.20 53 

4 8 30 22.8 12.10 61 

5 1 23 15 11.80 58 

6 5 23 15 12.10 58 

7 4 13 15 6.5 44 

8 2 33 15 13.30 63 

9 10 23 4 13.30 63 

10 3 23 26 3.50 56 

11 6 23 15 12.20 58 

12 12 23 15 12.30 57 

13 13 23 15 12.10 58 

 
able to bring out the between-criteria uncertainty problem into the limelight.  

The thirty one all possible regressions response models which are generated 
from the results of the MRSM experiment are analysed using sixteen different 
model selection criteria. The sixteen model selection criteria are used to select 
the best model for adhesion and hardness between the thirty one all regression 
models. Ten of the sixteen model selection criteria are corrected for small sam-
ple size inefficiency; three are not corrected and choose the best model fitting the 
MRSM dataset, while three choose the best model for prediction. The formulae 
and relevant details of the selection criteria are given in ANNEXURE B.  

Model Selection Uncertainty 1: Model selection criteria do not necessarily 
agree on the best model 
 Adhesion 

Table 2 shows the models chosen as best by each criterion. The model se-
lected as best by each criterion is marked by X.  

There are two adhesion response models with the most selections in Table 2: 
one with six, [T*RT, RT2], and the other with five, [T, T*RT, T2, RT2]. Another 
three response models have lower numbers of selections. In total the sixteen 
model selection criteria chose five different response models as “best”. The mere 
dispersion of the “best” selections all over Table 2 shows that there is disagree-
ment on what is best. This is further buttressed by the fact that five models are 
selected as “best”. Model selection using a single criterion would not have hig-
hlighted the selection uncertainty problem in this way as it is clearly evident in a 
multi-criteria selection scenario. 

https://doi.org/10.4236/ojs.2019.91010


D. Pavolo, D. Chikobvu 
 

 

DOI: 10.4236/ojs.2019.91010 115 Open Journal of Statistics 

 

Table 2. Showing selection criteria and the selected adhesion “best” models. 

 
T, RT, T*RT, T2, RT2 T, T*RT, T2, RT2 T, RT, RT2 T*RT, RT2 T, T2 

R2 X 
    

R2 (adj.) 
 

X 
   

RMSE 
 

X 
   

R2 (Pred.) 
   

X 
 

Adeq (prec.) 
  

X 
  

AICc 
   

X 
 

APCp 
 

X 
   

BIC 
 

X 
   

HQc 
 

X 
   

KICc 
   

X 
 

HQ 
 

X 
   

MAIC 
   

X 
 

MKIC 
   

X 
 

KIC (chm) 
    

X 

KIC (csb) 
    

X 

KIC (cc) 
    

X 

Count 1 6 1 5 3 

 
 Hardness 

The model selection uncertainty problem is again evident with hardness as 
shown in Table 3. One model, [T, RT, T*RT, T2, RT2], is selected by eleven dif-
ferent criteria whilst another two are selected for the remaining five times. Even 
the ten small sample size corrected criteria do not agree with five choosing the 
full model, three choosing [T, T2] and two [T, T2, RT2]. This uncertainty is cha-
racteristic of the model selection process which selects one model as best.  

Model Selection Uncertainty 2: Good fitness to data and/or good prediction 
performance does not imply conforming response surface 
 Analysis of Response Surfaces 

Response surfaces for each of the thirty one models are obtained and analysed 
as to whether they conform to expectations. Data matrices are constructed to 
confirm. 

Only four adhesion response models have conforming response surfaces 
which are: [T, RT, T*RT]; [T, RT, T*RT, T2]; [T, RT, T*RT, RT2], and [T, RT, 
T*RT, T2, RT2]. Only one hardness model has a conforming response surface 
which is [T, RT, T*RT, T2].The response surfaces are shown in ANNEXURE C. 
Table 4 summarises the results of the analysis of response surfaces.  

From Table 4, the adhesion models with the conforming response surfaces are 
not necessarily the ones selected for best fit to data or for best prediction. There 
is no single model that has best fit, best prediction as well as conforming  
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Table 3. Showing selection criteria and the selected hardness best model. 

 
T, RT, T*RT, T2, RT2 T, T2, RT2 T, T2 

R. Sq. X 
  

R. Sq. (adj.) X 
  

RMSE X 
  

R. Sq. (Pred.) 
 

X 
 

Adeq. (prec.) X 
  

AICc X 
  

APCp X 
  

BIC X 
  

HQc X 
  

KICc X 
  

HQ X 
  

MAIC X 
  

MKIC 
 

X 
 

KIC (chm) 
  

X 

KIC (csb) 
  

X 

KIC (cc) 
  

X 

 
11 2 3 

 
Table 4. Summarising model selection results split between fit to data, prediction and 
conforming Response Surface (RS). 

Adhesion Table Hardness Table 

MODEL FIT Prediction RS MODEL FIT Prediction RS 

T, T2 X   T, T2 X   

T*RT, T2 X   T*RT, T2    

T*RT, RT2  X  T*RT, RT2    

T2, RT2    T2, RT2    

T, RT, T*RT   X T, RT, T*RT    

T, RT, RT2  X  T, RT, RT2    

T, T2, RT2    T, T2, RT2 X X  

T, RT, T*RT, T2   X T, RT, T*RT, T2   X 

T, RT, T*RT, RT2   X T, RT, T*RT, RT2    

T, T*RT, T2, RT2 X   T, T*RT, T2, RT2    

T, RT, T*RT, T2, RT2 X  X T, RT, T*RT, T2, RT2 X X  

COUNT 4 2 4  3 2 1 
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response surface at the same time. Best fit and/or best prediction does not ensure 
conforming response surface. This is the second uncertainty problem.  

Model Selection Uncertainty 3: Good fitness to data does not necessarily 
imply good prediction performance 

The other uncertainty problem is that a model with good fitness to data is not 
necessarily good at prediction performance. This is evident from the table. This 
is the third model selection uncertainty problem. 

Model Selection Uncertainty 4: The uncertainty of positioning/ranking by 
the individual criteria 

Figure 4 shows how each of the four adhesion models with conforming re-
sponse surfaces is ranked by each selection criterion. The only hardness model 
with a conforming response surface that is selected as best fitting is the full mod-
el which is selected by R2 only. 

In addition to the uncertainty of selection as “best” model, as previously 
noted, there is also the uncertainty of positioning/ranking by the individual cri-
teria. One cannot predict the positioning/ranking of models by the individual 
criteria.  

The best selection position of the only hardness model with the conforming 
response surface is number three as seen in Figure 5. Seven model selection  
 

 
Figure 4. Showing how the 4 adhesion models with conforming responses surfaces are 
ranked by different criteria. 
 

 
Figure 5. Showing how the hardness model with conforming response surface is posi-
tioned by each criterion. 
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criteria put this model on position three in their rankings. However, the same 
response model is ranked twenty five by four other criteria. There is, therefore, 
no known formula to predict the ranking of the models with conforming re-
sponse surfaces, as different selection criteria rank them differently. The only 
way that models with conforming response surfaces can be recognised is by in-
specting response surfaces. This is now the fourth model selection uncertainty 
problem. 

5. Effect of Correction of Model Selection Criteria 

Twenty eight model selection criteria are used to select the best model and the 
frequency of selection per number of regressor variables (p) is determined. This 
is done for each of the response variables of adhesion and hardness.  

Adhesion 
Table 5 is for the adhesion response. Row 2 of Table 5, titled “ALL 28”, 

summarises the findings. Row 3, titled “Corrected”, has the frequency details of 
the ten small sample size corrected criteria.  

A visual picture of Table 6 is shown by Figure 6. 
The mere fact that there is a selection for each p-value when all the twenty 

eight model selection criteria are used indicates model selection uncertainty. 
Table 6 shows that when only the ten small sample size corrected criteria are 

considered, two facts emerge: 1) there is zero selections for the three regressor 
 

 
Figure 6. Showing the model selection results per number of regressors (p) for the adhe-
sion response. 
 
Table 5. Summarising model selection results per number of regressors (p) for the adhe-
sion response. 

REGRESSORS (p) 1 2 3 4 5 

ALL 28 2 17 1 8 3 

Corrected 0 7 0 2 1 

 
Table 6. Showing model selection results for pooled regressors before and after the me-
dian for the adhesion response. 

Regressors (p) 1 + 2 3 4 + 5 

Total Frequency 7 0 3 
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position and the one position, and 2) there are seven selections to the left of 
three regressors (median term) and only three to the right. 

Hardness 
Table 7 is for the hardness response. Row 2 of Table 7, titled “ALL 28”, 

summarises the findings. Row 3, titled “Corrected”, has the frequency details of 
the ten small sample size corrected criteria.  

Table 7 gives the following line graph shown in Figure 7. 
Uncertainty in selection is obvious in both the adhesion and hardness cases 

where twenty eight model selection criteria are used and when only small sample 
size corrected criteria are used.  

Table 8 again queries the principle of parsimony as the small sample size cor-
rected criteria select no model with three regressors (median term) but select 
four models to the left hand and six models to the right hand of the median 
term. It appears the major achievement of small sample size correction is the 
zeroing of the middle term. 

This could be posing a query to the achievement of parsimony in balancing 
bias (lack of fit) and penalty especially where small sample size corrected criteria 
is concerned as there could be over-correction which results in criteria selecting 
models with fewer regressors or underfitting in trying to correct small sample 
size inefficiency. 
 

 
Figure 7. Showing the model selection results per number of regressors (p) for the adhe-
sion response. 
 
Table 7. Summarising model selection results per number of regressors (p) for the hard-
ness response. 

REGRESSORS (p) 1 2 3 4 5 

ALL 28 1 5 2 4 16 

Corrected 1 3 0 3 3 

 
Table 8. Showing model selection results for pooled regressors before and after the me-
dian for the hardness response. 

Regressors (p) 1 + 2 3 4 + 5 

Frequency 4 0 6 
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6. Optimisation 

MRSM is based on the use of response surfaces of a selected combination of re-
sponse models to simultaneously determine the region with the desired results. 
There being no certain method of using a classical model selection criterion to 
predict models with conforming response surfaces implies the simplest way to 
deal with the problems of model selection uncertainty and small sample size bias 
is to avoid choosing candidate “best” models with model selection criteria. In 
two-input MRSM processes this is possible as response surfaces can be used to 
select candidate models. Therefore, in this section the four possible results from 
the permutations of the four adhesion response surfaces and one hardness re-
sponse surface are analysed. The four results are obtained by simultaneously 
solving the tabled four pairs of models. The mean square errors (MSE) of the 
conforming models are also determined. 

6.1. The Permutations of Models with Conforming Response  
Surfaces 

The permutations of adhesion-hardness response model pairs with conforming 
response surfaces is shown summarized in Table 9. The four pairs form the set 
of candidate pairs for optimisation or determination of desired results. 

6.2. The Determination of Desired Results 

The desired results are obtained by constructing data matrices for each response 
in a candidate pair using Microsoft Excel and overlaying them to determine the 
region where the two response models simultaneously achieve customer ex-
pected results of adhesion ≥ 12 N/mm and hardness ≥ 60 ˚Shore A. The detailed 
process of determination of desired results for each combination is shown in 
ANNEXURE D. Pair 2 is used here as an example to demonstrate the process.  

Pair 2: [T, RT, T*RT, T2] vs. [T, RT, T*RT, T2] 
The response surfaces and corresponding data matrices of Pair 2 are presented 

as an example. The data matrices are overlaid to obtain the desired region from 
which results of cure time per rubber thickness are obtained. The boxed figure 9 
in the data matrix in Table 10 is obtained by setting a time of 22 minutes for a 
belt with rubber thickness 20 mm. 
 
Table 9. Showing the four pairs of four adhesion models and the one hardness model 
with conforming response surfaces. 

PAIR Adhesion Response Surface Model Hardness Response Surface Model 

1 T, RT, T*RT  

2 T, RT, T*RT, T2 T, RT, T*RT, T2 

3 T, RT, T*RT, RT2  

4 T, RT, T*RT, T2, RT2  
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Table 10. Showing the data matrix of the adhesion model [T, RT, T*RT, T2]. 

CT 21 22 23 24 25 26 27 28 29 30 

RT 
          

20 9 9 9 10 10 11 11 11 11 12 

19 9 9 10 10 11 11 11 11 12 12 

18 9 10 10 10 11 11 11 12 12 12 

17 10 10 10 11 11 11 12 12 12 12 

16 10 10 11 11 11 12 12 12 12 13 

15 10 11 11 11 12 12 12 12 13 13 

14 11 11 11 12 12 12 12 13 13 13 

13 11 11 12 12 12 12 13 13 13 13 

12 11 12 12 12 13 13 13 13 13 13 

11 12 12 12 13 13 13 13 13 14 14 

10 12 12 13 13 13 13 13 14 14 14 

9 12 13 13 13 13 14 14 14 14 14 

8 13 13 13 13 14 14 14 14 14 14 

7 13 13 14 14 14 14 14 14 14 14 

 
 Adhesion [T, RT, T*RT, T2] Data Matrix  

The data matrix for the adhesion model [T, RT, T*RT, T2] if overlaid with a 
hardness model data matrix from a conforming response surface gives the de-
sired region with optimum cure time per rubber thickness.  
 Hardness [T, RT, T*RT, T2] Data Matrix  

The hardness data matrix of Table 11 for model [T, RT, T*RT, T2] is overlaid 
with the data matrix for the adhesion model [T, RT, T*RT, T2] to give the de-
sired region with cure time per rubber thickness meeting customer expectations. 
Table 12 shows the region in red in which both the adhesion and hardness are 
within the customer specified region of adhesion ≥ 12 N/mm and hardness ≥ 60 
˚Shore A.  

Cure times per belt rubber thickness are selected to ensure customer expecta-
tions are met and right levels of productivity maintained. The region in red has 
both adhesion and hardness results in levels acceptable to the customer expecta-
tions. The boxed figures in the desired region indicate the cure time per belt 
rubber thickness combinations considered for work instructions.  

6.3. MSE’s of Conforming Response Models 

Mean Sum of Squares (MSE’s) for the models with conforming response surfaces 
are determined using Equation (9) for comparing of accuracy of response mod-
els. The formula for MSE is given below for a sample size n. 

( )2

1
ˆ

MSE
n

i ii Y Y

n
=

−
=

∑
                     (9) 

where iY  is the measured response, îY  is the predicted response. 
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Table 11. Showing the data matrix of the hardness model [T, RT, T*RT, T2]. 

T 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

RT 
              

20 56 57 58 59 59 60 60 60 60 60 60 60 60 59 

19 56 57 58 59 59 60 60 60 61 60 60 60 60 59 

18 57 58 58 59 60 60 60 60 61 60 60 60 59 59 

17 57 58 59 59 60 60 60 61 61 60 60 60 59 59 

16 57 58 59 59 60 60 60 61 61 60 60 60 59 59 

15 57 58 59 60 60 60 61 61 61 60 60 60 59 58 

14 58 59 59 60 60 60 61 61 61 60 60 60 59 58 

13 58 59 59 60 60 61 61 61 61 60 60 60 59 58 

12 58 59 60 60 60 61 61 61 61 60 60 59 59 58 

11 59 59 60 60 61 61 61 61 61 60 60 59 59 58 

10 59 60 60 60 61 61 61 61 61 60 60 59 59 58 

9 59 60 60 61 61 61 61 61 61 60 60 59 58 58 

8 59 60 60 61 61 61 61 61 61 60 60 59 58 57 

7 60 60 61 61 61 61 61 61 61 60 60 59 58 57 

 
Table 12. Showing the region of overlay with the wanted results. 

    CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20          60 

19         60 60 

18        61 60 60 

17       61 61 60 60 

16      60 61 61 60 60 

15     60 61 61 61 60 60 

14   
 

60 60 61 61 61 60 60 

13   60 60 61 61 61 61 60 60 

12  60 60 60 61 61 61 61 60 60 

11  60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 

7. Results 

This section shows the results obtained by optimizing each of the four pairs with 
the methodology outlined in Section 5. The computed MSE results of the indi-
vidual models with conforming response surfaces are shown. 
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7.1. Tables of Rubber Thickness vs. Cure Time 

Using overlaying of data matrices, tables of rubber thickness-cure time combi-
nations are determined for the four pairs of models. The tables are shown as 
Tables 13-16. 

If all the result tables are averaged, a result equivalent to Table 14 and Table 
15 is obtained. This result is both the median and mode of the tables and is 
therefore the best to adopt for use. 

7.2. MSE’s of Models with Conforming Response Surfaces 

Response model accuracy is checked by the size of the MSE. Table 17 shows the 
computed MSE values of models with conforming response surfaces.  

The MSE values for adhesion models show that the full model, [T, RT, T*RT, 
T2, RT2], has the best fit-to-data accuracy compared to the other three models 
with conforming response surfaces. 
 
Table 13. Pair 1 [T, RT, T*RT] vs. [T, RT, T*RT, T2]. 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 28 28 29 30 

 
Table 14. Pair 2 [T, RT, T*RT, T2] vs. [T, RT, T*RT, T2]. 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 27 28 29 30 

 
Table 15. Pair 3 [T, RT, T*RT, RT2] vs. [T, RT, T*RT, T2]. 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 27 28 29 30 

 
Table 16. Pair 4 [T, RT, T*RT, T2, RT2] vs. [T, RT, T*RT, T2]. 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 27 28 28 29 

 
Table 17. Showing MSE results for adhesion and hardness. 

ADHESION HARDNESS 

 
MSE 

 
MSE 

T, RT, T*RT 2.3441   

T, RT, T*RT, T2 2.1777 T, RT, T*RT, T2 5.3806 

T, RT, T*RT, RT2 1.2789   

T, RT, T*RT, T2, RT2 0.9762   
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8. Validation 

The results from the first seven conveyor belts to be run from the process, shown 
in Table 18, are compared with model forecasted results by a paired T-Test and 
the mean forecasted squared errors (MSFE) of response models are computed.  

Validation by T-Tests 
The first validation test proves that there is no significant statistical difference 

between the forecasted results and the results obtained from belts run from the 
normal belt production process. The results from the first seven conveyor belts 
to be run from the process are compared from model forecasted results using a 
paired T-Test as shown in Figure 8.  

Validation by MSFE 
In this section, validation of results is done by checking the effectiveness to 

obtain better or the same rubber thickness-cure time combinations as obtained 
in the first MRSM experiment.  

( )2
1SFE

n
i Fii Y Y
n

=
−

= ∑                    (10) 

where iY  is ith the measured response, FiY  is the ith forecasted response. 
The MSFE values for adhesion models shown in Table 19 reveal that the full 

model, [T, RT, T*RT, T2, RT2], has the best prediction accuracy compared to the 
 

 
Figure 8. Showing the paired T-Test results. 
 
Table 18. Validation results. 

# 
Rubber 

Thickness 
(mm) 

Cure 
Time 
(min) 

Actual 
Adhesion 
(N/mm) 

Predicted 
Adhesion 
(N/mm) 

Adhesion 
Error 

(N/mm) 

Actual 
Hardness 

Predicted 
Hardness 

Hardness 
Error 

1 7 21 11.1 13.0 −1.9 60 60 0 

2 8 22 13.4 13.0 0.4 60 60 0 

3 8 22 13.0 13.0 0.0 61 60 +1 

4 9 23 13.3 13.0 0.3 60 61 −1 

5 8 22 12.1 13.0 −0.9 60 60 0 

6 8 22 12.8 13.0 −0.2 61 60 +1 

7 7 21 12.5 13.0 0.5 61 60 +1 
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Table 19. Showing MSFE results for adhesion and hardness. 

ADHESION HARDNESS 

 
MSFE 

 
MSFE 

T, RT, T*RT 2.1760   

T, RT, T*RT, T2 2.4926 T, RT, T*RT, T2 0.3047 

T, RT, T*RT, RT2 2.0456   

T, RT, T*RT, T2, RT2 1.8455   

 
other three models with conforming response surfaces. The best combination of 
adhesion versus hardness models for the best accuracy results is therefore the 
pair: Pair 4 [T, RT, T*RT, T2, RT2] vs. [T, RT, T*RT, T2].  

Averaging all the results tables gives a table similar to Table 14 and Table 15. 
The table represented by Table 14 and Table 15 is therefore both the mean and 
mode of the permutation of results. This shows that it is a robust result. This re-
sult would be the best to use in Work Instructions in this case. 

9. Discussion 

This section discusses the small sample size MRSM datasets problems of using 
classical model selection criteria to select “best” models for use in determining 
desired solutions and how they are solved.  

The Small Sample Size Bias Problem 
The small sample size model selection criteria bias problem is solved by 

avoiding the use of model selection criteria for selecting “best” models in this 
study. In fact where response surfaces can be used to select candidate models, 
classical model selection criteria become irrelevant with all their problems. 

The Model Selection Uncertainty Problem 
The model selection uncertainty problem is related to the use of classical 

model selection criteria for selecting best models. Even the use of small sample 
size corrected criteria is shown to have the problem of model selection uncer-
tainty. It is difficult to predict a model with a conforming response surface with 
classical best model selection criteria whether small sample size corrected or not. 
MRSM depends a lot on the use of conforming response surfaces in simulta-
neously determining the desired results. Research on design of experiments for 
MRSM should focus more on determining conforming response surfaces than 
just models with good fit to available data or prediction. The conformance of the 
response surface within the region of interest should be the focus of MRSM ex-
perimental designing research.  

Using Response Surfaces to Select Response Models 
According to Moral-Benito [9], standard practice in empirical research is 

based on two steps: 1) researchers select a model from the space of all possible 
models and 2) proceed as if the selected model had generated the data. Uncer-
tainty is, therefore, typically ignored in the model selection step.  

https://doi.org/10.4236/ojs.2019.91010


D. Pavolo, D. Chikobvu 
 

 

DOI: 10.4236/ojs.2019.91010 126 Open Journal of Statistics 

 

The use of response surfaces to select conforming models is very possible with 
two-factor multiple regression models although it is not that easy with processes 
of more than two factors. However, whilst still dealing with two factor processes, 
selecting models based on conformity of response surfaces avoids use of classical 
model selection criteria in choosing the best models and hence the problems of 
model selection criteria uncertainty and small sample size datasets bias. In 
MRSM that is very important. Using response models with conforming response 
surfaces within the region of interest is the fundamental focus of MRSM. The 
selection of candidate models with conforming response surfaces within the re-
gion of interest also opens the door for multiple model solution methodology 
which introduces rigour, transparency and therefore credibility into the MRSM 
results. The focus of MRSM, therefore, shifts from obtaining the “best” model to 
obtaining the best results within the region of interest. 

10. Conclusion and Future Research 

Selecting candidate response models based on conformity of response surfaces 
avoids the uncertainty and small sample size bias problems that are related to 
using classical model selection criteria in selecting best models. So in two-input 
process problems, where response surfaces can easily be constructed and ana-
lysed, it is better for practitioners to use response surfaces to select candidate 
models for determining the permutations of response model sets for onward si-
multaneous optimisation. 

Multiple model MRSM approach ensures credibility as rigour is maintained 
up to the final result. The problem of model selection uncertainty is kept clear of 
affecting the final result in a very transparent way.  

However, for best results, the proposed multiple model MRSM approach 
based on using candidate models with conforming response surfaces requires 
prior knowledge on the expected ideal response surface.  

Future Research 
1) More datasets from two-factor processes need to be studied to ensure ge-

neralizability of findings to all other two-factor processes. 
2) A usability study of the multivariate approach (Fujikoshi and Satoh [8]) 

will be done to investigate applicability, simplification, effectiveness and accura-
cy. 

3) Model averaging (Yuan and Yang [27], Xie [22]) will be looked into to in-
vestigate applicability, accuracy, effectiveness and simplification.  

4) Applicability of envelope models and methods to MRSM. 
5) Research on generalising beyond the two-factor process to three and higher 

factor processes is necessary. 
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Annexure A 

In this section, the MRSM dataset is modeled to produce adhesion and hardness 
response models studied in this univariate investigation. Response modeling is 
done using Minitab 17. The model selection uncertainty of this MRSM small 
sample dataset is analysed. The general multivariate multiple regression model is 

( ), 1, 2,, ,ui i u uiy f X u nβ ε= + =   and 1,2, ,i r=               (1) 

where uX  is the vector of settings of k design variables at the uth
 experimental 

run, β  is a vector of unknown parameters, if  is a function of known form for 
the ith responses, and uiε  is a random error associated with the ith response for 
the experimental run u. It is assumed that the uiε ‘s are normally distributed 
such that ( ) 0uiE ε = , ( ) 0ui vjE ε ε× = , for all ,i j u v≠ ≠ , ( )ui uiVar ε σ= . 

There are two important mathematical models that are commonly used in 
multi-response surface methodology which are special cases of model (1). 

The first-degree model (d = 1), 

0 1
k

i ijy xβ β ε
=

= + +∑                       (2) 

And, the second-degree model (d = 2) 
2

0 0 0 0 0
k n n n

i i ij i j ii ii i j iy x x x xβ β β β ε
= = = =

= + + + +∑ ∑ ∑ ∑         (3) 

In this study, y is either adhesion or hardness, and ix  is cure time (T) or to-
tal rubber thickness (RT). The parameters (β’s), are estimated using statistical 
software. 

All regression methodology is employed to produce thirty one response mod-
els for each of the two responses, that is, adhesion and hardness from the MRSM 
dataset. 

The general second degree model of Equation (3) is expanded into the fol-
lowing belt curing model:  

0 1 2 12 11 2
2

2
2

Adhesion / Hardness

T RT T RT T RT errorβ β β β β β= + ∗ + ∗ + ∗ ∗ + ∗ + ∗ +
   (4) 

where T is cure time in minutes, RT is rubber thickness in millimeters, 0β  is 
the intercept and 1β , 1β , 12β , 11β , and 22β  are estimates of parameters.  

1) Adhesion Response Models 
Table A1 shows the summary information of the thirty one all possible re-

gression models generated by Minitab 17 for the adhesion response. Each re-
sponse model is shown with its regressors and parameter values. For example, 
the first and second models which are represented by T and RT expand to: 

Adhesion 3.26 0.3244 T= + ∗                   (5) 

and 
Adhesion 15.41 0.3127 RT= − ∗                 (6) 

The rest of the twenty nine models are expanded in a similar manner. 
Using the classical model selection process anyone of these thirty one models 

shown in Table A1 is a potential “best” model as chosen by the selection crite-
rion in use. In this study, this set of models is subjected to multiple criteria anal-
ysis to avoid the risks of the one criterion model selection approach. 

https://doi.org/10.4236/ojs.2019.91010


D. Pavolo, D. Chikobvu 
 

 

DOI: 10.4236/ojs.2019.91010 130 Open Journal of Statistics 

 

Table A1. Summary of adhesion models. 

MODEL β0 β1 β2 β12 β11 β22 

T 3.26000 0.32440 
    

RT 15.41000 
 

−0.31270 
   

T*RT 12.26000 
  

−0.00389 
  

T2 6.58000 
   

0.00668 
 

RT2 13.64000 
    

−0.01114 

T, RT 7.95000 0.32440 −0.31270 
   

T, T*RT 3.26000 0.51000 
 

−0.01235 
  

T, T2 −2.30000 0.83500 
  

−0.01110 
 

T, RT2 6.18000 0.32440 
   

−0.01114 

RT, T*RT 15.41000 
 

−0.79100 0.02078 
  

RT, T2 11.67000 
 

−0.31270 
 

0.00668 
 

RT, RT2 11.08000 
 

0.38000 
  

−0.02309 

T*RT, T2 8.96000 
  

−0.01189 0.01048 
 

T*RT, RT2 10.49700 
  

0.02025 
 

−0.02579 

T2, RT2 9.91000 
   

0.00664 −0.01109 

T, RT, T*RT 12.94000 0.10700 −0.64600 0.01450 
  

T, RT, T2 2.41000 0.83500 −0.31270 
 

−0.01110 
 

T, RT, RT2 3.61000 0.32440 0.38000 
  

−0.02309 

T, T*RT, T2 −2.28000 1.02000 
 

−0.01235 −0.01110 
 

T, T*RT, RT2 9.14000 0.09100 
 

0.01559 
 

−0.02242 

T, T2, RT2 −0.25000 0.91900 
  

−0.01290 −0.01122 

RT, T*RT, T2 15.24000 
 

−0.77100 0.01990 0.00031 
 

RT, T*RT, RT2 11.08000 
 

−0.09800 0.02078 
 

−0.02309 

RT, T2, RT2 7.52000 
 

0.35800 
 

0.00661 −0.02240 

T*RT, T2, RT2 10.39000 
  

0.01890 0.00054 −0.02485 

T, RT, T*RT, T2 7.40000 0.61800 −0.64600 0.01450 −0.01110 
 

T, RT, T*RT, RT2 8.61000 0.10700 0.04700 0.01450 
 

−0.02309 

T, T*RT, T2, RT2 −4.25000 1.02100 0.43000 
 

−0.01510 −0.02476 

T, RT, T2, RT2 1.95000 0.75900 
 

0.01676 −0.01491 −0.02336 

RT, T*RT, T2, RT2 11.21000 
 

−0.11300 0.02150 −0.00026 −0.02317 

T, RT, T*RT, T2, RT2 0.74000 0.80400 0.09700 0.01450 −0.01510 −0.02476 

 
2) Hardness Response Models 
Table A2 shows the summary information of the thirty one all-regressions 

models generated by Minitab 17 for the hardness response. Each response model 
is shown with its regressors and parameter values. The first two summerised 
models can be expanded to: 
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Table A2. Summary of hardness models. 

MODEL β0 β1 β2 β12 β11 β22 

T 45.75000 0.51300 
    

RT 60.25000 
 

−0.18000 
   

T*RT 56.18000 
  

0.00395 
  

T2 52.13000 
   

0.00966 
 

RT2 58.32000 
    

−0.00297 

T, RT 48.46000 0.51300 −0.18000 
   

T, T*RT 45.75000 0.60400 
 

0.00608 
  

T, T2 15.30000 3.32000 
  

−0.06100 
 

T, RT2 46.53000 0.51300 
   

−0.00297 

RT, T*RT 60.25000 
 

−0.96100 0.03390 
  

RT, T2 54.84000 
 

−0.18000 
 

−0.00966 
 

RT, RT2 69.31000 
 

−1.62900 
  

0.04830 

T*RT, T2 52.89000 
  

0.00454 −0.01111 
 

T*RT, RT2 55.08000 
  

0.02090 
 

−0.01810 

T2, RT2 52.90000 
   

0.00965 −0.00291 

T, RT, T*RT 57.50000 0.03200 −0.71800 0.03210 
  

T, RT, T2 18.00000 3.32000 −0.18000 
 

−0.06100 
 

T, RT, RT2 57.51000 0.51300 −1.62900 
  

0.04830 

T, T*RT, T2 15.30000 3.41000 
 

−0.00608 −0.06100 
 

T, T*RT, RT2 41.93000 0.87600 
 

−0.02420 
 

0.01460 

T, T2, RT2 15.90000 3.34000 
  

−0.06160 −0.00335 

RT, T*RT, T2 65.06000 
 

−1.49600 0.05720 −0.00860 
 

RT, T*RT, RT2 69.31000 
 

−2.40900 0.03392 
 

0.04830 

RT, T2, RT2 64.01000 
 

−1.66100 
 

0.00983 0.04940 

T*RT, T2, RT2 52.66000 
  

−0.00940 0.01270 0.00390 

T, RT, T*RT, T2 29.10000 2.84000 −0.91800 0.03210 −0.06100 
 

T, RT, T*RT, RT2 68.60000 0.03200 −2.36600 0.03210 
 

0.04830 

T, T*RT, T2, RT2 13.40000 3.53000 
 

−0.01960 −0.05920 0.01080 

T, RT, T2, RT2 29.42000 3.00200 −1.45000 
 

−0.05410 0.04230 

RT, T*RT, T2, RT2 73.31000 
 

−2.84700 0.05400 −0.00744 0.00475 

T, RT, T*RT, T2, RT2 40.50000 2.52100 −2.18700 0.03210 −0.05410 0.04230 

 

Adhesion 45.75 0.513 T= + ∗                   (7) 

and 

Adhesion 60.25 0.18 RT= − ∗                  (8) 

The rest of the twenty nine models can be similarly expanded.  
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Annexure B 

1 R² SSR/SST 
Squared multiple 

correlation coefficient 
Goodness of Fit 

Large 
samples 

2 R² (adj.) ( )( ) ( )21 1 1 1R n n p− − − − −  Adjusted R² 
Goodness of Fit 

+ Parsimony 
Large 

samples 

3 RMSE ( )( )( )2Predicted Actuali ii
n−∑  Root mean 

squared error 
Goodness of Fit 

Large 
samples 

4 MS (LOF) ( ) ( )RSS SSpe dpen p− − −  Mean Square 
Lack of Fit 

Lack of Fit 
Any 

sample size 

5 PRESS ( )( )1i iii
r H−∑  Prediction Sum 

of Squares 
Prediction 

Any 
sample size 

6 R²-prediction ( )TOT1 PRESS SSE 100− ∗    Allen (1971b) Prediction 
Any 

sample size 

7 
Adequate 
Precision ( ) ( ) ( )ˆ

ˆ ˆmax min 4yY Y V − > 
  This is a 

signal-to-noise ratio 
Prediction 

Any 
sample size 

8 Cp ( )2
pSSE 2n pσ − +  Mallow’s Cp (1973) Prediction 

Large 
sample size 

9 Cp -p ( )2
pSSE n pσ − +  Mallow’s Cp (1973) Prediction 

Large 
sample size 

10 AIC ( )ln SSE 2n n k∗ +  Akaike (1973) 
Goodness of Fit 

+ Parsimony 
Large 

sample size 

11 SBC ( ) ( )ln SSE lnn n k n∗ + ∗  Schwarz’s Bayesian 
Criterion (1978) 

Goodness of Fit 
+ Parsimony 

Large 
sample size 

12 BIC ( ) ( ) ( )22 2 2ln SSE 2 2 SSE 2n n k n n SSEσ σ ∗ + + −      Sawa (1978) 
Goodness of Fit 

+ Parsimony 
Small 

sample size 

13 APCp ( ) ( )( )SSEn p n n p+ ∗ −  Amemiya’s Prediction 
Criterion () 

Prediction Any size 

14 AICc ( ) ( )AIC 2 1 1k k n k+ + − −  Corrected AIC,  
ugiura (1978) 

Goodness of Fit 
+ Parsimony 

Small 
sample size 

15 HQ ( ) ( )( )ln SSE 2 ln lnn n p n∗ + ∗  Hannan and 
Quinn (1979) 

Goodness of Fit 
+ Parsimony 

Any 
sample size 

16 HQc ( ) ( )( ) ( )2ln SSE 2 ln ln 1n n np n n p∗ + ∗ − −  Mcquarrie and 
Tsai (1998) 

Goodness of Fit  
+ Parsimony 

Small 
sample size 

17 KIC ( ) ( )ln SSE 3 1n n k∗ + +  Cavanaugh 
J. E. (1999) 

Goodness of Fit 
+ Parsimony 

Large 
sample size 

18 KICc ( ) ( )( ) ( ) ( )ln SSE 1 3 2 2n n k n k n k k n k∗ + + − − − − + −  Bekara M (2004) 
Goodness of Fit 

+ Parsimony 
Small 

sample sizes 

19 MKIC ( ) 2 22 2 2 2 4n P p p p nσ σ− − + − +    Cavanaugh 
J. E. (2004) 

Goodness of Fit 
+ Parsimony 

Small 
sample sizes 

20 MAIC ( ) ( ) ( ) ( ) 22 2 2 2AICc 2 1 2 1p n p x n p n p x n pσ σ σ σ+ − − − − − − −        Fujikoshi and 
Satoh (1997) 

Goodness of Fit 
+ Parsimony 

Small 
sample sizes 

21 TIC ( ) ( )ln SSE 2 1n n k∗ + +  Takeuchi Information 
Criterion () 

Goodness of Fit 
+ Parsimony 

Large 
sample size 

22 Sp ( )pRMS 1n p− −  Hocking 
(1976) 

Prediction 
Large 

sample size 

23 Jp ( )( )1pS n p n p n∗ − − +  Hocking (1976), Final 
Prediction Error 

Prediction 
Large 

sample size 
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Continued 

24 Pp SSE n  Highly 
correlated to R² 

Goodness of Fit 
Large 

sample size 

25 KICchm ( )( ) ( )KIC 2 1 2 2p p n p+ + + − −  Hafidi and 
Mkhadri (2007) 

Goodness of Fit 
+ Parsimony 

Small 
sample size 

26 KICcsb ( )KICchm p n p+ −  Seghouane A. K. 
and Bakara (2004) 

Goodness of Fit 
+ Parsimony 

Small 
sample size 

27 KICcc ( )( )KICcsb lnn n n p p+ ∗ − −  Cavanaugh 
J. E. (2004) 

Goodness of Fit 
+ Parsimony 

Small 
sample size 

28 mMDL ( ) ( )( ) ( ) ( ) ( ) ( )2 ln RSS 2 ln F-Ratio 0.5ln 1.5lnn n k k n k k− + + − −  Hansen M.H. 
and Bin Yu (2001) 

Goodness of Fit 
+ Parsimony 

Any 
sample size 

29 gMDL ( ) ( )( ) ( ) ( ) ( )2 ln RSS 2 ln F-Ratio lnn n k k n− + +  Hansen M. H. 
and Bin Yu (2001) 

Goodness of Fit 
+ Parsimony 

Any 
sample size 

Annexure C 

The four adhesion and one hardness conforming response surfaces constructed 
using excel are shown.  

1) Adhesion [T, RT, T*RT] (Figure C1) 
 

 
Figure C1. Showing the adhesion response surface for the model. 

 
2) Adhesion [T, RT, T*RT, T2] Response Surface (Figure C2) 

 

 
Figure C2. Showing the adhesion response surface for the model [T, RT, T*RT, T2]. 

 
3) Adhesion [T, RT, T*RT, RT2] Response Surface (Figure C3) 
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Figure C3. Showing the response surface of the adhesion model [T, RT, T*RT, RT2]. 

 
4) Adhesion [T, RT, T*RT, T2, RT2] Response Surface (Figure C4) 

 

 
Figure C4. Showing the conforming response surface for the adhesion model [T, RT, 
T*RT, T2, RT2]. 
 

The four adhesion response surfaces show the expected continuously rising 
modulus behaviour of rubber skim compounds whose specification is synthetic 
rubber based.  

5) Hardness [T, RT, T*RT, T2]  
The response surface for [T, RT, T*RT, T2] is the only conforming response 

surface for hardness among the thirty one hardness models and is shown in 
Figure C5. 
 

 
Figure C5. Showing the hardness response surface from the single conforming response 
surface model. 
 

The hardness behaviour of the cover compound is as expected from a natural 
rubber based compound designed for hardness.  
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Annexure D 

1) Response surfaces, data matrices and determination of results 
a) Data Matrices 
i) Adhesion [T, RT, T*RT] (Table D1) 

 
Table D1. Showing the data matrix of the adhesion model [T, RT, T*RT]. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 8 9 9 10 10 10 11 11 12 12 

19 9 9 9 10 10 11 11 11 12 12 

18 9 9 10 10 11 11 11 12 12 12 

17 9 10 10 10 11 11 11 12 12 13 

16 10 10 10 11 11 11 12 12 12 13 

15 10 10 11 11 11 12 12 12 13 13 

14 10 11 11 11 12 12 12 13 13 13 

13 11 11 11 12 12 12 13 13 13 13 

12 11 11 12 12 12 13 13 13 13 14 

11 11 12 12 12 13 13 13 13 14 14 

10 12 12 12 13 13 13 13 14 14 14 

9 12 12 13 13 13 13 14 14 14 14 

8 12 13 13 13 13 14 14 14 14 14 

7 13 13 13 13 14 14 14 14 14 15 

 
The data matrix for the adhesion model [T, RT, T*RT] if overlapped with a 

hardness model data matrix from a conforming response surface will give a 
wanted region with optimum cure time per rubber thickness results.  

ii) Hardness [T, RT, T*RT, T2] (Table D2) 
 
Table D2. Showing the data matrix of the hardness model [T, RT, T*RT, T2]. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 57 58 59 59 60 60 60 60 60 60 

19 57 58 59 59 60 60 60 61 60 60 

18 58 58 59 60 60 60 60 61 60 60 

17 58 59 59 60 60 60 61 61 60 60 

16 58 59 59 60 60 60 61 61 60 60 

15 58 59 60 60 60 61 61 61 60 60 

14 59 59 60 60 60 61 61 61 60 60 

13 59 59 60 60 61 61 61 61 60 60 

12 59 60 60 60 61 61 61 61 60 60 

11 59 60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 
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The hardness data matrix for model [T, RT, T*RT, T2] will overlap with any 
conforming response model to give the optimum region with cure time per rub-
ber thickness results.  

Table D3 shows the region in red in which both the adhesion and hardness 
are within the customer specified region of adhesion ≥ 12 N/mm and hardness ≥ 
60 Shore A. 
 
Table D3. Showing the customer specified region in red. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20         60 60 

19         60 60 

18        61 60 60 

17        61 60 60 

16       61 61 60 60 

15      61 61 61 60 60 

14     60 61 61 61 60 60 

13    60 61 61 61 61 60 60 

12  
 

60 60 61 61 61 61 60 60 

11  60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 

 
2) Pair 2: [T, RT, T*RT, T2] vs. [T, RT, T*RT, T2] 
a) Response Surfaces 
i) Adhesion [T, RT, T*RT, T2] (Figure D1) 

 

 
Figure D1. Showing the adhesion response surface for the model [T, RT, T*RT, T2]. 

 
ii) Hardness [T, RT, T*RT, T2] (Figure D2) 
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Figure D2. Showing the hardness response surface for [T, RT, T*RT, T2]. 

 
b) Data Matrices 
i) Adhesion [T, RT, T*RT, T2] (Table D4) 

 
Table D4. Summarising model selection results split between fit to data, prediction and 
conforming response surface. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 9 9 9 10 10 11 11 11 11 12 

19 9 9 10 10 11 11 11 11 12 12 

18 9 10 10 10 11 11 11 12 12 12 

17 10 10 10 11 11 11 12 12 12 12 

16 10 10 11 11 11 12 12 12 12 13 

15 10 11 11 11 12 12 12 12 13 13 

14 11 11 11 12 12 12 12 13 13 13 

13 11 11 12 12 12 12 13 13 13 13 

12 11 12 12 12 13 13 13 13 13 13 

11 12 12 12 13 13 13 13 13 14 14 

10 12 12 13 13 13 13 13 14 14 14 

9 12 13 13 13 13 14 14 14 14 14 

8 13 13 13 13 14 14 14 14 14 14 

7 13 13 14 14 14 14 14 14 14 14 

 
ii) Hardness [T, RT, T*RT, T2] (Table D5 and Table D6) 

 
Table D5. Showing the data matrix of the hardness model [T, RT, T*RT, T2]. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 57 58 59 59 60 60 60 60 60 60 

19 57 58 59 59 60 60 60 61 60 60 

18 58 58 59 60 60 60 60 61 60 60 

17 58 59 59 60 60 60 61 61 60 60 

16 58 59 59 60 60 60 61 61 60 60 
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Continued 

15 58 59 60 60 60 61 61 61 60 60 

14 59 59 60 60 60 61 61 61 60 60 

13 59 59 60 60 61 61 61 61 60 60 

12 59 60 60 60 61 61 61 61 60 60 

11 59 60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 

 
Table D6. Showing the customer specified region of Pair 2 in red.  

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20          60 

19         60 60 

18        61 60 60 

17       61 61 60 60 

16      60 61 61 60 60 

15     60 61 61 61 60 60 

14   
 

60 60 61 61 61 60 60 

13   60 60 61 61 61 61 60 60 

12  60 60 60 61 61 61 61 60 60 

11  60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 

 
3) Pair 3: [T, RT, T*RT, RT2] vs. [T, RT, T*RT, T2] 
a) Response Surfaces 
i) Adhesion [T, RT, T*RT, RT2] (Figure D3) 

 

 
Figure D3. Showing the response surface of the adhesion model [T, RT, T*RT, RT2]. 
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ii) Hardness [T, RT, T*RT, T2] 
The hardness response surface is shown already in Figure D2 above. 
b) Data Matrices 
i) Adhesion [T, RT, T*RT, RT2] (Table D7) 

 
Table D7. Summarising model selection results split between fit to data, prediction and 
conforming response surface. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 9 9 9 10 10 11 11 11 11 12 

19 9 9 10 10 11 11 11 11 12 12 

18 9 10 10 10 11 11 11 12 12 12 

17 10 10 10 11 11 11 12 12 12 12 

16 10 10 11 11 11 12 12 12 12 13 

15 10 11 11 11 12 12 12 12 13 13 

14 11 11 11 12 12 12 12 13 13 13 

13 11 11 12 12 12 12 13 13 13 13 

12 11 12 12 12 13 13 13 13 13 13 

11 12 12 12 13 13 13 13 13 14 14 

10 12 12 13 13 13 13 13 14 14 14 

9 12 13 13 13 13 14 14 14 14 14 

8 13 13 13 13 14 14 14 14 14 14 

7 13 13 14 14 14 14 14 14 14 14 

 
ii) Hardness [T, RT, T*RT, T2] (Table D8 and Table D9) 

 
Table D8. Showing the data matrix of the hardness model [T, RT, T*RT, T2]. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 57 58 59 59 60 60 60 60 60 60 

19 57 58 59 59 60 60 60 61 60 60 

18 58 58 59 60 60 60 60 61 60 60 

17 58 59 59 60 60 60 61 61 60 60 

16 58 59 59 60 60 60 61 61 60 60 

15 58 59 60 60 60 61 61 61 60 60 

14 59 59 60 60 60 61 61 61 60 60 

13 59 59 60 60 61 61 61 61 60 60 

12 59 60 60 60 61 61 61 61 60 60 

11 59 60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 
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Table D9. Showing the customer specified region of Pair 3 in red.  

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20         
 

60 

19         60 60 

18        61 60 60 

17       61 61 60 60 

16      60 61 61 60 60 

15     60 61 61 61 60 60 

14    60 60 61 61 61 60 60 

13   60 60 61 61 61 61 60 60 

12  60 60 60 61 61 61 61 60 60 

11  60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 

 
4) Pair 4: [T, RT, T*RT, T2, RT2] vs. [T, RT, T*RT, T2] 
a) Response Surfaces 
i) Adhesion [T, RT, T*RT, T2, RT2] (Figure D4) 

 

 
Figure D4. Showing the response surface of the adhesion model [T, RT, T*RT, T2, RT2]. 
 

ii) Hardness [T, RT, T*RT, T2] 
The hardness response surface is shown in D2 above.  
b) Data Matrices 
i) Adhesion [T, RT, T*RT, T2, RT2] (Tables D10-D12) 

https://doi.org/10.4236/ojs.2019.91010


D. Pavolo, D. Chikobvu 
 

 

DOI: 10.4236/ojs.2019.91010 141 Open Journal of Statistics 

 

Table D10. Showing the data matrix of the adhesion model [T, RT, T*RT, T2, RT2]. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 9 10 10 10 11 11 11 12 12 12 

19 10 10 10 11 11 11 12 12 12 12 

18 10 11 11 11 12 12 12 12 13 13 

17 11 11 11 12 12 12 13 13 13 13 

16 11 11 12 12 12 13 13 13 13 13 

15 11 12 12 12 13 13 13 13 14 14 

14 12 12 12 13 13 13 13 14 14 14 

13 12 12 13 13 13 13 14 14 14 14 

12 12 13 13 13 13 14 14 14 14 14 

11 12 13 13 13 13 14 14 14 14 14 

10 12 13 13 13 13 14 14 14 14 14 

9 13 13 13 13 14 14 14 14 14 14 

8 13 13 13 13 13 14 14 14 14 14 

7 13 13 13 13 13 14 14 14 14 14 

 
Table D11. Showing the data matrix of the hardness model [T, RT, T*RT, T2]. 

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20 57 58 59 59 60 60 60 60 60 60 

19 57 58 59 59 60 60 60 61 60 60 

18 58 58 59 60 60 60 60 61 60 60 

17 58 59 59 60 60 60 61 61 60 60 

16 58 59 59 60 60 60 61 61 60 60 

15 58 59 60 60 60 61 61 61 60 60 

14 59 59 60 60 60 61 61 61 60 60 

13 59 59 60 60 61 61 61 61 60 60 

12 59 60 60 60 61 61 61 61 60 60 

11 59 60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 
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Table D12. Showing the customer specified region of Pair 4 in red.  

CT 
RT 

21 22 23 24 25 26 27 28 29 30 

20        60 60 60 

19       60 61 60 60 

18     60 60 60 61 60 60 

17    60 60 60 61 61 60 60 

16    60 60 60 61 61 60 60 

15   60 60 60 61 61 61 60 60 

14   60 60 60 61 61 61 60 60 

13   60 60 61 61 61 61 60 60 

12  60 60 60 61 61 61 61 60 60 

11  60 60 61 61 61 61 61 60 60 

10 60 60 60 61 61 61 61 61 60 60 

9 60 60 61 61 61 61 61 61 60 60 

8 60 60 61 61 61 61 61 61 60 60 

7 60 61 61 61 61 61 61 61 60 60 

 
2) Results 
See Table D13. 

 
Table D13. Showing rubber thickness—Cure Time optimum combinations for the four 
pairs of adhesion vs. hardness models. (a) Pair 1: [T, RT, T*RT] vs. [T, RT, T*RT, T2]; (b) 
Pair 2: [T, RT, T*RT, T2] vs. [T, RT, T*RT, T2]; (c) Pair 3: [T, RT, T*RT, RT2] vs. [T, RT, 
T*RT, T2]; (d) Pair 4: [T, RT, T*RT, T2, RT2] vs. [T, RT, T*RT, T2].  

(a) 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 28 28 29 30 

(b) 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 27 28 29 30 

(c) 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 27 28 29 30 

(d) 

Rubber Thickness (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time (min.) 21 22 23 24 24 25 25 26 26 27 27 28 28 29 
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