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Abstract 
Disease mapping is the study of the distribution of disease relative risks or 
rates in space and time, and normally uses generalized linear mixed models 
(GLMMs) which includes fixed effects and spatial, temporal, and spa-
tio-temporal random effects. Model fitting and statistical inference are 
commonly accomplished through the empirical Bayes (EB) and fully Bayes 
(FB) approaches. The EB approach usually relies on the penalized qua-
si-likelihood (PQL), while the FB approach, which has increasingly become 
more popular in the recent past, usually uses Markov chain Monte Carlo 
(McMC) techniques. However, there are many challenges in conventional 
use of posterior sampling via McMC for inference. This includes the need 
to evaluate convergence of posterior samples, which often requires exten-
sive simulation and can be very time consuming. Spatio-temporal models 
used in disease mapping are often very complex and McMC methods may 
lead to large Monte Carlo errors if the dimension of the data at hand is 
large. To address these challenges, a new strategy based on integrated 
nested Laplace approximations (INLA) has recently been recently devel-
oped as a promising alternative to the McMC. This technique is now be-
coming more popular in disease mapping because of its ability to fit fairly 
complex space-time models much more quickly than the McMC. In this 
paper, we show how to fit different spatio-temporal models for disease 
mapping with INLA using the Leroux CAR prior for the spatial compo-
nent, and we compare it with McMC using Kenya HIV incidence data 
during the period 2013-2016. 
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1. Introduction 

Statistical methods for disease mapping have grown very fast in the last decade. 
Modern registers provide a lot of information with high quality data recorded 
for different regions over a period of time (e.g. years). This has brought in new 
challenges and goals which also require new and more flexible statistical models, 
faster and less computationally demanding methods for model fitting, and ad-
vance softwares to implement them. Spatio-temporal disease mapping models 
are widely used to describe the temporal variation and geographical patterns of 
mortality risks or rates. The information obtained from these analyses is useful 
for health researchers and policy makers since it helps in formulating hypothesis 
about the aetiology of a disease, looking for risk factors and also allocation of 
resources efficiently in hot spot areas, or planning prevention and intervention 
measures. 

Spatio-temporal models are mainly used in disease mapping studies because 
they make it possible to borrow strength from spatial and temporal neighbours 
to reduce the high variability that is common to classical risk estimators, such as 
the standardized mortality ratio (SMR) when studying, in particular, rare dis-
eases or low populated areas. These models are usually formulated in a hierar-
chical Bayesian framework and typically rely on generalized linear mixed models 
(GLMM). Model fitting and statistical inference are commonly accomplished 
through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB ap-
proach usually relies on the penalized quasi-likelihood (PQL) [1], while the FB 
approach usually uses Markov chain Monte Carlo (McMC) techniques [2]. Both 
approaches have been used in the literature and both have advantages and dis-
advantages [3], but the FB approach has experienced an enormous expansion 
due to the advent of modern computers and free software to run McMC algo-
rithms such as WinBUGS [4]. 

The FB approach provides posterior marginal distributions of the target pa-
rameters and consequently it provides a whole picture about the target parame-
ters instead of a single point estimate. However, there are many challenges asso-
ciated with this approach. The posterior sampling distributions are not readily 
available in a closed form and hence inference is usually achieved via McMC al-
gorithms. This includes the need to evaluate convergence of posterior samples, 
which often requires extensive simulation and can be very time consuming. Spa-
tio-temporal models used in disease mapping are often very complex and McMC 
methods may lead to large Monte Carlo errors and large computation time if the 
dimension of the data at hand is large [5]. Moreover, the available software do 
not implement easily specific algorithms that are often needed [6]. Hence, there 
is a need to strike a balance between the exact inference, model complexity and 
computing time. This is also an issue in spatio-temporal disease mapping where 
the data at hand are usually large and the models are complex. Additionally, 
there is also a challenge in choosing priors for the hyper parameters in order to 
obtain reliable inference [7] [8]. 
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To address these challenges, a new strategy based on integrated nested Laplace 
approximations (INLA) has recently been recently proposed [9] as a promising 
alternative to the McMC. This technique is now gaining popularity in disease 
mapping as compared to the McMC. This is because of its ability to fit very 
complex space-time models much more quickly than the McMC. Many latent 
Gaussian models, which comprises the models described in this paper, have 
conditional independence properties that lead to sparse precision matrices. This 
is an advantage in INLA since it helps in speeding up the computation thus pro-
viding Bayesian inference without running long and complex McMC algorithms. 
INLA also has an additional attractive feature since it can be easily used in the 
free software [10], with the package R-INLA [11]. 

There is an extensive literature in Bayesian spatio-temporal disease mapping. 
For parametric models, see for example [12] [13] [14] and Knorr-Held and Be-
sag [15] for non-parametric time trends models. A major contribution to spa-
tio-temporal disease mapping is a research paper byKnorr-Held [16], which de-
scribes four different types of space-time interactions. Most of the previous work 
in disease mapping is based on the popular conditional autoregressive priors 
(CAR) to model both the spatial and temporal effects extending the initial work 
of Besag, York, J. and Mollie [17]. However, there are other approaches based on 
splines that have been developed. For example, within an EB frame work, Mac-
Nab and Dean [18] proposed autoregressive local smoothing in space and 
B-spline smoothing for time. On the other hand, Ugarte, Goicoa, and Militino 
[19] and Ugarte, Goicoa, and Etxeberria [20] used a pure interaction P-spline 
model for space and time, while Ugarte, Goicoa, and Etxeberria [21] consider an 
ANOVA type P-spline model to study spatio-temporal patterns of prostate can-
cer mortality in Spain. From a FB frame work, see MarNab [22] and MacNab, 
and Gustafson [23] for the application of spline smoothing in disease mapping. 

In this paper, our focus is to implement spatio-temporal disease mapping 
models using the INLA methodology. Most of the research in spatial and spa-
tio-temporal disease mapping with INLA considers the Besag et al. [17] model 
(hereafter BYM model) which includes two spatial effects: one assuming a Gaus-
sian exchangeable prior to model unstructured heterogeneity and another one 
assuming an intrinsic conditional autoregressive (ICAR) prior for the spatially 
structured variability [5] [24] [25] [26]. However, the ICAR prior is improper 
and has the undesirable largescale property of leading to a negative pairwise 
correlation for regions located further apart [27] [28]. In addition, the variance 
components in the BYM convolution model are not identifiable from the data 
[29] [30] and informative hyper priors are needed for posterior inference. In this 
paper, we consider the prior proposed by Leroux, Lei, and Breslow [31], LCAR 
hereafter in this paper. This prior has been proved to be better than the ICAR 
prior [32] and can be easily implemented using the R-INLA package. This model 
has previously been used to construct a local adaptive algorithm for spatial 
smoothing [33]. 
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The rest of this paper is organized as follows. In Section 2, a review of spatial 
model is given and different spatio-temporal models that will be fitted with 
INLA are described. A review of the R-INLA package and prior distributions to 
be used is presented in Section 3. In Section 4, the models discussed are used to 
analyze Kenya HIV incidence data for the years 2013-2016. In Section 5, we 
compare the INLA and McMC techniques and finally conclusion is given in Sec-
tion 6.  

2. Spatio-Temporal Models for Disease Mapping 

Consider a large area, say a country, divided into small areas (let us say 
provinces or counties) that will be labelled by 1,2, ,i n=  , and let iY  denote 
the number of incident cases (or deaths) in the ith small area. Then conditional 
on the relative risk iθ , iY  is assumed to follow a Poisson distribution with 
mean i i iEµ θ= , where iE  is the number of expected cases. That is 

( )| ~ ;i i i i iY Poisson Eθ µ θ=                    (1) 

( ) ( ) ( )log log logi i iEµ θ= +  

here ( )log iE  is the offset and ( )log iθ  is modeled as 

( )log i iuθ α= +                         (2) 

where α  is the global risk and iu  is the spatially structured random effect. 
Very often, an intrinsic conditional autoregressive (ICAR) prior is used to 
modeled the vector of spatially structured random effects ( )1, , nu u ′=u  . That 
is, 

( )2~ ,N σ −u R0                        (3) 

where −  denotes the Moore-Penrose inverse of a matrix, 2σ  is the variance 
component and R  is the n n×  spatial neighbourhood matrix with ij th 
element defined as: 

, if
1, if ~

0, otherwise

i

ij

n i j
j i
=

= −



R                     (4) 

where in  represents the number of neighbours of area i and ~i j  indicates 
that areas i and j are neighbours. Typically, two areas are neighbours if they 
share a common border. 

The full conditional distributions of iu  given all the other remaining 
components ( )1 1 1, , , , ,i i i nu u u u− − +=u    can be expressed as follows: 

2

~

1| ~ Normal ,
n

i i j
j ii i

u u
n n

σ
−

 
 
 

∑u                   (5) 

However, this model has been criticized since the spatial and non-spatial 
effects are not identifiable, as noticed by Eberly and Carlin [34]. To fix these 
identifiability problems, Leroux [31] considered the following LCAR prior that 
takes into account spatially structured and unstructured variability: 
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( ) ( )2 1~ , , 1N σ ρ ρ− = + −  u Q Q R I0                (6) 

where [ ]0,1ρ ∈  is a spatial smoothing parameter and I  is a n n×  identity 
matrix. When 0ρ = , the LCAR prior reduces to an exchangeable (independent) 
prior ( )2~ ,N σu I0 , and when 1ρ = , it reduces to the ICAR model 

( )2~ ,N σ −u R0  [27] [35]. 
The univariate full conditional distribution of iu  can be expressed as: 

( ) ( )
2

~
| ~ Normal ,

1 1

n
u

i j i j
j ii i

u u u
n n

σρ
ρ ρ ρ ρ≠

 
  − + − + 

∑          (7) 

Suppose now that for every small area i, data has been recorded for different time 
periods denoted by 1, ,t T=  . Then, conditional on the relative risk itθ , itY  
which is the count of events in region i at time t is assumed to be Poisson distributed 
with mean it it itEµ θ= , where itE  is the number of expected cases. That is;  

( ) ( ) ( ) ( )| ~ = , log log logit it it it it it it itY Poisson E Eθ µ θ µ θ= +       (8) 

here, ( )log itθ  can be specified in different ways to define various models. 
Various spatio-temporal models for disease mapping have been considered in 

the literature, with most of them based on the popular ICAR models extending 
the popular BYM model [17]. In this section, we discuss three models with 
parametric time trends and a set of non-parametric models that include different 
types of space-time interactions [16]. The INLA methodology will be used to fit 
these models. 

2.1. Linear Time Trend Models 

In this section, we consider a Bayesian model with a parametric linear trend for 
the temporal component which is with the model proposed by Bernardinelli [12]. 
This model is just an extension of the BYM spatial model but with an additional 
linear time trend and a differential time trend for each small area. The logarithm 
of the relative risks are modelled as follows; 

( ) ( )log it i iu tθ α β δ= + + + ⋅                   (9) 

where α  is the intercept that quantifies the average outcome rate in the entire 
study region, iu  is the spatial random effect, β  is the main linear time trend 
which represents the global time effect, and iδ  is a differential trend which 
captures the interaction between the linear time trend and the spatial effect iu . 
In this paper, the LCAR prior proposed by Leroux [31] is considered for the 
spatial effects iu  and three different priors for the differential trend iδ  are 
explored. The first model is the one which assumes an exchangeable distribution 
and is denoted as Model 1. The second model considers an ICAR prior and the 
is denoted as Model 2a. The third one considers the LCAR prior for the area 
specific slopes and the model is denoted as 2b. 

2.2. Nonparametric Dynamic Time Trend Models 

In the model specified above, a linearity assumption imposed on the differential 
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temporal trend iδ . However, this assumption may not be realistic under 
practical situations, where it is common to observe change points in temporal 
trends due to improvement in treatments, screening programmes and early 
detection and intervention, and generally advances in research. Thus, it is 
necessary to extend Equation (9) by releasing out the linearity constraint and 
assuming a dynamic non-parametric trends. In this paper, various non-parametric 
models which also includes space-time interactions are examined. In these 
models, the LCAR prior distribution is used for the spatial component unlike the 
models considered by Knorr-Held [16] in which an ICAR prior distribution is 
used for the spatial component. Here, the logarithm of the relative risk is model 
as; 

( )log it i t t ituθ α φ γ δ= + + + +                   (10) 

here α  and iu  have the same parameterization as in Equation (9). The term 

tφ  denote the temporally unstructured random effects and while the term tγ  
represent temporally structured random effects. Finally, itδ  is the space-time 
interaction term. Note that additive models are obtained if the interaction terms 
are not there. All the components in the model 10 are usually modelled as 
Gaussian Markov random fields (GMRF), Rueand Held [36] and prior 
distributions can be specified according to some structure matrices. Here, the 
spatial random effects iu  is assumed to have LCAR prior distribution proposed 
by Leroux [31]. The temporally unstructured random effects stφ′  are modeled 
as Gaussian exchangeable prior with mean 0 and variance 2

φσ . That is, 

( )2~ , tN φσ I0φ  where ( )1, , Tφ φ ′= φ  and tI  is the T T×  identity matrix. 
The temporally structured random effect ( )1, , Tγ γ ′= γ  is modeled 
dynamically, for example, using a random walk of order 1(RW1) or order 2 
(RW2). That is, ( )2

1 1| ~ ,t t tNγ γ γ σ− −  for RW1 and  

( )2
1 2 1 2| , ~ 2 ,t t t t tNγ γ γ γ γ σ− − − −+  for RW2. The interaction terms  

( )11, , nTδ δ ′= δ  are assumed to be follow a Gaussian distribution with a 
precision matrix given as 2

δ δσ R , where 2
δσ  is the variance parameter and δR  

is the structure matrix given by the Kronecker product of the corresponding 
structure matrices which identify the type of the temporal and/or spatial main 
effects which interact [37]. 

There are four ways to define the structure matrix, as presented in 
Knorr-Held [16] and reported in Table 1, reproduced from Ugarte, Adin, Goi-
coa, and Militino [38]. For the Type I interactions, all sitδ ′  are a priori 
independent. Therefore, it is assumed that there is no spatial and/or temporal 
structure on the interaction either and therefore ( )~ 0,1it N δδ τ . In Type II 
interactions, each . , 1, ,i i nδ =   follows a random walk (RW1 or RW2), 
independently of all other areas. Type II interactions will be suitable if temporal 
trends are different region to region, but do not have any structure in space. In Type 
III interactions, the parameters of the tth time point { }.1 ., , Tδ δ  have a spatial 
structure independent from the other time points. Hence each . , 1, ,t t Tδ =   
follows an independent intrinsic autoregression. Type III interactions can be 
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Table 1. Specification and rank deficiency for different space-time interactions. 

Space-time  
interaction 

Rδ  
Rank of Rδ  

RW1 for γ RW2 for γ 

Type I s tI I⊗  I T⋅  I T⋅  

Type II s tI R⊗  ( )1I T⋅ −  ( )2I T⋅ −  

Type III s tR I⊗  ( )1I T− ⋅  ( )1I T− ⋅  

Type IV s tR R⊗  ( ) ( )1 1I T− ⋅ −  ( ) ( )1 2I T− ⋅ −  

Source: Ugarte et al. (2014). 

 
interpreted as different spatial trends for each year without any temporal 
structure. Type IV interaction, which is the most complex among the space-time 
interactions, assumes that sitδ ′  are completely dependent over space and time. 
This type of interaction will be appropriate if temporal trends are different from 
region to region, but are more likely to be similar for adjacent regions. Table 1 
gives a summary of the structure matrices for the different type of space-time 
interactions and the rank deficiencies. To ensure identifiability of the interaction 
term δ  in case of rank deficiency, specific sum-to-zero constraints have to be 
used. If these constraints are not included then the interaction terms are 
confounded with the main time effect γ . It is only the Type I interaction which 
does not need additional constraints as this prior does not induce a rank 
deficiency, see Table 1.  

Different combinations of priors for the temporally structured effect (RW1 or 
RW2) and the type of interaction produce 20 additional models to models 1, 2a, 
and 2b discussed in Section 2.1. Models 3a and 3b are the additive models 
(obtained when the interaction term is dropped) with RW1 and RW2 for the 
temporally structured effect, respectively. Models 4a and 4b are Type I 
interaction models with RW1 and RW2 for the temporally structured effect, 
respectively. Models 5a and 5b are the same as models 4a and 4b but with a Type 
II interaction. Models 6a and 6b are Type III interaction models, and Models 7a 
and 7b include a Type IV interaction. In addition, models without the 
unstructured temporal effect are considered. Models 8a and 8b are additive 
models with RW1 and RW2 priors for the temporally structured effect. Models 
9a and 9b are Type I interaction models, Models 10a and 10b are Type II 
interaction, Models 11a and 11b include a Type III interaction models and 
Models 12a and 12b are the Type IV interaction models.  

3. Bayesian Inference Using Integrated Nested Laplace  
Approximations (INLA) 

The Bayesian inference using INLA methodology is implemented in a package 
called inla, which is a C program [11]. This program is based on the 
GRMFLib-library, which incorporates efficient algorithms for sparse matrices 
[36]. Here, the computations are speeded up by the implementation of parallel 
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computing elements. An R-interface called R-INLA is available to ease the usage 
of the inla program. The inla program is has been incorporated within the R 
library [10]. The software is available for free download at http://www.r-inla.org 
and run in a Linux, MAC and Windows environment. For the analyses in this 
paper, the INLA library built on the 3rd June 2014 was used. 

The models in INLA can be ran by specifying the linear predictor of the model 
as a formula object in R using the function f() for the smooth effects such as 
fixed effects, non linear terms and random effects. The interface is very flexible 
and it has options that allows different models and priors to be specified easily. 
Several authors [39] [40] [41] [42] summarize the different spatial models 
available in R-INLA as latent effects that can be used to build models. In this 
section, only an overview of the spatial models that will be used to fit the models 
considered in this paper will be provided. 

Spatial latent effects for the lattice data in R-INLA consist of a prior 
distribution which follow a multivariate normal distribution with zero mean and 
precision matrix τC , where τ  is a precision parameter and C  is a square 
and symmetric structure matrix which controls how the spatial dependence is 
and it can assume different forms to induce different types of spatial interaction. 
When C  is completely specified, like in the case of spatio-temporal interaction 
effect, the “generic0” model is implemented and it defines a multivariate normal 
prior distribution with zero mean and generic precision matrix C  which is 
normally defined by the user. 

For the case of spatially structured random effect, the “besag” and “generic1” 
models are used to implement the ICAR [17] and LCAR [31] prior distributions 
respectively. The besag model for the ICAR prior corresponds to a multivariate 
normal with zero mean and precision matrix τR , with ijR  equal to in  if 
i j= , −1 if ~i j  and 0 otherwise, where in  is the number of neighbours of 
county i and and ~i j  indicates that counties i and j are neighbours. On the 
other hand, the LCAR prior, which forms the basis of the space-time disease 
mapping models discussed in this paper, can not be obtained directly in R-INLA, 
but the generic1 model can be used to introduce it easily. This model 
implements a multivariate normal distribution with zero mean and precision 
matrix τQ , with  

max
nI β

λ
 

= − 
 

Q C                    (11) 

where C  is the structure matrix and maxλ  is the maximum eigenvalue of 
matrix C  which allows the parameter β  take values between 0 and 1. Ugarte 
[38] show that when = −C I R  then max 1λ = . Hence, the LCAR model 
proposed by Leroux et al. (1999) can be easily implemented in the R-INLA with 
a generic1 model by taking = −C I R , so that ( )1 Iβ β= − +Q R  with 

( )0,1β ∈ . 
In addition to the ICAR specification implemented in the besag model, bym 

model can be used to implement the sum of spatially structured and 
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unstructured random effects described in the convolution model [17]. Similarly, 
for the spatially structured temporal random effects, the first and second order 
random walk priors are implemented using “rw1” and “rw2” models respectively. 
Finally, the identically independent random effects can be implemented using 
the “iid” model. In all these models, only the priors corresponding to the 
precision parameters (the inverse of the variance components) should be 
specified. In this paper, the following precision parameters are considered: 

21u uτ σ=  for the spatially structured random effect; 21φ φτ σ=  for the 
temporally unstructured random effect; 21γ γτ σ=  for the temporally 
structured random effect and 21δ δτ σ=  for the space-time interaction term. 

To ensure the identifiability of the interaction term δ , it should be 
emphasized here that sum-to-zero constraints should be used depending on the 
type of interaction (see Table 1). The vector δ  follows an IGMRF which is 
improper, i.e. its precision matrix or equivalently its structure matrix δR  is not 
of full rank. Its improper distribution denoted by ( )π ∗ δ  is written as  

( ) ( )|π π∗ = =A eδ δ δ                   (12) 

where =A eδ  denotes linear constraints on δ  with A  given by those 
eigenvectors of δR  which span the null space. Hence, to ensure the 
identifiability of δ , the null space of the respective structure matrix δR  is 
computed using the obtained eigenvectors as linear constraints for the 
estimation of δ . Consequently, the number of linear constraints which are 
necessary is always equal to the rank deficiency of δR  (see Table 1) and e  
will be a vector of zeros. 

In R-INLA, the model is normally fitted with a call to function inla(), which 
returns an inla object with the fitted model. This function provides for 
specification of different likelihood models (family object), computes marginal 
densities of the latent effects and, by default, the hyperparameters and also 
enables one to select the integration strategy for the approximations (control.inla 
object). In addition to the posterior marginal densities, it is possible to compute 
posterior marginals for the linear predictor (control.predictor object). Several 
quantities for model choice and selection such as the effective number of 
parameters (pD) and the Deviance Information Criterion (DIC) are also 
provided within INLA (control.compute object).  

4. Prior Distributions 

The choice of prior distributions is very important in Bayesian inference because 
it can seriously affect the posterior distributions. The hyperprior distributions 
are defined in R-INLA with the argument hyper. Here, the hyperprior 
distributions for the spatial components are ( )log ~ log Gamma 1,0.01sτ  and 

( ) ( )logit ~ logitbeta 4,2sλ . This informative prior for sλ  is used since the data 
at hand are known to show high spatial correlation. If no information about the 
amount of spatial correlation is available, a non informative prior such as a 
logitbeta (1, 1) can be used [38]. For the temporally unstructured component ϕ , 
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a ( )log ~ log Gamma 1,0.01φτ  hyperprior is chosen [25]. For the temporally 
structured component γ  (RW1 or RW2) and the interaction term δ ,  
minimally informative priors (which are the default priors)  

( )log ~ log Gamma 1,0.00005γτ , ( )log ~ log Gamma 1,0.00005δτ  have been 
used. Further details on the choice of the priors for the precision (variance) 
parameters can be obtained inWakefield [7] andFong [8], among other papers. 
Finally, a Gaussian exchangeable prior with mean 0 and variance 1000 is used 
for the fixed effect.  

5. Application to HIV Incidence Data 

In this section we apply the models discussed in the previous sections to 
2013-2016 HIV data collected by the Ministry of Health, Kenya. The data was 
extracted from the Kenya Aids Indicator Surveys (KAIS), conducted by the 
Government of Kenya. The data has been described in Section 1. The main 
objective of survey was to collect high quality data on the prevalence of HIV and 
sexually transmitted infections (STI) among adults, and to assess knowledge of 
HIV and STI among the populations. 

All the 23 models already discussed in Section 2 were fitted to the 2013-2016 
HIV data using INLA. An important feature of the INLA technique is that the 
computation time and cost are reduced substantially as compared to the McMC 
methods, and therefore many models can be fitted and compared in a much 
shorter time. For model selection and comparison, the Deviance Information 
Criterion (DIC) [4] was used. The DIC is the sum of the posterior mean of the 
deviance D  (a measure of goodness of fit) and the effective number of 
parameters pD (a measure of model complexity). The best fitting model is one 
with the smallest DIC value. In our analysis in this paper, all models were fitted 
using the Simplified Laplace approximations strategy. 

Table 2 shows D , pD and the DIC values for the 23 fitted models discussed 
in Section 2. It can be seen that while parametric models and the additive models 
(both parametric and non-parametric) are parsimonious with small values of the 
effective number of parameters pD, they are far from the best model since they 
have large DIC values. It is also clear that amongst the models fitted, models 
with type II and type IV interactions with a RW1 prior for the temporally 
structured effect show lower DIC values. Furthermore, models without the 
temporally unstructured effect seem to perform better. Finally, in terms of the 
trade-off between model fit and complexity, model 10a is the best model since it 
has the smallest DIC value. This model incorporates the spatially structured 
random effect with a LCAR prior, a temporally structured random effect with a 
RW1 prior and a type II interaction term. The corresponding R code for this 
model is provided in the Appendix.  

For the best model (model 10a), the estimated logarithm of the relative risks 
obtained is made up of four different components: a global risk (denoted by α̂ ) 
which is the overall risk common to all areas; the spatial location risk ( û ) that  
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Table 2. Model comparison for the 23 fitted spatio-temporal models. 

Parametric models   

 

Model D  pD DIC 

Model 1 16,469.70 117.18 16,586.88 

Model 2a 16,469.82 117.19 16,587.01 

Model 2b 16,469.79 117.19 16,586.98 

Non-parametric models ( )log it i t t ijr uα φ γ δ= + + + +  

Model 
Space-time 
interaction 

a) RW1 b) RW2 

D  pD DIC D  pD DIC 

Model 3 Additive model 36,361.70 84.26 36,445.96 36,361.85 84.26 36,446.11 

Model 4 Type I 2354.81 186.84 2541.65 2354.02 186.85 2540.87 

Model 5 Type II 2349.25 187.10 2536.35 2355.64 185.39 2541.03 

Model 6 Type III 2349.29 187.62 2536.91 2349.28 187.62 2536.90 

Model 7 Type IV 2350.34 187.15 2537.49 2353.30 186.55 2539.85 

Non-parametric models log it i t ijr uα γ δ= + + +  

Model 
Space-time 
interaction 

a) RW1 b) RW2 

D  pD DIC D  pD DIC 

Model 8 Additive model 36,361.87 84.26 36,446.13 36,362.04 84.26 36,446.30 

Model 9 Type I 2354.84 186.85 2541.69 2354.00 186.87 2540.87 

Model 10 Type II 2349.20 186.85 2536.30 2355.59 185.39 2540.98 

Model 11 Type III 2349.27 187.62 2536.89 2349.28 187.62 2536.90 

Model 12 Type IV 2350.30 187.15 2537.45 2353.23 186.55 2539.78 

 
can arise due to factors associated to a specific area; a temporal risk trend 
common to all regions ( γ̂ ) that can arise due to changes in coding the disease, 
diagnostics, policies affecting the whole country and finally a region specific 
temporal risk trend δ̂  attributed to specific effects of each county. Figure 1 
shows the spatial and temporal patterns for HIV cases in Kenya. Figure 1 (upper 
left figure) shows the spatial incidence risk ( )( )ˆ ˆexpi iuζ =  associated to each 
county and constant along the period. Figure 1 (upper right figure) shows the 
posterior probability that the spatial risk is greater than 1 ( )( )1|ip P Yζ= > . 
Probabilities above 0.9 point towards high risk areas. Some discussions about 
reference thresholds in relative risks and cut-off probabilities can be obtained in 
Richardson, Thomson, and Best [43], Ugarte et al. [13], and Ugarte, Goicoa, and 
Militino [44]. 

It is clear from this figure that there is a higher risk of HIV infection in the 
counties to the Western region of Kenya as compared to the other counties. In 
particular, Homa Bay, Siaya, Migori and Kisumu counties show high relative 
risks. Finally, Figure 1 (bottom figure) shows the temporal risk trend common 
to all counties. Generally, there is an increasing trend in the whole period which 
indicates that there might be some factors affecting the whole country that 
produce an increase in risk along the period. There is a non-linear trend 

https://doi.org/10.4236/ojs.2018.85053


B. Tonui et al. 
 

 

DOI: 10.4236/ojs.2018.85053 822 Open Journal of Statistics 
 

behavior of the temporal pattern over time, thus explaining the reason why the 
parametric linear trend models do not fit well to the HIV data as compared to 
the non-parametric ones.  

The specific temporal trends (in log scale) for four selected counties are 
shown in Figure 2. There is a clear differences among counties, which means 
including the interaction term in the model is appropriate. Figure 3 displays the 
spatio-temporal pattern of HIV incidence rates for each county for the four-year 
period (2013-2016), and finally Figure 4 shows the posterior probabilities that 
the relative risks are greater than 1. It is clear from the information provided by 
the two maps that there is an increase in risk as the maps are getting darker with 
years. A number of counties in the Western region of Kenya show higher 
significant risk of HIV as compared to other regions.  

6. Comparison of McMC and INLA Techniques 

In Bayesian modeling and inference there are several challenges in the use of the 
popular McMC. One challenge is that the McMC uses posterior sampling 
inference which requires the need to evaluate convergence of posterior samples. 
This usually requires extensive simulation that can be costly and time 
consuming. The frequently used software packages for the implementation of 
the McMC technique include WinBUGS, OpenBUGS, as well as certain selected 
R packages such as McMCpack and SAS procedures. WinBUGS has gained a lot 
of popularity in the recent past and has been used to run most of the McMC 
analyses. 

INLA which has been proposed as an alternative to the burdensome McMC 
can be implemented as an R package (R-INLA) and performs Bayesian modeling 
without using the posterior sampling methods. Unlike McMC algorithms, which 
rely on Monte Carlo integration, the R-INLA package performs Bayesian 
analyses using numerical integration which requires much shorter time since it 
does not require extensive iterative computation. Very often, Bayesian modeling 
using the INLA methodology takes much shorter time as compared to modeling 
using McMC. However, there have been limited attempts to compare 
performance capabilities of these software packages particularly for the case of 
spatio-temporal models in a disease mapping. In this section, a comparison of 
the McMC and INLA techniques based on the best fitting model (model 10a) in 
analysis of the Kenya HIV data in section 4 is provided. 

Table 3 shows parameter estimates and the standard errors obtained using 
both McMC and INLA. The model estimates of the model parameters obtained 
by McMC and INLA methods are generally quite similar. The largest differnce is 
obtained for the spatial smoothing parameters, where the estimated standard 
errors by McMC is larger than the one obtained by INLA. As already mentioned 
above, INLA also does have an advantage over WinBUGS in terms of the 
computation time. For model 10a, it took 254 seconds to run an McMC while 
the computation time in INLA is 16.7 seconds.  
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Figure 1. Upper left figure: The spatial pattern of HIV incidence risks ( )expi iuζ = ; Upper 

right figure: Posterior probabilities ( )1 |iP Yζ > ; Bottom figure: Temporal trend of HIV 

incidence risks. 
 

 
Figure 2. Specific temporal trends (in log scale) for the four selected counties: Homa Bay, 
Bomet, Nairobi and Wajir. 
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Figure 3. Relative incidence risk of HIV by counties. 

 

 

Figure 4. ( )ˆ 1 |itP r Y>  posterior probability distribution by counties. 
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Table 3. Model parameter estimates and standard errors obtained using McMC and 
INLA. 

Parameters MCMC INLA 

α  −0.031 (0.007) −0.366 (0.001) 

2
uσ  0.892 (0.223) 1.712 (0.421) 

uλ  0.722 (0.123) 0.555 (0.178) 

2
γσ  0.018 (0.016) 0.008 (0.003) 

2
δσ  0.045 (0.005) 0.042 (0.005) 

 
INLA also have some shortcomings. One challenge involves the ability to use 

hyperparameters as flexibly as in WinBUGS. While it is difficult to implement 
prior distributions for the standard deviations in INLA, this can be done easily 
in WinBUGS. Placing prior distributions on the standard deviations rather than 
fixing them or placing them on the precisions can lead to better model fits in 
some situations. Additionally, there is not an easy way to place hyperprior 
distributions on the precisions of the fixed effects. 

There are many options in INLA for improving the models. Initially, we 
explore specifying the use of a full Laplace approximation strategy in INLA, but 
this does not lead to different parameter estimates and computation time is 
longer as compared to simple Laplace approximation. Specifying the full Laplace 
strategy did, however, lead to different goodness of fit measures that were closer 
to those produced with WinBUGS. Furthermore, the simplified Laplace strategy 
is not sufficient for computing predictive measures [25] [45].  

7. Conclusions 

Spatial and spatio-temporal models are usually formulated in a hierarchical 
Bayesian framework and typically relies on generalized linear mixed models 
(GLMM). Model fitting and statistical inference are commonly accomplished 
through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB 
approach usually relies on the penalized quasilikelihood (PQL), while the FB 
approach usually uses Markov chain Monte Carlo (McMC) techniques. 
Spatio-temporal models used in disease mapping are often very complex and 
McMC methods may lead to large Monte Carlo errors and large computation 
time if the dimension of the data at hand is large. To address these challenges, a 
new strategy based on integrated nested Laplace approximations (INLA) has 
recently been proposed as a promising alternative to the McMC. In this paper, it 
is shown that INLA is able to fit fairly complex space-time models much more 
quickly than the McMC algorithms. INLA also has an additional attractive 
feature since it can be easily used in the free software R, with the package 
R-INLA. The INLA methodology also provides several quantities for Bayesian 
model choice and selection such as the effective number of parameters (pD) and 
the Deviance Information Criterion (DIC). The disadvantage of INLA involves 
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the ability to use hyperparameters as flexibly as in WinBUGS. It is difficult to 
implement prior distributions for the standard deviations in INLA, while this 
can be done easily in WinBUGS. Placing prior distributions on the standard 
deviations rather than fixing them or placing them on the precisions can lead to 
better model fits in some situations. Furthermore, there is not an easy way to 
place hyperprior distributions on the precisions of the fixed effects. 

Most of the works in spatial and spatio-temporal disease mapping with 
McMC and INLA considers the intrinsic conditional autoregressive (ICAR) 
prior for the spatially structured variability. However, the ICAR prior is 
improper and has the undesirable largescale property of leading to a negative 
pairwise correlation for regions located further apart. Moreover, the variance 
components in the BYM convolution model are not identifiable from the data 
and informative hyperpriors are needed for posterior inference. In this paper, 
we consider the LCAR prior as an alternative to the ICAR prior. The LCAR 
prior does not produce such negative correlations and has the advantage of 
including a parameter that quantifies spatial dependence as well as unstructured 
heterogeneity. A comparison of INLA and McMC has been done using the 
LCAR prior for the spatial random effects. WinBUGS is a populal tool for 
analysis in FB disease mapping while INLA was recently introduced and is now 
gaining popularity. Both techniques produce similar parameter estimates, except 
for the smoothing parameter, where McMC tends to overestimate it a bit more 
than INLA. To improve the models in INLA, we explore specifying the use of a 
full Laplace approximation strategy, but this does not lead to different 
parameter estimates and computation time is longer as compared to simple 
Laplace approximation. Specifying the full Laplace strategy did, however, lead to 
different goodness of fit measures that were closer to those produced with 
WinBUGS. 

Finally, our analysis of the Kenya HIV incidence data for the period 
2013-2016 shows that the incidence rate is still high, and counties located to the 
Western region show a significant high risk as compared with the other counties. 
In particular, Homa Bay, Siaya, Migori and Kisumu counties shows the highest 
risks. The reasons why these counties show high HIV incidence risks is a subject 
that is still under investigation and further research is needed.  
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Appendix 

R-INLA code for model 10a 
#Type II interaction and RW2 prior for time # 
S=47 
T=4 
temp <- poly2nb(kenya) 
nb2INLA("kenya.graph", temp) 
kenya.adj <- paste(getwd(),"/kenya.graph",sep="") 
H <- inla.read.graph(filename="kenya.graph") 
# Temporal graph 
D1 <- diff(diag(T),differences=1) 
Q.gammaRW1 <- t(D1)%*%D1 
D2 <- diff(diag(T),differences=2) 
Q.gammaRW2 <- t(D2)%*%D2 
Q.xi <- matrix(0, H$n, H$n) 
for (i in 1:H$n){ 
Q.xi[i,i]=H$nnbs[[i]] 
Q.xi[i,H$nbs[[i]]]=-1 
} 
Q.Leroux <- diag(S)-Q.xi 
R <- kronecker(Q.gammaRW1,diag(S)) 
r.def <- S 
A.constr <- kronecker(matrix(1,1,T),diag(S)) 
formula <- y ˜f(ID.area, model="generic1", Cmatrix= Q.Leroux, 

constr=TRUE, 
hyper=list(prec=list(prior="loggamma", param=c(1,0.01)), 
beta=list(prior="logitbeta", param=c(4,2))))+ 
f(ID.year, model="rw1", constr=TRUE, 
hyper=list(prec=list(prior="loggamma", param=c(1,0.00005))))+ 
f(ID.area.year,model="generic0", Cmatrix=R, constr=TRUE, 
hyper=list(prec=list(prior="loggamma", param=c(1,0.00005))), 
extraconstr=list(A=A.constr, e=rep(0,S))) 
27 
model10a<-inla(formula, family="poisson", data=Data, E=E, 
control.predictor=list(compute=TRUE,cdf=c(log(1))), 
control.compute=list(dic=TRUE), 
control.inla=list(strategy="simplified.laplace")) 
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