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Abstract 
In longitudinal studies, measurements are taken repeatedly over time on the 
same experimental unit. These measurements are thus correlated. Missing 
data are very common in longitudinal studies. A lot of research has been 
going on ways to appropriately analyze such data set. Generalized Estimating 
Equations (GEE) is a popular method for the analysis of non-Gaussian longi-
tudinal data. In the presence of missing data, GEE requires the strong as-
sumption of missing completely at random (MCAR). Multiple Imputation 
Generalized Estimating Equations (MIGEE), Inverse Probability Weighted 
Generalized Estimating Equations (IPWGEE) and Double Robust Genera-
lized Estimating Equations (DRGEE) have been proposed as elegant ways to 
ensure validity of the inference under missing at random (MAR). In this 
study, the three extensions of GEE are compared under various dropout rates 
and sample sizes through simulation studies. Under MAR and MCAR me-
chanism, the simulation results revealed better performance of DRGEE com-
pared to IPWGEE and MIGEE. The optimum method was applied to real da-
ta set. 
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1. Introduction 

In the medical, epidemiological and social sciences, studies are often designed to 
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investigate changes in the response of interest observed or measured over time 
on each subject. These are called repeated measures or longitudinal studies. Since 
the measurements are taken repeatedly over time on the same experimental unit, 
then the data are typically correlated. Ordinal responses are regularly experienced 
in these studies. It is exceptionally common for sets of longitudinal studies to be 
incomplete, in the sense that not all intended measurements of a subject 
outcome vector are actually observed. This turns the statistical analysis into a 
missing data problem. When data are incomplete, a number of issues arise in the 
analysis: 1) the issue of bias due to systematic differences between the observed 
measurements and unobserved data, 2) loss of efficiency and 3) complications in 
data handling and statistical inferences [1]. 

The issues of missing data are frequently encountered in longitudinal studies 
in the sense that nonresponse can happen any time from the beginning of the 
study. Two patterns of missing data can be observed for the response: 1) dropout 
(monotone pattern of nonresponse), in which an individual terminates the study 
prematurely from a scheduled sequence of visits for a number of reasons (both 
known and unknown), or 2) intermittent nonresponse, in which a subject 
returns to the study after occasions of nonresponse [2]. The reasons for 
missigness are varied and it is fundamental to know the missing data mechanism 
generating nonresponse and its impact on inferences. Rubin [3] argued that 
there are two important broad classes of missing data: missing data that is 
ignorable from the analysis, and missing data that is non-ignorable (missing not 
at random). If missing data occur under either missing completely at random or 
missing at random conditions, the problem is deemed ignorable, and the 
missingness process need not be explicitly modelled. A nonresponse process is 
missing completely at random (MCAR) if the probability of being missing is 
independent of both unobserved and observed measurements. Data are said to 
be missing at random (MAR) if, nonresponse is independent of the unobserved 
quantities given the observed data and missing not at random (MNAR) when 
the nonresponse depends on unobserved quantities. 

A lot of research has been going on ways to appropriately analyze longitudinal 
studies. When data is incomplete, rather than deleting missing values, it has 
been recommended to “impute” them [4]. The subject of how to obtain valid 
inferences from imputed data was formally addressed by Rubin [5] who 
introduced the multiple imputation (MI) method as an approach to handle 
missing data. MI has become one of the most popular approaches in handling 
incomplete data and it is applicable when the data are MAR or MCAR. MI 
method replaces each of the unobserved values with 2m ≥  plausible values to 
obtain m completed datasets, whence reflecting the uncertainty about the 
missing data. The m completed datasets are then analysed separately using 
standard complete data methods and finally, the results from the m analysis are 
combined into a single inference. 

Alternative solutions of handling longitudinal missing data have been 
explored, in particular, the Generalized Estimating Equations (GEE) method [6], 
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which is quite popular for the analysis of non-Gaussian correlated data. Its main 
advantage is that one is only required to specify correctly the mean structure of 
the response for the parameter estimator to be consistent and asymptotically 
normal. In the presence of missing data, GEE is only valid under the strong 
assumption of MCAR. The first effort to make GEE applicable to the more 
realistic MAR scenario was Multiple Imputation Generalized Estimating 
Equations (MIGEE), proposed by Little and Rubin [7]. Here, missing values are 
multiply imputed and the resulting completed datasets are analysed through 
standard GEE methods. Following Rubin’s rule, the final results obtained from 
the completed datasets are combined into a single inference. Robins [8] 
extended GEE be developing the Inverse Probability Weighted Generalized 
Estimating Equations (IPWGEE), which consists of weighting each subject’s 
contribution in the GEE by the inverse probability that a subject drops out at the 
time they dropped. IPWGEE produces consistent estimates provided the weight 
model is correctly specified. Double Robust Generalized Estimating Equations 
(DRGEE) arise as a third generalisation of GEE to deal with data subject to MAR 
mechanism. The main idea is to supplement the IPWGEE with a predictive 
model for the missing quantities conditional on the observed ones [9]. This 
method produces consistent estimates provided the dropout or conditional 
model is correctly specified. Doubly robust methods have widely received 
attention in the literature in the last decade (see [10] [11] [12] [13]). 

Literature of GEE for missing data for longitudinal ordinal response is 
comparatively scarce. In Toledano and Gatsonis [14], the authors used a 
weighted GEE method to accommodate intermittent nonresponse of an MCAR 
missing response and missing covariate that is MAR. In a simulation study, 
authors in [15] compared ordinal imputation regression and multivariate 
normal imputation for ordinal outcome subject to dropout. A paper from 
Kombo [16] compared through a simulation study two multiple imputation 
methods (multivariate normal imputation and fully conditional specification) 
for longitudinal ordinal data with monotone missing data patterns. The 
aforementioned papers used single robust versions of GEE and they have treated 
only a missing MAR response or missing MAR covariate. In a paper by da Silva 
[13], the authors used DRGEE method for ordinal data with intermittently 
missing response and missing covariate. Therefore the use of DRGEE, IPWGEE 
and MIGEE methods for ordinal data with monotone missing pattern has been 
in need for further development. 

In this paper, our main interest is the comparison of GEE methods in 
handling incomplete longitudinal ordinal outcomes when missing response is 
ignorable. This assumes the missing data are either MCAR or MAR. Comparisons 
are made by means of simulation study and the optimum model is applied to a 
real dataset. Through simulation study, the behavior of the methods in terms of 
mean squared error (MSE) and bias of the estimators are extensively studied, 
under correctly specified models. 

This paper is organised as follows. Section 2 gives necessary notation and key 
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definitions. Section 3 outlines the GEE, as well as IPWGEE, MIGEE and DRGEE 
approaches. A simulation study is presented in Section 4 followed by a 
simulation results and application in Section 5. Finally, discussion and 
concluding remarks are provided in Section 6. 

2. Definitions and Notation  
2.1. Ordinal Outcomes 

Categorical variables occur frequently in many studies including but not limited 
to economic, health, education fields. In cases where the variables is categorical 
with only two levels, logistic regression take stage. However, in cases where there 
are more than two categories and the categories are ordered then polytomous 
ordinal regression come into play. 

Ordinal outcomes are regularly experienced in longitudinal studies, 
particularly in randomized clinical trials. Apart from failing to meet the usual 
normality assumption for analysis and inference, these data are prone to 
missingness. Failure to deal with incomplete information jeopardizes the validity 
of inferences. Various authors [17] [18] [19] have studied a number of logistic 
regression models for ordinal responses variables. When considering several 
factors, special multivariate analysis for ordinal data is the best option [20], even 
though other methods like mixed models can be employed. Nevertheless, ordinal 
logistic regression models have been found to be most useful when dealing with 
ordinal data [19]. There are several ordinal logistic regression models namely; 
the proportional odds model, continuous ratio model, partial proportional odds 
model and the stereotype regression model. Among the aforementioned ordinal 
logistic regression models, the most common is the proportional odds model 
[21]. The proportional odds model is a logit model that allows ordered data to be 
modelled by analysing it as a number of dichotomies [16]. It compares a number 
of dichotomies by arranging the ordered categories into a series of binary 
comparisons. The proportional odds assumption states that the effect of each 
covariate is the same for each binary comparison (logit). The assumption is 
regularly used with the cumulative logit link. 

2.2. Missing Data in Longitudinal Studies  

Suppose that longitudinal data consists of N subjects and let ijY  be an ordered 
variable for subject i with C categories assessed at jth occasion ( )1,2, ,j T=  . 
We define ( )ijc ijY I Y c= =  for 1, ,c C=  , where ( ).I  is the indicator 
function equal to one when the argument is true and zero otherwise. Let 

( )1, ,i i iTY Y Y ′=   denote the vector of repeated measurements of the ith subject. 
Associated with each subject, there is a vector of covariates, say ijX , measured 
at time j. Let ( )1, ,i i iTX X X ′=   be the covariates matrix for ith subject. The 
marginal distribution of ijY  will have a multinomial distribution such that:  

( )
1

| , ijc
C

y
ij ij ijc

c
f Y X µ

=

=∏β                     (1) 
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where ( ) ( ) ( )| , | ,ijc ijc ijc i ij iE Y X P Y c Xµ µ= = = =β β β , is the probability of 
being at category c at time j given a set of covariates and ( )0 ,c xβ β=β  is a 
vector of regression parameters. The cumulative proportional odds model is a 
popular choice to model ijcµ  [19]. Specifically, the cumulative logit model is 
given as  

( ) 0logit | 1, 2, , 1ij ij c ij xPr Y c X X c Cβ β  ′≤ = + = −          (2) 

where 0β  is the vector of intercept parameters and xβ  is the vector of 
coefficients and does not the depend on c. 

Now if we let ( )1, ,
ii i iTR R R=   be the indicator vector corresponding to 

( )1, ,
ii i iTY Y Y=   and ( )1 , 1, ,ij i i jR R R −=  . iY  can be split into subvectors 

( )0 , m
i iY Y  where 0

iY  denotes the observed component and m
iY  refers to the 

missing component. Now we let 0ijR =  if the outcome ijY  is missing and 
1ijR =  if ijY  is observed. The joint distribution of the full data iY  and the 

indicator vector random variable iR  can be factorised as  

( ) ( ) ( ), | , , | , | , , ,i i i i i i i i if Y R X f Y X P R r Y Xθ ψ θ ψ= =         (3) 

where ( )| ,i if Y X θ  denotes the marginal density of the measurement process, 
( )| , ,i i i iP R r Y X ψ=  denotes the missing data model whose parameter are 

contained in ψ . ψ  is an unknown parameter governing the missing data 
mechanism and θ  denotes the vector of parameters describing the response 
variable. The distribution of iR  may depend on iY . In terms of probability, we 
may define these distributions such that the data is said to be MAR if 

( ) ( )0 0| , , , | , ,m
i i i i i i i i iPr R r Y Y X Pr R r Y Xψ ψ= = = , MCAR if  

( ) ( )0| , , , | ,m
i i i i i i i iPr R r Y Y X Pr R r Xψ ψ= = =  and MNAR if  

( ) ( )0 0| , , , | , , ,m m
i i i i i i i i i iPr R r Y Y X Pr R r Y Y Xψ ψ= = = . 

In this paper, our main interest is on missing data due to dropouts. For all 
components of ijY  that are not observed, the corresponding components of 

ijR  will be 0. We can then replace the vector iR  by a scalar variable iD , the 
drop out indicator, commonly defined as: 

1
1 .

T

i ij
j

D R
=

= +∑                          (4) 

iD  denotes the time at which subject i dropped out. The model for drop outs 
process can therefore be written as  

( ) ( )| , , | , , ,i i i i i i i iP R r Y X P D d R Xψ ψ= = =             (5) 

where id  is the realisation of the variable iD . In Equation (4), it is assumed 
that all subjects are observed on the first occasion so that iD  takes values 
between 2 and ( )1T + . The maximum value ( )1T +  corresponds to a complete 
measurement sequence. 

3. Statistical Methods for Handling Missing Data  
3.1. Generalized Estimating Equations  

The GEE approach has its roots in the quasi-likelihood methods introduced by 

https://doi.org/10.4236/ojs.2018.85051


K. E. Ditlhong et al. 
 

 

DOI: 10.4236/ojs.2018.85051 775 Open Journal of Statistics 
 

Wedderburn [22] and later developed and extended by McCullagh and Nelder 
[23]. GEE is a general statistical approach to fit a marginal model for 
longitudinal data analysis in clinical trials or biomedical studies. This method 
has computational simplicity and marginal parameter estimation. The method 
estimates model parameters by iteratively solving a system of equations based on 
extended quasi-likelihood where the extension to the generalized linear model is 
towards incorporating correlations. 

Suppose that longitudinal data consists of N subjects. For subject 

( ), 1, 2, ,i i N=  , there are T observations and let ijY  denote the jth response 
( )1,2, ,j T=  , and let ijX  denote the 1p×  vector of explanatory variables. 
Suppose ( )1 1, , ,i i i iTY Y Y Y ′=   denote the corresponding column vector of 
response variable for the ith subject with the mean vector ( )1 2, , ,i i i iTµ µ µ= µ  
where ijµ  is the corresponding jth mean. The marginal model specifies that a 
relationship between ( )ij ijE Y µ=  and the covariates ijX  is as follows:  

( ) ,ij ijg Xµ ′= β                         (6) 

where g is a link function and β  is the vector of regression parameters. On the 
other hand, the conditional variance of ijY  given ijX  is given as 

( ) ( )|ij ij ijVar Y X φν µ= , where φ  is a scaling parameter and ν  is a known 
variance function of ijµ . Based on Liang and Zeger [6]; Lipsitz [24], the 
generalized estimating equations has the form  

( ) ( )1

1
0,

N
i

i i i
i

U V Y−

=

∂
= − =

′∂∑ µ
β µ

β
                  (7) 

where ′β  denotes a transpose vector of marginal regression parameters β ,  

( )
1 1
2 2

i i i iV A R Aα=  is a covariance matrix of iY  in which iA  is a diagonal  

matrix containing marginal variances. ( )iR α  is a “working” correlation matrix 
that expresses the marginal correlation between repeated measures and α  is a 
vector of noises which may be handled by the introduction of the working 
correlation structure such as independence, autoregressive of the first order 
(AR(1)), exchangeable, or unstructured. For AR(1) the correlations decline 
exponentially between measures i.e. ( )Corr , j h

ij ihY Y ρ −= . In the independence, 
the identity matrix serves as the working correlation matrix. On the other hand, 
for exchangeable structure the correlation between any two measures are 
assumed to be the same regardless of the time from one period to the next. 
Under unstructured case, every pair of measurements is given its own 
association parameter. 

Under mild regularity conditions and correct specification of the marginal 
mean iµ , Liang and Zeger [6] showed that the estimator β̂ , obtained by 
solving Equation (7), is consistent and ( )ˆN −β β  converges in distribution to 
a multivariate normal with mean vector 0 and covariance matrix given by  

1 1
0 1 0lim ,

N
V Nβ

− −

→∞
= Σ Σ Σ                         (8) 
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where  

( )1 1
0 1

1 1
and ,

N N
i i i i

i i i
i i

V Var Y V− −

= =

′ ′∂ ∂ ∂ ∂
Σ = Σ =

′ ′∂ ∂ ∂ ∂∑ ∑µ µ µ µ
β β β β

         (9) 

where i′µ  in Equation (9) denotes a transpose mean vector of iµ . In practice, 
the “sandwich” covariance matrix Vβ  in Equation (8) is calculated by ignoring 
the limit and replacing β  and α  by their estimates, and also ( )iVar Y  in 
expression 1Σ  by ( )( )Tˆ ˆi i i iy y− −µ µ  [25]. 

3.2. Multiple Imputation Generalized Estimating Equations  

This method is a simulation-based approach that imputes missing values 
multiple times [5]. The main idea of the procedure is to replace each missing 
value with a set of M plausible values drawn from the conditional distribution of 
the unobserved values given the observed ones. This conditional distribution 
represents the uncertainty about the right value to impute. In this way, M 
imputed datasets are generated (imputation stage), which are then analysed 
using standard complete data methods (analysis stage). Finally, the results from 
the M analyses have to be combined into a single inference (pooling stage) using 
Rubin [5] rules. 

Let ˆ kβ  and kU  be the estimate of a parameter of interest β  and its 
covariance matrix from the kth completed data set, ( )1,2, ,k M=   respectively. 
According to Little and Rubin [7], the combined point estimate for the 
parameter of interest β  from the MI is simply the average of M complete-data 
point estimates:  

1

1ˆ ˆ
M

k

kM =

= ∑β β                          (10) 

and an estimate of the covariance matrix of β̂  is given by  

1 ,MV W B
M
+ = +  

 
                      (11) 

where  

( )( )
1 1

1 1 ˆ ˆ ˆ ˆand .
1

M M
k k k

k k
W U B

M M= =

′
= = − −

−∑ ∑ β β β β  

here, W measures the within-imputation variability and B measures the 
between-imputation variability. 

As Schafer [26] expressed, MI can be used to create the imputations from a 
fully parametric model. After drawing the imputations, one analyses the 
imputed datasets by a semi-parametric or non-parametric estimation procedure 
to achieve better performance and greater robustness. In the context of binary 
outcomes, [27] [28] [29] used MI to fill in missing values for GEE analysis in 
data that are MAR. So GEE can be used after MI, leading to a hybrid technique 
named MIGEE [26]. Typically, the missing data mechanism can be further 
overlooked given that the MAR is valid. 
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3.3. Inverse Probability Weighted Generalized Estimating  
Equations  

When data are incomplete, GEE suffers bias from its frequentist nature and it is 
generally valid only under the strong assumption of MCAR [1]. Robins [8] 
proposed a class of weighted generalized estimating equations, effectively to 
remove bias and provide valid statistical inferences to regression parameter 
estimates for marginal models in the incomplete longitudinal data scenario by 
allowing it to be MAR. This method requires specification of a dropout model in 
terms of observed outcomes and/or explanatory variables. The idea behind 
IPWGEE is to weight each subject’s contribution in the GEEs by the inverse 
probability that a subject drops out at the time they dropped out. Such a weight 
can be expressed as  

( ) ( )
{ }

1

2 , 1
2

2 , 1

1 0 | 1

0 | ,i

j

ij i it i i t
t

I j T
ij i i j

w P D j P R R R

P R R R

−

−
=

≤

−

 = = = − = = = = 

 × = = = 

∏ 



        (12) 

where 2,3, , 1j T= + , {}I  is an indicator variable and iD  is a dropout 
indicator for the subject i, where 

11 T
i ijjD R

=
= +∑ . The first visit 1iY  is assumed 

to be always observed with 1 1iR =  so that 2 1iD T≤ ≤ + . Hence 1iD T= +  
represents that subject i completes all the T visits, which were set prior by design. 
In the IPWGEE approach, GEE estimator for β  is based on solving the 
equation:  

( ) ( )
11 1

1 2 2

1
0,

N
i

i i i i i i
i

U W A R A y
−

−

=

 ∂
= − =  ′∂  
∑ µ

β µ
β

           (13) 

where { }1 1diag , ,i i i iT iTW R w R w=   is a diagonal matrix of event specific weights. 
A consistent estimator for β  can be obtained by solving Equation (13), under 
the correct specification of the missing data model. Following [30] the score 
equations to be solved are:  

( ) ( ) ( ) ( ) ( ) ( ){ }
11 11

2 2

1 2
0,

N T
i i

i i i i i
i d id

I D d
U d A R A d y d d

w
µ

−
+

= =

 = ∂
= − =  ′∂  
∑∑ µ

β
β

  (14) 

where ( )iy d  and ( )i dµ  are the first 1d −  elements of iy  and iµ  
respectively. Provided that the idw  are correctly specified, IPWGEE provides 
consistent estimates of the model parameters under a MAR mechanism. 
Estimators from IPWGEE enjoy robustness properties similar to the ones from 
ordinary GEE, that is., the correlation structure does not need to be correctly 
specified. 

3.4. Double Robust Generalized Estimating Equations  

The doubly robust method is an alternative approach that uses the inverse 
probability weights (IPW) to refine estimates of the model parameters [11], 
within a GEE analysis. In this method, there is a need for the specification of two 
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models: 1) the first model is on the distribution of the complete data which 
include both the outcome and covariates, and 2) a model for the missingness 
mechanism. The doubly robust (DR) estimating equations method has been 
developed as an extension of the WGEE method, where the idea is to integrate 
the weights with the use of a predictive imputation model for the missing data 
given the observed data. Equation (13) has been extended toward so called 
robustness [11] [31]. 

Tsiatis [9] and Scharfstein [31] showed that adding a term of expectation zero, 
say ( ).γ , to the inverse probability weighted estimators would still result in 
consistent estimates under a MAR mechanism. These augmented equations give 
rise to doubly robust estimators. Chen and Zhou [12] noted that the optimal 

optγ  for missing response is given by  

( ) ( ) ( )0

11 1
1 2 2

opt | , ,
11 ,m

i i i i

i
i i i i i iY Y X R

E W A R A yγ
−

−
  ∂ ′= − −   ′∂    

µ
µ

β
      (15) 

where 1 and 1’ is a vector of 1’s of length iT  and its transpose respectively, and 
m

iY  denote the missing component of iY . Undefined variables and parameters 
in Equation (15) are as defined before in section 0. The parameters β  are 
estimated by solving the estimating equations,  

( ) ( ) ( )
11 1

1 2 2
1 1 opt

1 1
0.

N N
i

i i i i i i i
i i

U U W A R A yθ θ γ
−

−

= =

  ∂ = = − + =  ′∂   
∑ ∑ µ

µ
β

    (16) 

The estimator for β  in Equation (16) is doubly-robust in the sense that it is 
consistent if at least one of the missing data models is correctly specified. In 
current application, we combine inverse probability weighting (IPW) with MI 
and the GEE as the analysis to construct DRGEE. The robustness of the 
imputation model is enhanced by ensuring necessary information is included in 
the model, while avoiding the bias from the final inference. 

The aim of the DRGEE estimation; is to estimate the propensities for each 
incomplete variable conditional on the other variables, and impute the missing 
values on that variable by the inclusion of propensity functions (i.e. IPW) into 
the imputation model. Finally, the results of the analysis from M completed 
(imputed) data are combined into a single inference using Rubin [5] rules. The 
expectation of this method is to be readily robust, and by design it is aimed at 
handling incomplete data with any pattern of missingness. 

4. Simulation Study  
4.1. Data Generation and Simulation Designs  

We simulated data in order to mimic an ordinal longitudinal clinical trial data. 
We simulated 1000 datasets based on the marginal model (17) for random 
sample sizes 100,300N =  and 500. We consider a study with 4iT =  repeated 
ordinal measures (with four categories) and two covariates (one binary and the 
other continuous). For binary covariate ( 1x ) individuals were assumed to have 
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been assigned to two treatment arms (Higher dose = 1 and Mild dose = 0) and 

2x  represent exposure period. The true marginal model is  
( )1, , 1; 1, ,c C i N= − =  : 

( ) 0logit | , for 1,2,3,4ij c xPr Y c x x jβ β  ′≤ = + =           (17) 

where the model parameters are ( )0 ,c xβ β=β . Here ( )1 2,x x x′ =  is a vector of 
predictor variables. The parameter values used in the simulations are 01 0.4β = − , 

02 0.2β = , 03 0.5β = , 1 0.5β =  and 2 0.1β = − . The correlated ordinal response 
were generated using the NORTA method [32] with a constant correlation 
between the latent vectors as 0.9ρ = . This method uses the probability integral 
transformation to transform a d-variate normal random vector to the desired 
multivariate distribution with specified marginals and correlation matrix. 
Probability integral transformation relates to the result that data values that are 
modelled as being random variables from any given continuous distribution can 
be converted to random variables having a uniform distribution. We used the R 
package SimCorMultRes [32] which makes it easy to simulate correlated 
categorical responses under the marginal model (17). The package implements 
marginal models for correlated binary responses as well as for correlated 
multinomial response categories taking into account the nature of response 
categories (ordinal or nominal). 

For comparison purposes, standard GEE was considered to analyse the full 
datasets. Each estimate is an average of 1000 estimates from the different 
simulated datasets. After analysing the full data set we then create the dropouts. 
Dropouts were created on the complete simulated datasets using different 
settings of missingness rate on response variable ijY  and according to the 
MCAR or MAR missing mechanism. 

The dropout model is based on a logistic regression for the probability of 
dropout at occasion j, given that the individual was in the study up to occasion 

1j − . This probability is denoted by ( );ij ijP h y , and the outcome history ijh  is 
expressed as ( )1 , 1, ,ij i i jh y y −=  . In this study, the assumption is that dropout 
depends only on the current observed measurement ijy  and the immediately 
preceding measurement , 1i jy − . We therefore assume that dropout process is 
modelled by a logistic regression of the form  

( ) ( )
0 1 , 1 2

logit , logit | , ,

,
ij ij i i ij ij

i j ij

Pr h y Pr D j D j h y

y yψ ψ ψ−

   = = ≥   
= + +

        (18) 

with 0ψ  denoting the intercept of regression, 1ψ  and 1ψ  are respectively the 
coefficients of , 1i jy −  and ijy . The model (18) reduces to a MAR if 2 0ψ =  (i.e. 
the missingness process is related to the observed outcome prior to dropout) and 
MCAR if 1 2 0ψ ψ= = . In both MAR and MCAR settings, after simulating a data 
set without missing data, we adopted the following strategy. We assume that 
dropout can occur after the first time point. Thus in this study, four dropout 
patterns are possible, i.e., 1) dropout at the second point time, 2) dropout at the 
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third time point, 3) dropout at the fourth time point, 4) no dropout. 
According to Satty [28], the data generated at time j and the subsequent times 

were assumed to be dependent on the outcome measure at time j. The true 
dropout model is written as: 

( ), 1 0 , 1logit | ,i i i j prev i jPr D j D j y yψ ψ− −
 = ≥ = +              (19) 

where 2,3,4j = , ( )0 2, 2.3, 2.3ψ =  and ( )0.3, 0.2, 0.37prevψ = − − . The values 
for 0ψ  and prevψ  were used to generate different dropout rates. The 
combination of this MAR logistic dropout model with the measurement model 
(18) defines our data generating model, which is hereinafter referred to as GM I. 

We further consider a second data generating model, GM II, in which the 
outcomes are generated based on model (18) and random missingness is 
induced via the following MCAR logistic regression model: 

( ), 1 0 , 1logit | ,i i i j prev i jPr D j D j y yψ ψ− −
 = ≥ = +             (20) 

where 2,3,4j = , ( )0 3.2,1.5,1.2ψ =  and 0prevψ = .  
After creating the dropouts, the incomplete data sets were analysed using the 

three (3) extensions of GEE namely; MIGEE, IPWGEE and DRGEE. The 
performances of these methods were assessed in terms of mean squared error 
(MSE) and bias. 

4.2. Performance Measures for Evaluating Different GEE Methods  

In the evaluation, inferences are drawn on the complete data before the dropouts 
are created. Complete-data results are used as the standard against which those 
obtained from applying IPWGEE, MIGEE and DRGEE approaches are 
compared. R software [33] was used to perform statistical analysis and to 
produce the results. 

The performance of the three methods were evaluated using bias and mean 
squared error(MSE). These criteria were recommended in [34] and [35]. First we 
defined the bias as  

ˆBias ,β β= −                        (21) 

where β  is the true value for the estimate of interest, 1

ˆ
ˆ S s

s S
β

β
=

=∑  is the  

average estimate of interest, S is the number of simulation replications 
performed, and ˆ

sβ  is the estimate of interest within each of the 1, ,s S=   
simulations. The mean squared error (MSE) was given by  

( )
2 2ˆ ˆMSE SE ,β β β= − +                   (22) 

where ( )ˆSE β  denotes the empirical standard error (SE) of the estimate over all 
simulations [35]. SE is calculated as the standard deviation of the estimates of  

interest from all simulations ( ) ( )2

1
ˆ ˆ1 1 S

ssS β β
=

− −  ∑ . Alternatively, the 
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average of the estimated within simulation SE for the estimate of interest 

( )
1

ˆSE sS
s S

β
=∑  could be used, where ( )ˆSE sβ  denotes the standard error of the  

estimate of interest within each simulation. Normally, small values of MSE are 
desirable [36]. 

5. Simulation Results and Analysis  

In this section, we discuss the result of simulation study that compares the three 
techniques namely; MIGEE, IPWGEE and DRGEE for different sample size and 
different missingness rates on the response variable. The measurement at first 
time point were assumed to be observed for each individual. Note that the 
primary focus was to compare MIGEE, IPWGEE and DRGEE, but we extend the 
results to include those obtained from full datasets using standard GEE. The 
imputation model considered here is the imputation using chained equations 
[37], with the number of multiple imputation set to 5M = . This number of 
imputations was chosen to account for the fraction of missing information and 
to get efficient parameter estimates. We incorporate weights to analyze the 
IPWGEE. The simulation study also considers the correct specified model for 
the imputation model for both the MIGEE and DRGEE. We considered a correct 
propensity score model for DRGEE. The logistic regression was used to estimate 
the propensity scores for the DRGEE, which was then used in the imputation 
model. The incomplete data set were multiply imputed and analyzed by MIGEE 
and DRGEE techniques respectively. 

A better method is expected to produce parameter estimates closer or similar 
to the true values, hence yielding small bias. Likewise, a small MSE denotes a 
better or precise method. Results are presented in Tables 1-3 for 8%, 25% and 
33% dropout rates respectively, under MAR mechanism. For MCAR mechanism, 
results are presented in Table 4 and Table 5. 

 
Table 1. Bias and mean squared error (MSE) estimates from MIGEE, IPWGEE and 
DRGEE under MAR mechanism for 1000 simulations of incomplete data of sizes: N = 
100, 300, 500. 

  Bias     MSE   

 01β  02β  03β  1β  2β  01β  02β  03β  1β  2β  

N = 100 

GEE 0.0237 0.0063 0.0017 0.0118 0.0027 0.2505 0.2412 0.2465 0.2127 0.0006 

MIGEE 0.4757 0.4950 0.5602 0.0415 0.0144 0.3143 0.2752 0.3229 0.0154 0.0003 

IPWGEE 0.8251 0.5441 1.2058 0.7192 0.1923 0.6808 0.2961 1.4540 0.5173 0.0370 

DRGEE 0.0142 0.0441 0.3703 0.0862 0.0160 0.0407 0.0673 0.2068 0.1723 0.0005 

N = 300 

GEE 0.0078 0.0123 0.0154 0.0020 0.0014 0.0685 0.0664 0.0664 0.0691 0.0002 

MIGEE 0.0567 0.0256 0.0548 0.0639 0.0187 0.0035 0.0009 0.0032 0.0043 0.0004 
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Continued 

IPWGEE 0.7325 0.4520 1.0329 1.0138 0.1948 0.5588 0.2286 1.0990 1.0484 0.0382 

DRGEE 0.2769 0.1347 0.0645 0.0945 0.0121 0.0779 0.0189 0.0044 0.0092 0.0001 

N = 500 

GEE 0.0025 0.0068 0.0100 0.0057 0.0006 0.0390 0.0384 0.0388 0.0385 0.0000 

MIGEE 0.0461 0.1154 0.1126 0.2283 0.0067 0.0114 0.0195 0.0177 0.0679 0.0000 

IPWGEE 0.6949 0.5496 1.1140 1.0700 0.2281 0.5166 0.3445 1.2860 1.1615 0.0520 

DRGEE 0.1641 0.2591 0.0189 0.1784 0.0012 0.0276 0.0716 0.0173 0.0627 0.0000 

Notes: Also estimates from full datasets (GEE). Approximately (8%) missing values on the outcome varia-
ble.  
 
Table 2. Bias and MSE estimates from MIGEE, IPWGEE and under MAR mechanism for 
1000 simulations of incomplete data of sizes: N = 100, 300, 500. 

  Bias     MSE   

 01β  02β  03β  1β  2β  01β  02β  03β  1β  2β  

N = 100 

GEE 0.0237 0.0063 0.0017 0.0118 0.0027 0.2505 0.2412 0.2465 0.2127 0.0006 

MIGEE 0.3192 0.3373 0.2830 0.7887 0.0284 0.1025 0.1143 0.0805 0.6221 0.0008 

IPWGEE 0.9322 0.1136 0.7884 1.4709 0.2109 0.8694 0.0134 0.6220 2.1653 0.0445 

DRGEE 0.4259 0.3067 0.1236 0.0054 0.0082 0.1822 0.0945 0.0156 0.0195 0.0007 

N = 300 

GEE 0.0078 0.0123 0.0154 0.0020 0.0014 0.0685 0.0664 0.0664 0.0691 0.0002 

MIGEE 0.0757 0.0244 0.0159 0.1344 0.0054 0.0644 0.0573 0.0674 0.0445 0.0007 

IPWGEE 0.3794 0.8610 1.4330 0.8438 0.2269 0.1447 0.7420 2.0543 0.7120 0.0515 

DRGEE 0.4050 0.2510 0.3149 0.3018 0.0289 0.3161 0.1624 0.1461 0.1089 0.0014 

N = 500 

GEE 0.0025 0.0068 0.0100 0.0057 0.0006 0.0390 0.0384 0.0388 0.0385 0.0000 

MIGEE 0.0080 0.0220 0.0347 0.2257 0.0063 0.0006 0.0012 0.0036 0.0613 0.0000 

IPWGEE 0.6705 0.4881 1.1094 0.9383 0.2109 0.4500 0.2385 1.2310 0.8807 0.0445 

DRGEE 0.1210 0.0257 0.0535 0.0751 0.0178 0.2981 0.2068 0.1534 0.0451 0.0003 

Notes: Also estimates from full datasets (GEE). Approximately (25%) missing values on the outcome varia-
ble.  
 
Table 3. Bias and MSE estimates from MIGEE, IPWGEE and DRGEE under MAR 
mechanism for 1000 simulations of incomplete data of sizes: N = 100, 300, 500. 

  Bias     MSE   

 01β  02β  03β  1β  2β  01β  02β  03β  1β  2β  

N = 100 

GEE 0.0237 0.0063 0.0017 0.0118 0.0027 0.2505 0.2412 0.2465 0.2127 0.0006 

MIGEE 0.6596 0.3532 0.3445 0.4913 0.0171 0.4358 0.1253 0.1192 0.2425 0.0003 
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IPWGEE 0.5056 0.7440 1.2986 0.7512 0.2035 0.2556 0.5535 1.6863 0.5644 0.0414 

DRGEE 0.1678 0.0255 0.1731 0.1542 0.0156 0.1385 0.0898 0.1133 0.0803 0.0011 

N = 300 

GEE 0.0078 0.0123 0.0154 0.0020 0.0014 0.0685 0.0664 0.0664 0.0691 0.0002 

MIGEE 0.2929 0.2695 0.2568 0.1196 0.0208 0.0893 0.0880 0.0705 0.0201 0.0004 

IPWGEE 0.7047 0.5080 1.1535 0.8065 0.2020 0.4972 0.2586 1.3312 0.6507 0.0408 

DRGEE 0.7620 0.4790 0.3708 0.2186 0.0555 0.5837 0.2300 0.1400 0.0489 0.0031 

N = 500 

GEE 0.0025 0.0068 0.0100 0.0057 0.0006 0.0390 0.0384 0.0388 0.0385 0.0000 

MIGEE 0.2859 0.1804 0.1412 0.4514 0.0011 0.0819 0.0326 0.0200 0.2043 0.0000 

IPWGEE 0.9661 0.2342 0.8597 1.1017 0.2041 0.9395 0.0603 0.7457 1.2159 0.0417 

DRGEE 0.1506 0.1027 0.1002 0.3607 0.0074 0.0229 0.0109 0.0103 0.1303 0.0000 

 
Table 4. Bias and MSE estimates from MIGEE, IPWGEE and DRGEE under MCAR 
mechanism for 1000 simulations of incomplete data of sizes: N = 100, 300. 

   IPWGEE MIGEE DRGEE 

Sample Drp Par Bias MSE Bias MSE Bias MSE 

N = 100 8% 
01β  0.6987 0.4882 0.3781 0.1430 0.1259 0.0159 

  02β  0.4009 0.1607 0.5997 0.3597 0.0607 0.0037 

  03β  0.9872 0.9746 0.7049 0.4972 0.3725 0.1387 

  1β  1.3864 1.9230 0.6884 0.4753 0.0129 0.0004 

  2β  0.2362 0.0558 0.0716 0.0051 0.0345 0.0012 

 25% 
01β  0.9630 0.9275 0.5147 0.2650 0.4494 0.2020 

  02β  0.2084 0.0436 0.6363 0.4051 0.2857 0.0817 

  03β  0.8412 0.7079 0.7259 0.5272 0.3867 0.1496 

  1β  1.0229 1.0467 0.2274 0.0517 0.1807 0.0329 

  2β  0.2000 0.0400 0.0226 0.0005 0.0265 0.0007 

 33% 
01β  0.9673 0.9358 0.1610 0.0259 0.0966 0.0094 

  02β  0.0706 0.0051 0.2584 0.0668 0.2068 0.0428 

  03β  0.6288 0.3956 0.3695 0.1367 0.7956 0.6331 

  1β  0.7844 0.6153 0.7775 0.6055 0.0237 0.0007 

  2β  0.1883 0.0354 0.0204 0.0004 0.0121 0.0001 

N = 300 8% 
01β  0.8206 0.6936 02656 0.0706 0.2841 0.0807 

  02β  0.3443 0.1187 0.2328 0.0542 0.2636 0.0695 

  03β  0.9451 0.8935 0.2469 0.0610 0.0177 0.0005 

  1β  0.8985 0.8073 0.3749 0.1406 0.2187 0.0479 

  2β  0.2005 0.0402 0.0077 0.0000 0.0091 0.0000 

 25% 
01β  0.7498 0.5626 0.1263 0.0164 0.2924 0.0856 
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  02β  0.5852 0.3429 0.1906 0.0367 0.0910 0.0084 

  03β  1.1789 1.3903 0.1987 0.0399 0.4986 0.2486 

  1β  0.6393 0.4089 0.1273 0.0162 0.2175 0.0473 

  2β  0.2032 0.0413 0.0110 0.0001 0.0193 0.0004 

 33% 
01β  0.8742 0.7645 0.1347 0.0188 0.3772 0.1424 

  02β  0.3449 0.1192 0.0192 0.0006 0.0978 0.0097 

  03β  0.9912 0.9828 0.0345 0.0014 0.7059 0.4985 

  1β  1.0100 1.0193 0.0371 0.0014 0.3549 0.1259 

  2β  0.2045 0.0418 0.0044 0.0000 0.0156 0.0002 

Notes: Also estimates from full datasets (GEE). Approximately (33%) missing values on the outcome varia-
ble.  
 
Table 5. Bias and MSE estimates from MIGEE, IPWGEE and DRGEE under MCAR 
mechanism for 1000 simulations of incomplete data of size: N = 500.  

   IPWGEE MIGEE DRGEE 

Sample Drp Par Bias MSE Bias MSE Bias MSE 

N = 500 8% 
01β  0.7128 0.5085 0.1724 0.0298 0.2176 0.0475 

  02β  0.5105 0.2610 0.1008 0.0103 0.2106 0.0455 

  03β  1.1048 1.2210 0.0681 0.0048 0.0163 0.0004 

  1β  0.8703 0.7578 0.2369 0.0561 0.1542 0.0238 

  2β  0.1939 0.0376 0.0109 0.0001 0.0055 0.0000 

 25% 
01β  0.8487 0.7205 0.1448 0.0210 0.2573 0.0664 

  02β  0.3432 0.1179 0.1438 0.0207 0.1793 0.0323 

  03β  0.9585 0.9188 0.0893 0.0080 0.5664 0.3210 

  1β  1.1562 1.3340 0.0406 0.0017 0.0363 0.0013 

  2β  0.2000 0.0400 0.0036 0.0000 0.0104 0.0001 

 33% 
01β  0.5026 0.2533 0.0499 0.0026 0.0967 0.0096 

  02β  0.7618 0.5810 0.0736 0.0055 0.0519 0.0028 

  03β  1.3373 1.7890 0.1357 0.0184 0.0776 0.0062 

  1β  0.7810 0.6104 0.1566 0.0245 0.2350 0.0552 

  2β  0.2187 0.0478 0.0069 0.0000 0.0063 0.0000 

5.1. Simulation Results for MAR Missing Data  

Examining Table 1, considering bias, it can be observed that largest values are 
obtained under the IPWGEE. Similar trend was observed under MSE. This was 
consistent for all samples. Comparing MIGEE and DRGEE, it can be seen that 
DRGEE produces better estimates in terms of bias than MIGEE, except for 

1 2,β β  ( 100N = ) and 01 02,β β  ( 500N = ). Same trend was observed under 
MSE. However, the results obtained for the MIGEE under sample size of 300 
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performs better than DRGEE in terms of bias and MSE except for 2β . Looking 
at GEE, it can be seen that bias was smaller for all samples, hence it implies that 
estimates were closer to true parameter values. 

Shifting focus to Table 2, with a 25% dropout rate, the scenario observed in 
Table 1 is slightly changed. Here, it can be seen that largest bias are recorded 
IPWGEE under the sample size 100 for all sβ ′  except 02β  where MIGEE 
gives the largest bias. Similar trend was observed under the sample size 300 
where DRGEE recorded the largest bias for 01β . Looking at MSE, IPWGEE 
produced the largest values for all cases except for 02β  ( 100N = ) and 01β  
( 300N = ) which were produced by MIGEE and DRGEE respectively. 
Comparing MIGEE and DRGEE, for sample 100N =  and 300N = , the trends 
are similar to what was observed in Table 1. But for 500N = , we notice 
different scenario from Table 1 as MIGEE produced better estimates than 
DRGEE except for 1β . 

In Table 3, with a 33% dropout rate, for sample 100 and 300, the previous 
trend for both bias and MSE in Table 2 are repeated. Comparing MIGEE and 
DRGEE, for all samples, the trends are largely similar to what was observed in 
Table 1. 

As expected, it can be seen that in most cases IPWGEE was more biased 
compared to the MIGEE and DRGEE. In addition, IPWGEE has larger MSE 
values than the other methods. It can be seen that for sample size 300, MIGEE 
performed better than DRGEE for different dropout rates, except for 25% 
dropout rate where MIGEE was better than DRGEE for sample size 300 and 500. 
Generally, the bias was negligible for all methods showing asymptotically 
parameter estimates. In sum, although all methods performed equally well in 
terms of bias and MSE, DRGEE provided better parameter estimates than the 
single robust counterparts. 

5.2. Simulation Results for MCAR Missing Data  

In Table 4, under the sample size of 100, we notice that DRGEE produced 
smallest values of bias showing asymptotically unbiased estimates, except for 

03β  under 33% dropout rate. It can also be noticed that the MSE based on 
DRGEE was marginally smaller than the MIGEE and IPWGEE, except for 03β  
under 33% dropout setting. However, under the sample size of 300, MIGEE 
performed better than DRGEE and IPWGEE in terms of bias and MSE. In 
addition, it can be seen that IPWGEE produces largest values of bias and MSE 
for all cases. 

Now shifting focus to Table 5, for IPWGEE method, we notice that the trends 
are largely similar to what was observed in Table 4. Comparing DRGEE and 
MIGEE, it can be seen that DRGEE produces better estimates, except for 25% 
dropout setting. Generally, IPWGEE seems to be more biased than the other 
methods. DRGEE seems to be slightly better than MIGEE, but both methods 
seem to perform equally well. 
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5.3. Application to a Real Dataset 

The dataset used is from a homoeopathic clinic in Dublin, made available in 
[38]. The data was collected from 60 patients who were suffering from arthritis. 
There were 12 males and 48 females between the ages of 18 and 88 years in the 
study. These patients were followed up for a month (in 12 visits). Pain scores 
was assessed during a monthly followup and it was graded from 1 to 6 (high 
indicating worse pain score recorded). Out of 60 patients only two had all scores 
for the 12 visits. At initial visit, baseline information were recorded, such as age, 
sex (male/female), arthritis type (RA = rheumathoid arthritis, OA = ostheo-arthritis), 
and the number of years with the symptom. All patients were under treatment 
for arthritis, and only those with a baseline pain score greater than 3 and a 
minimum of six visits are reported. 

We think the MAR mechanism may be reasonable because, for instance, a 
patient’s visit to a clinic may depend on his/her previous observed pain score: if 
s/he scored a high pain score on his/her last visit, s/he may be likely to attend the 
next visit to treat the disease efficiently. Both monotone dropouts pattern and 
nonmonotone missingness were observed in the data. The amount of monotone 
dropouts was considerable (33.8%), while that of nonmonotone missigness was 
much smaller (1.8%). Overall, approximately 36% of the pain score data were 
missing/not observed. Some descriptive statistics of the dataset are summarized 
in Table 6. 

For the ordinal response scale, we used the following proportional odds model 

( ) 0logit | , 1, ,5, 1, ,12,ij ij c ijPr Y c x x c jβ β  ′≤ = + = =          (23) 

where ijY  is the pain score status of the ith patient at jth visit, ijx  is the covariate 
vector at time j. Here, the covariate vector is formed by Sex, Age, Time, Type 
and Years. 

DRGEE was applied to the real dataset. The reason why we chose DRGEE as 
an optimum method was: 1) simulation results showed that it performed better 
than MIGEE and IPWGEE under MAR and 2) MAR mechanism was observed 
in the arthritis data. When dealing with DRGEE it is necessary to correctly 
specified inverse probability weighting and imputation model, in order to obtain 
consistent estimates of β . The weights were based on a logistic regression 
model for dropout: 

( ) 0logit | , , 1, ,12,i i ij j ijP D j D j v v jψ ψ  ′= ≥ = + =           (24) 

where ijv  include sex, age, type, history of observed pain scores. Here, 1iD =  
if the pain score was observed and 0 otherwise. We incorporate weights obtained 
in Equation (24) in the imputation model, in order to get double robust 
estimates. Available data was analysed without alteration or any attempts to 
impute data missing on the response variable. This was under ordinary GEE. 
Results from the two approaches are shown below in Table 7. The first one is the 
usual GEE method using the available data and the second method is DRGEE. 
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Table 6. Descriptive statistics for arthritis data. 

Variable name Description Range % miss Mean Mode 

Sex 
0 = Female,  

1 = Male 
0/1 0   

Age 
Patient age in 

years 
18 - 88 0 59.5 57 

Time 
Number of patient 

visits 
1 - 12 0   

Type 
Type of arthritis 
(RA = 1, OA = 0) 

1/0 0   

Years 
Number of years 
with symptom 

0 - 57 0 10.7 1 

Response  
variable 

     

pain scores 
scores on the 
arthritis pain 

1 - 6 35.6%  4 

Note: Missing values on the response variable. Type of arthritis (RA = rheumathoid arthritis, OA = os-
theo-arthritis).  
 
Table 7. Parameter estimates (Est), standard errors (SE) and p-value obtained from 
Arthritis data. 

 GEE DRGEE 

Parameter Est SE Pr t>  Est SE Pr t>  

Sex −0.3366 0.5073 0.5070 0.5627 0.2780 0.0429 

Age −0.0253 0.0139 0.0708 −0.0278 0.0087 0.0007 

Time 0.2115 0.0422 <0.0001 0.2719 0.0249 <0.0001 

Type −0.8775 0.3372 0.0093 −0.6069 0.2288 0.0079 

Years −0.0048 0.0149 0.7454 0.0026 0.0094 0.7768 

Note: Approximately (36%) data missing on the response variable. Available data analyzed using GEE.  

 
The results showed that Time effect was significant and the variable Years was 

non significant for both methods. It can be noticed that p-value for Age goes 
from non-significant (0.07) in the ordinary GEE to a significant one in DRGEE. 
Similar trend was observed for the variable Sex. Both methods provide the same 
conclusion for effects of type of arthritis a patient is diagnose with. The negative 
effect for Type means that the chance of a patient to feel/record minimal pain is 
lower among the patients who had rheumathoid arthritis type compared to those 
who had ostheo-arthritis (the estimated odds 0.6069e 0.5450− =  in the DRGEE 
method). Both methods provided the same conclusion for the effect of Age. That 
is, each unit increase in Age, the odds of feeling mild pain or minimal pain 
decreases by 3% (for instance, in DRGEE it is 0.0278e 0.9725− = ). Furthermore, 
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the standard error produced by DRGEE are marginally smaller than one 
produced by usual GEE. Overall, it can be seen that there is gain in using 
DRGEE method due to its doubly robust property. 

6. Discussion and Conclusion 

In this paper, the focus was to compare three techniques for handling 
incomplete ordinal outcome based on GEE under MCAR and MAR dropouts in 
longitudinal data. Three methodologies were used, namely: multiple imputation, 
inverse probability weighting and its doubly robustness counterpart. First, 
dropouts were created at different rates on simulated datasets of various sample 
sizes and the three methods were applied to these incomplete datasets. Then the 
optimum method was used on the Arthritis data as an application to real data. 
The dropout rates in simulated data were diverse, ranging from 8% to 33% with 
the aim to investigate the performance of the approaches when different amount 
of data are missing. The sample sizes were varied to see how these methods will 
behave. The performances of the three approaches were evaluated in terms of 
mean squared error and bias. 

For multiple imputation, we make sure that the imputed values bore the 
structure of the data, uncertainty about the structure and included any 
knowledge about the process that led to the data missing [37]. An important 
aspect in the case of IPWGEE is the specification of the model for missingness to 
construct the weights (IPW) for the subjects. These probabilities must be 
hemmed away from zero as to avoid trouble of division by zero [28] [39]. 
Double robust method combines ideas from weighting and imputation and has 
been applied elsewhere for estimation of means, casual inference and in the 
context of longitudinal binary response data [10] [12]. 

Generally, the results from simulation study showed that all the methods can 
be satisfactorily used for incomplete ordinal outcomes with the assumption of 
MAR and MCAR mechanism. It is worth mentioning that almost all methods 
that are valid under MAR hold under MCAR. This is because MCAR is a special 
case of MAR. Consequently, ignoring missigness under MCAR will not introduce 
systematic bias, but will increase the standard error of the sample estimates due 
to the reduced sample size [40]. For this reason, MCAR poses less threat to 
statistical inferences than MNAR or MAR. 

Specifically, when we consider both bias and MSE, a better performance was 
observed for DRGEE over single robustness alternatives MIGEE and IPWGEE in 
the simulation study. This is consistent with the results reported in [10] [13]. 
DRGEE is more powerful or appealing because of its doubly robust property 
compared to single robust counterparts. Considering the performance of MIGEE 
and IPWGEE, the findings generally favoured MIGEE over IPWGEE. This 
agrees with the theoritical results in that IPW can be less powerful and efficient 
than Bayesian approach like MI under a well specified parametric model, see 
[36]. In view of previous work on the comparison between MIGEE and 
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IPWGEE, it has been found by other researchers that MIGEE provides more 
efficient results over IPWGEE in longitudinal binary data [27] [28]. Nevertheless, 
the misspecification of imputation model cannot be disregarded in practice and 
biased results can be expected when the imputation model is incorrect [37] [41]. 
On the Arthritis data application, the predictive model was correctly specified 
and this made the doubly estimates have a great potential of reducing bias when 
the MAR assumption is correct. 

In this study, missing values were only on the response variable. However, this 
does not limit the applicability of DRGEE, MIGEE and IPWGEE to that case 
only. These methods can be extended to situation where missing values are on 
the response and covariates variables. It is also important to note that DRGEE, 
MIGEE and IPWGEE all rely on the assumption that the missingness is MAR 
(and hence necessarily under MCAR). Typically, the possibility that the missing 
mechanism is MNAR cannot be ruled out. Whence, caution should be exercised 
in interpreting results from any of these procedures. Under MNAR, researchers 
are always encouraged to do sensitivity analysis [42] [43]. 

In conclusion, based on the results of this simulation, the DRGEE is 
recommended because consistency is guaranteed under the MAR (and hence 
necessarily under MCAR) if at least one of the missing data models is correctly 
specified. It became clear that the IPWGEE method does not always yield the 
best results, even if the MAR mechanism holds. In addition, it is advisable to 
include few and necessary auxiliary variables when constructing weights for 
individuals, while too many variables can be harmful. For instance, when the 
number of individuals is small, we run the risk of giving too much weight to one 
specific subject. 
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