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Abstract 
In order to overcome the well-known multicollinearity problem, we propose a 
new Stochastic Restricted Liu Estimator in logistic regression model. In the 
mean square error matrix sense, the new estimation is compared with the 
Maximum Likelihood Estimation, Liu Estimator Stochastic Restricted Maxi-
mum Likelihood Estimator etc. Finally, a numerical example and a Monte 
Carlo simulation are given to explain some of the theoretical results. 
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1. Introduction 

Consider the following multiple logistic regression model is  

, 1, , ,i i iy i nπ ε= + =                        (1.1) 

which follows Bernoulli distribution with parameter iπ  as 
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where β  is a ( )1 1p + ×  vector of coefficients and ix  is the ith row of X, 
which is an ( )1n p× +  data matrix with P explanatory variables, iε  is inde-
pendent with mean zero and variance ( )1i iπ π−  of the response iy . The 
maximum likelihood method is the most commonly used method of estimating 
parameters and the Maximum Likelihood Estimator (MLE) is defined as 

1
MLE

ˆ ˆ ,C X WZβ − ′=                       (1.3) 

where ˆC X WX′= ; ( )ˆ ˆ ˆ1i iW diag π π = −   and Z is the column vector with ith 

How to cite this paper: Zuo, W.B. and Li, 
Y.L. (2018) A New Stochastic Restricted Liu 
Estimator for the Logistic Regression Mod-
el. Open Journal of Statistics, 8, 25-37. 
https://doi.org/10.4236/ojs.2018.81003 
 
Received: November 28, 2017 
Accepted: January 29, 2018 
Published: February 1, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2018.81003
http://www.scirp.org
https://doi.org/10.4236/ojs.2018.81003
http://creativecommons.org/licenses/by/4.0/


W. B. Zuo, Y. L. Li 
 

 

DOI: 10.4236/ojs.2018.81003 26 Open Journal of Statistics 
 

element equals ( ) ( )
ˆ

ˆlog
ˆ ˆ1

i i
i

i i

y π
π

π π
−

+
−

, which is an asymptotically unbiased esti-

mate of β . The covariance matrix of ˆ
MLEβ  is 

( ) ( ) 1 1ˆ ˆ ,MLECov X WX Cβ
− −′= =                     (1.4) 

Multicollinearity inflates the variance of the Maximum Likelihood Estimator 
(MLE) in the logistic regression. Therefore, MLE is no longer the best estimate 
of parameter in the logistic regression model. 

To overcome the problem of multicollinearity in the logistic regression, many 
scholars conducted a lot of research. Schaffer et al. (1984) [1] proposed Ridge 
Logistic Regression (RLR). Aguilera et al. (2006) [2] proposed Principal Com-
ponent Logistic Estimator (PCLE). Nja et al. (2013) [3] proposed Modified Lo-
gistic Ridge Regression Estimator (MLRE). Inan and Erdogan (2013) [4] pro-
posed Liu-type estimator (LLE). 

Some scholars also improve estimation by limiting unknown parameters in 
the model which may be exact or stochastic. Where additional linear restriction 
on parameter vector is assumed to hold, Duffy and Santer (1989) [5] proposed 
Restricted Maximum Likelihood Estimator (RMLE), Siray et al. (2014) [6] pro-
posed Restricted Liu Estimator (RLE), Asar Y et al. (2016) [7] proposed Re-
stricted Ridge Estimator. Where additional stochastic linear restriction on para-
meter vector is assumed to hold, Nagarajah V, Wijekoon P (2015) [8] proposed 
Stochastic Restricted Maximum Likelihood Estimator (SRMLE), Varathan N, 
Wijekoon P (2016) [9] proposed Stochastic Restricted Liu Maximum Likelihood 
Estimator (SRLMLE), Varathan N, Wijekoon P (2016) [10] proposed Stochastic 
Restricted Ridge Maximum Likelihood Estimator (SRRMLE). 

In this article, we propose a new estimator which is called the Stochastic Re-
stricted Liu Estimator (SRLE) when the linear stochastic restrictions are available 
in addition to the logistic regression model. The article is structured as follows. 
Model specifications and the new estimators are proposed in Section 2. Section 3 
is derived to compare the mean square error matrix (MSEM) of SRLE, MLE etc. 
Section 4 is a Numerical Example. A Monte Carlo Simulation is used to verify 
the above theoretical results shown in Section 5. 

2. The Proposed Estimators 

For the unrestricted model given in Equation (1.1), the LLE proposed by Liu 
(1993), Urgan and Tez (2008), Mansson et al. (2012) is defined as 

ˆ ˆ ,LLE d MLEZβ β=                            (2.1) 

where 0 1d< <  is a parameter and ( ) ( )1
dZ C I C dI−= + + . The bias and va-

riance matrices of the LLE: 

( ) ( ) 1
ˆ ,LLE dBias Z I bβ β= − =                    (2.2) 

( ) 1ˆ ,LLE d dCov Z C Zβ −=                      (2.3) 
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In addition to sample model (1.1), let us be given some prior information 
about β  in the form of a set of j independent linear stochastic restrictions as 
follows:  

( ) ( ); 0, ,h H v E v Cov vβ= + = = Ψ                 (2.4) 

where H is a ( )1q p× +  of full rank ( )1q p≤ +  known elements, h is an 1q×  
stochastic known vector and v is an 1q×  random vector of disturbances with 
dispersion matrix Ψ  and mean 0, and Ψ  is assumed to be known q q×  
positive definite matrix. Further, it is assumed that v is stochastically indepen-
dent of ( )*

1, , nε ε ε=  , i.e. ( )* 0E vε ′ = . 
For the restricted model specified by Equations (1.1) and (2.4), the SRMLE 

proposed by Varathan Nagarajah and Pushpakanthie (2015), the SRLMLE pro-
posed by Varathan N, Wijekoon P (2016) are denoted as 

( ) ( )11 1ˆ ˆ ˆ ,SRMLE MLE MLEC H HC H h Hβ β β
−− −′ ′= + Ψ + −          (2.5) 

ˆ ˆ ,SRLMLE d SRMLEZβ β=                         (2.6) 

respectively, the bias and variance matrices of the SRMLE and SRLMLE: 

( )ˆ 0,SRMLEBias β =                         (2.7) 

( ) ( ) 1
ˆ ,SRLMLE dBias Z I bβ β= − =                   (2.8) 

( ) ( ) 11 1 1 1ˆ ,SRMLECov C C H HC H HC Aβ
−− − − −′ ′= − Ψ + =         (2.9) 

and 

( )ˆ ,SRLMLE d dCov Z AZβ =                      (2.10) 

respectively. 
We propose the Mix Maximum Likelihood Estimator (MME) [11] in logistic 

regression model which through analogy OME [12] in linear model. Defined as 
follows 

( ) ( )11 1ˆ ˆ ,MME C H H X Wy H hβ
−− −′ ′ ′= + Ψ + Ψ              (2.11) 

the bias and variance matrices of the MME: ( )ˆ 0MMEBias β = , 

( ) ( ) ( )1 11 1 1 1 1ˆ .MMECOV C H H C C H HC H Bβ
− −− − − − −′ ′ ′= + Ψ = − Ψ + =  

In this paper, we propose a new estimator which is named Stochastic Re-
stricted Liu Estimator. Defined as follows 

ˆ ˆ ,SRLE d MMEZβ β=                          (2.12) 

the bias and variance matrices of the SRLE: 

( ) ( ) ( ) 1
ˆ ˆ ,SRLE SRLE dBias E Z I bβ β β β= − = − =          (2.13) 

and 

( ) ( )ˆ ˆ ,SRLE SRLE d dCov D Z BZβ β= =                (2.14) 
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respectively. 
Now we will give a theorem and a lemma that will be used in the following 

paragraphs. 
Theorem 2.1. [13] (Rao and Toutenburg, 1995) Let A : n n×  such that 

0A >  and 0B ≥ . Then 0A B+ ≥ . 
Lemma 2.1. [14] (Rao et al., 2008) Let the two n n×  matrices 0M > , 0N ≥ , 

then M N>  if ( )1
max 1NMλ − < . 

3. Mean Square Error Matrix (MSEM) Comparisons of the  
Estimators 

In this section, we will compare SRLE with MLE, LLE, SRMLE, SRLMLE under 
the standard of MSEM. 

First, the MSEM of β̂  which is an estimator of β  is 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ,MSEM Cov Bias Biasβ β β β
′   = +                    (3.1) 

where ( )ˆBias β  is the bias vector and ( )ˆCov β  is the dispersion matrix. For 
two given estimators 1̂β  and 2β̂ , the estimator 2β̂  is considered to be better 
than 1̂β  in the MSEM criterion, if and only if 

( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆ, 0,MSEM MSEMβ β β β∆ = − ≥                   (3.2) 

The scalar mean square error matrix (MSE) is defined as  

( ) ( )( )ˆ ˆ ,MSE tr MSEMβ β=                      (3.3) 

Note that the MSEM criterion is always superior over the scalar MSE criterion, 
we only consider the MSEM comparisons among the estimators. 

3.1. MSEM Comparisons of the MLE and SRLE 

In this section, we make the MSEM comparison between the MLE and SRLE. 
First, the MSEM of MLE and SRLE as 

( ) 1ˆ ,MLEMSEM Cβ −=                         (3.4) 

and 

( ) 1 1
ˆ ,SRLE d dMSEM Z BZ b bβ ′= +                     (3.5) 

respectively. 
We now compare these two estimates to the criterion of the MSEM  

( ) ( )

( )

1

1
1 1

1
1 1

1 1

ˆ ˆ

,

MLE SRLRE

d d

d d

MSEM MSEM

C Z BZ b b

C Z BZ b b
M N

β β
−

−

∆ = −

′= − −

′= − +

= −

                 (3.6) 

where 1
1M C−=  and 1 1 1d dN Z BZ b b′= + . Obviously, 1 1b b′  is non-negative de-

finite matrices, 1C−  and d dZ BZ  are positive definite. Using Theorem 2.1, it is 
clear that 1N  is positive define matrix. By Lemma 2.1, if ( )1

max 1 1 1N Mλ − < , 
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where ( )1
max 1 1N Mλ −  is the largest eigen value of 1

1 1N M −  then 1 1M N−  is 
positive definite matrix. Based on the above discussions, the following theorem 
can be proved.  

Theorem 3.1. For the restricted linear model specified by Equations (1.1) and 
(2.4), the SRLE is superior to MLE if and only if ( )1

max 1 1 1N Mλ − <  in the MSEM 
sense. 

3.2. MSEM Comparisons of the LLE and SRLE 

First, the MSEM of LLE as 

( ) 1
1 1

ˆ .LLE d dMSEM Z C Z b bβ − ′= +                    (3.7) 

We now compare these two estimates to the criterion of the MSEM  

( ) ( )2

1
2 2 2 2

ˆ ˆ
LLE SRLRE

d d d d

d d

MSEM MSEM

Z C Z Z BZ b b b b
Z DZ

β β
−

∆ = −

′ ′= − + −

=

                 (3.8) 

where ( ) 11 1 1 1D C H HC H HC
−− − − −′ ′= Ψ + . Obviously, d dZ DZ  is positive defi-

nite. Based on the above discussions, the following theorem can be proved.  
Theorem 3.2. For the restricted linear model specified by Equations (1.1) and 

(2.4), the SRLE is always superior to LLE in the MSEM sense. 

3.3. MSEM Comparisons of the SRMLE and SRLE 

First, the MSEM of SRMLE as 

( )ˆ .SRLEMSEM Aβ =                       (3.9) 

We now compare these two estimates to the criterion of the MSEM  

( ) ( )
( )

[ ]

3

11 1 1 1
1 1

1
1 1

1 3

ˆ ˆ
SRMLE SRLRE

d d

d d

MSEM MSEM

C C H HC H HC Z BZ b b

C F Z BZ b b
M N

β β
−− − − −

−

∆ = −

′ ′ ′= − Ψ + − −

′= − + +

= −

        (3.10) 

where ( ) 11 1 1F C H HC H HC
−− − −′ ′= Ψ +  and 3 1 1d dN F Z BZ b b′= + + . Obviously, 

1 1b b′  is non-negative definite matrices, F  and d dZ BZ  are positive definite. 
Using Theorem 2.1, it is clear that 3N  is positive define matrix. By Lemma 2.1, 
if ( )1

max 3 1 1N Mλ − < , where ( )1
max 3 1N Mλ −  is the largest eigen value of 1

3 1N M −  
then 1 3M N−  is positive definite matrix. Based on the above discussions, the 
following theorem can be proved.  

Theorem 3.3. For the restricted linear model specified by Equations (1.1) and 
(2.4), the SRLE is superior to SRMLE if and only if ( )1

max 3 1 1N Mλ − <  in the 
MSEM sense. 

3.4. MSEM Comparisons of the SRLMLE and SRLE 

First, the MSEM of SRMLE as 
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( ) 1 1
ˆ .SRLMLE d dMSEM Z AZ b bβ ′= +                 (3.11) 

Now, we consider the following difference 

( ) ( )4

1 1 1 1

4 4

ˆ ˆ
SRLMLE SRLRE

d d d d

d d d d

MSEM MSEM

Z AZ Z BZ b b b b
Z DZ Z FZ
M N

β β∆ = −

′ ′= − + −

= −

= −

             (3.12) 

where 4 d dM Z DZ=  and 4 d dN Z FZ= . Obviously, D , 4M  and 4N  are pos-
itive definite matrices. By Lemma 2.1, if ( )1

max 4 4 1N Mλ − < , where ( )1
max 4 4N Mλ −  

is the largest eigen value of 1
4 4N M −  then 4 4M N−  is positive definite matrix. 

Based on the above discussions, the following theorem can be proved.  
Theorem 3.4. For the restricted linear model specified by Equations (1.1) and 

(2.4), the SRLE is superior to SRLMLE if and only if ( )1
max 4 4 1N Mλ − <  in the 

MSEM sense. 

4. Numerical Example  

In this section, we now consider the data set of IRIS from UCI to illustrate our 
theoretical results. 

A binary logistic regression model is set where the dependent variable is as 
follows. If the plant is Iris-setosa, it is indicated with 0 and if the plant is 
Iris-versicolor, it is 1. The explanatory variables is as follows. 1x : Sepal. Length; 

2x : Petal. Length; and 3x : Petal. Width.  
The sample consists of the first 80 observations. The correlation matrix can be 

seen in Table A1 (Appendix A). From Table A1 (Appendix A), it can be seen 
that the correlations among the regressors are all greater than 0.80 and some of 
them are close to 0.98 and the condition number is 55.4984 showing that there is 
a severe multicollinearity problem in this data. 

From Table A2 (Appendix A) we can conclude that: 
1) With the increase of d, the MSE values of the estimators are decreasing 

which are LRE, SRRMLE, SRLRE, SRLMLE, SRLE. 2) With the increase of d, the 
MSE values of the estimators are same which are MLE, SRMLE, MME. 3) The 
new estimator is always superior to the other estimators. 

5. Monte Carlo Simulation 

To illustrate the above theoretical results, the Monte Carlo Simulation is used for 
data Simulation. Following McDonald and Galarneau (1975) [15] and Kibria 
(2003) [16], the explanatory variables are generated using the following equa-
tion. 

( )1 22
,1 , 1, 2, , , 1, 2, , ,ij ij i px z z i n j pρ ρ= − + = =              (5.1) 

where ijz  are pseudo-random numbers from standardized normal distribution 
and 2ρ  represents the correlation between any two explanatory variables.  
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In this section, we set ρ  to take 0.70, 0.80, 0.99 and n to take 20, 100, 200 for 
the dependent variable with two and four explanatory variables. The dependent 
variable iy  in (1.1) is obtained from the Bernoulli ( iπ ) distribution where  

( )
( )

exp
1 exp

i
i

i

x
x
β

π
β

′
=

′+
. The parameter values of 1, , pβ β  are chosen so that 

2

1
1

p

j
j
β

=

=∑  and 1 pβ β= = . Further for the Liu parameter d, some selected 

values is chosen so that 0 1d≤ ≤ . Moreover, for the restriction, we choose 

1 1 0 0 1 1 0 0
0 1 1 0 , 2 and 0 1 0 ,
0 0 1 1 1 0 0 1

H h
−     

     = − = − Ψ =     
     −     

        (5.2) 

The simulation is repeated 2000 times by generating new pseudo-random 
numbers and the simulated MSE values of the estimators are obtained using the 
following equation 

( ) ( ){ }
( ) ( )

*

2000

1

ˆ ˆˆ ,

1 ˆ ˆ
2000 n

MSE Mean tr MSEMβ β β

β β β β
=

 =  

′= − −∑
               (5.3) 

The results of the simulation are reported in Tables A3-A9 (Appendix A) and 
also displayed in Figures A1-A3 (Appendix B). 

From Tables A3-A9, Figures A1-A3, we can conclude that: 
1) The MSE values of all the estimators are increasing along with the increase 

of ρ ; 2) The MSE values of all the estimators are decreasing along with the in-
crease of n; 3) SRLE is always superior to the MLE, LLE, SRMLE, SRLMLE for all 
d, n and ρ . 

6. Conclusion Remarks 

In this paper, we proposed the Stochastic Restricted Liu Estimator (SRLE) for 
logistic regression model when the linear stochastic restriction was available. In 
the sense of MSEM, we got the necessary and sufficient condition or sufficient 
condition that SRLE was superior to MLE, LLE, SRMLE and SRLMLE and Veri-
fy its superiority by using Monte Carlo simulation. How to reduce the new esti-
mation’s bias is the focus of our next step which guaranteed mean square error 
does not increase. 
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Appendix A 
Table A1. The correlation matrix of the dataset. 

 1x  2x  3x  

1x  1 0.833919 0.811755 

2x  0.833919 1 0.97747 

3x  0.811755 0.97747 1 

 
Table A2. The estimated MSEM values for different d. 

 k, d = 0 k, d = 0.2 k, d = 0.4 k, d = 0.5 k, d = 0.6 k, d = 0.8 k, d = 0.9 k, d = 0.99 

MLE 8.0221e+03 8.0221e+03 8.0221e+03 8.0221e+03 8.0221e+03 8.0221e+03 8.0221e+03 8.0221e+03 

LLE 8.0221e+03 220.9556 140.9535 122.7412 110.4983 95.4561 90.5954 87.1297 

SRMLE 102.4228 102.4228 102.4228 102.4228 102.4228 102.4228 102.4228 102.4228 

SRLMLE 28.0970 33.8486 44.1570 51.0200 59.0222 78.4441 89.8639 101.1157 

SRLE 0.7705 0.7863 0.9251 1.0406 1.1869 1.5716 1.8102 2.0511 

 
Table A3. The estimated MSEM values for different d when 20n =  and 0.70ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 7.4662 7.4662 7.4662 7.4662 7.4662 7.4662 7.4662 7.4662 

LLE 4.4468 4.6588 5.1626 5.3374 5.7376 6.3522 6.6154 7.4366 

SRMLE 5.9236 5.9236 5.9236 5.9236 5.9236 5.9236 5.9236 5.9236 

SRLMLE 4.7969 4.8832 5.0778 5.1698 5.4686 5.5636 5.7184 5.9218 

SRLE 1.3450 1.3954 1.4974 1.5506 1.6109 1.7505 1.8285 1.9793 

 
Table A4. The estimated MSEM values for different d when 20n =  and 0.80ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 9.1711 9.1711 9.1711 9.1711 9.1711 9.1711 9.1711 9.1711 

LLE 4.8646 5.0099 5.7310 6.0395 6.6352 7.4975 7.7415 9.1088 

SRMLE 6.4694 6.4694 6.4694 6.4694 6.4694 6.4694 6.4694 6.4694 

SRLMLE 5.1932 5.3479 5.6561 5.6492 5.8148 6.1384 6.2194 6.5021 

SRLE 1.3138 1.3630 1.4919 1.5626 1.6396 1.8170 1.9175 2.1239 

 
Table A5. The estimated MSEM values for different d when 20n =  and 0.99ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 73.1647 73.1647 73.1647 73.1647 73.1647 73.1647 73.1647 73.1647 

LLE 4.5979 5.5820 11.9735 17.0739 23.5922 38.2869 50.5697 71.6768 

SRMLE 7.0724 7.0724 7.0724 7.0724 7.0724 7.0724 7.0724 7.0724 

SRLMLE 5.9067 6.0027 6.2015 6.2544 6.4525 6.6168 6.8033 6.9489 

SRLE 1.0659 1.0958 1.2590 1.3805 1.5313 1.9262 2.1691 2.7055 
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Table A6. The estimated MSEM values for different d when 100n =  and 0.7ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 5.0422 5.0422 5.0422 5.0422 5.0422 5.0422 5.0422 5.0422 

LLE 4.7008 4.7702 4.7837 4.8357 4.8493 4.9529 4.9284 5.0390 

SRMLE 4.9033 4.9033 4.9033 4.9033 4.9033 4.9033 4.9033 4.9033 

SRLMLE 4.6768 4.6892 4.7607 4.7660 4.8208 4.8083 4.8644 4.8972 

SRLE 1.3186 1.3234 1.3332 1.3395 1.3465 1.3552 1.3621 1.3726 

 
Table A7. The estimated MSEM values for different d when 100n =  and 0.8ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 5.6054 5.6054 5.6054 5.6054 5.6054 5.6054 5.6054 5.6054 

LLE 5.1351 5.1538 5.2317 5.2462 5.3589 5.5121 5.5192 5.6019 

SRMLE 5.4591 5.4591 5.4591 5.4591 5.4591 5.4591 5.4591 5.4591 

SRLMLE 5.1120 5.1369 5.2144 5.2191 5.2741 5.3336 5.3462 5.4271 

SRLE 1.3596 1.3687 1.3845 1.3930 1.4041 1.4188 1.4303 1.4466 

 

Table A8. The estimated MSEM values for different d when 200n =  and 0.8ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 5.2945 5.2945 5.2945 5.2945 5.2945 5.2945 5.2945 5.2945 

LLE 5.1219 5.1233 5.1459 5.1748 5.1897 5.2604 5.2559 5.2669 

SRMLE 5.2174 5.2174 5.2174 5.2174 5.2174 5.2174 5.2174 5.2174 

SRLMLE 5.0657 5.0520 5.0930 5.1300 5.1753 5.1433 5.2052 5.2148 

SRLE 1.2906 1.2930 1.2971 1.2995 1.3026 1.3063 1.3102 1.3163 

 
Table A9. The estimated MSEM values for different d when 200n =  and 0.99ρ = . 

 d = 0 d = 0.10 d = 0.30 d = 0.40 d = 0.50 d = 0.70 d = 0.80 d = 0.99 

MLE 9.0269 9.0269 9.0269 9.0269 9.0269 9.0269 9.0269 9.0269 

LLE 5.2509 5.4181 5.9620 6.2403 6.5520 7.4280 7.8798 9.1243 

SRMLE 6.1827 6.1827 6.1827 6.1827 6.1827 6.1827 6.1827 6.1827 

SRLMLE 5.9722 5.9833 6.0102 6.0147 6.0688 6.1128 6.1244 6.1267 

SRLE 1.3862 1.4439 1.5812 1.6644 1.7576 1.9647 2.0818 2.3316 
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Appendix B 

 
 

 
 

 
Figure A1. The estimated MSE values for MLE, LLE, SRMLE, SRLMLE and SRLE for 20n = . 
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Figure A2. The estimated MSE values for MLE, LLE, SRMLE, SRLMLE and SRLE for 
100n = . 
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Figure A3. The estimated MSE values for MLE, LLE, SRMLE, SRLMLE and SRLE for 
200n = . 
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