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Abstract 
The Exponentiated Generalized Weibull distribution is a probability distribu-
tion which generalizes the Weibull distribution introducing two more shapes 
parameters to best adjust the non-monotonic shape. The parameters of the 
new probability distribution function are estimated by the maximum likelih-
ood method under progressive type II censored data via expectation maximi-
zation algorithm. 
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1. Introduction 

Various probability density functions have been proposed to perform statistical 
analysis of lifetime data. The Weibull distribution is one of the most widely used 
distributions in the analysis of lifetimes data. It was introduced by the French 
Mathematicians Fréchet (1928) [1]. Indeed in the 1920s Fréchet developed a 
distribution to which he gave his name; Fréchet distribution, as an extreme value 
distribution. This distribution is in fact equal to the reciprocal of the Weibull 
distribution. Rosin and Rammler (1933) [2] applied Fréchet’s ditribution to 
describe the particle size distribution generated by grinding, milling and 
crushing operations of materials. This probability distribution has been widely 
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used as a probabilistic model in studies on lifetimes. Mudholkar and Srivastava 
(1993) [3] introduced the exponentiated Weibull distribution to analyse bathtub 
failure rate data which cannot be handled well by the regular Weibull for 
monotonicity of its hazard rate. Also Zhang and Xie (2011) [4] worked on 
bathtub failure data using the truncated Weibull distribution. Soumaya and 
Soufiane (2014) [5] have given estimation of the parameters of the exponentiated 
Weibull distribution and the additive Weibull distribution, which are two 
specific generalizations of the Weibull distribution. 

Cordeiro, et al. (2013) [6] introduced the exponentiated generalized class of 
distribution which is more general than the two classes of Lehmann’s (1953) [7] 
alternatives, it is a combination of the Lehmann type I and type II alternatives. 
Indeed, for any baseline (or parent) distribution it is possible to define the 
corresponding Exponentiated Generalized family of distribution. Cordeiro, et al. 
(2013) discussed four special models namely the Exponentiated Generalized 
Fréchet, the Exponentiated Generalized Normal distribution, the Exponentiated 
Generalized Gamma distribution and the Exponentiated Generalized Gumbel 
distribution. Oguntunde et al. (2015) [8] have discussed the special case of the 
Exponentiated Generalized Weibull distribution by using the Weibull distribution 
as baseline distribution. The proposed distribution has four parameters (three 
shape parameters and one scale parameter). The work of Oguntunde et al. is 
mainly focused on the mathematical properties of the distribution like the 
moments, the limiting behaviour of the functions (pdf and cdf), the reliability 
analysis, and the quantile function. 

The probability density function and the cumulative distribution function of 
the Exponentiated Generalized Weibull are respectively given by:  
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where 0x > , 0a > , 0b > , 0α > , 0β > . 
The Exponentiated Generalized Weibull generalizes the following 

distributions: 
For 1a = , Generalized Weibull; 
For 1b = , Exponentiated Weibull; 
For 1a b= = , Weibull distribution; 
For 1a b α= = = , Exponential distribution. 
The survival function and the hazard function have respectively the following 

expressions:  
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and  
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2. Parameters Estimation 
2.1. The Model 

Let us assume that we have n independent variables in a trial, and the ordered m 
failures are observed under the progressive type-II censoring plan ( )1, , mR R R= 

, 
where 0jR ≥  for 1, ,j m=   and 0

m
jj R m n

=
+ =∑ . Let the observed and 

censored data be respectively ( )1, , mY Y Y= 
 and ( )1, , mZ Z Z= 

, where 

( )1, ,
jj j jRZ Z Z=   for 1, ,j m=  . Now consider ( ),X Y Z=  to be the 

complete data (observed and censored data together). Then the joint probability 
that the complete sample (the complete data likelihood) is observed is given by  
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(Ng et al 2002) [9]. 
From which we get the following log-likelihood by substituting in (5) the pdf 

by expression (1)  
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2.2. EM Algorithm 
2.2.1. E-Step 
In oder to tackle the E-step the conditional expectation of the log-likelihood 
given the observed sample ( )1 2, , , mY y y y= 

 is computed. Let us denote it by 
( )Q θ  where ( ), , ,a bθ α β=  is the vector of parameters. That is,  

( ) ( )( )log , |cQ L X Yθθ θ=   

The conditional expectation of the above log-likelihood becomes  
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Thus, to facilitate the E-step, the conditional distribution of Z for given Y and 
the current value of the parameters, needs to be determined. 

The conditional distribution of Z for given Y is given by 
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see Ng et al. (2002). 
Let us set  
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Using (8)-(11) the expressions for ( ), jA yθ , ( ), jB yθ  and ( ), jC yθ  
become 
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where  
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c
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is the upper incomplete gamma function.  
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We therefore obtain an expression for the conditional expectation of the log- 
likelihood as 
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where the functions A, B, and C are respectively defined in (12)-(14). 

2.2.2. M-Step 
In the M-step on the p-th iteration of the EM algorithm, the value of θ  which 
maximizes ( )( )1, pQ θ θ −  will be used as the next estimate ( )pθ  of θ . Where 

( ) ( ) ( ) ( ) ( )( ), , ,p p p p pa bθ α β=  is the vector of parameters at the p-th iteration 
1p ≥ , and ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0, , ,a bθ α β=  is the initial value of the vector of 

parameters. 
( )( ) ( ) ( )( )1 1, log , | ,p p

cQ L X Yθθ θ θ θ− −=   

Therefore, if at the p-th stage the estimate of θ  is ( )1pθ − , then ( )pθ  can be 
obtained by maximizing 
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Then ( )pθ  is solution of the following system of equations 
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which is equivalent to 
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From the second equation in the above system we can express ( )pb  for 
known ( )pa , ( )pα , ( )pβ  as: 
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The expressions for ( )pa , ( )pα  and ( )pβ  are not available in closed form. 
The solution to the M-step does not exists in closed form. For this case 

Dempster et al. (1977) [10] defined what is called the generalized EM algorithm 
(GEM algorithm) for which the M-step requires ( )pθ  to be chosen such that 

( ) ( )( ) ( ) ( )( )1 1 1, ,p p p pQ Qθ θ θ θ− − −≥
                 

(20) 

Since we need only to increase the likelihood, we may replace the M-step with 
a single iteration of the Newton-Raphson (N-R) algorithm. 

3. Simulation 
3.1. Simulation 

For the simulation the M-step is replaced by a single iteration of the Newton- 
Raphson algorithm. 

For the values of 30n =  and 20m =  and ( )1,1,1,1θ =  progressively Type- 
II censored sample was generated from the Exponentiated Generalized Weibull 
distribution using the algorithm in Balakrishnan and Sandhu (1995) [11].  

The algorithm is defined as follows:  
• Generate m independent Uniform (0, 1) observations 1 2, , , mW W W   
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• Set ( )1 11 m m m ii R R R
i iV W − − ++ + + +=   for 1, 2, ,i m=    

• Set 1 11i m m m iU V V V− − += −   for 1, 2, ,i m=  . Then 1 2, , , mU U U  is the 
required progressive Type-II censored sample from the Uniform (0, 1) 
distribution.  

• Finally, we set ( )1 ,i iX F U θ−=  for 1,2, ,i m=  , where ( )1 .,F θ−  is the 
inverse cdf of the Exponentiated Generalized Weibull distribution. Then 

1 2, , , mX X X  is the required progressive Type-II censored sample from the 
Exponentiated Generalized Weibull distribution.  

with censoring scheme ( )1,3,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0R = . 
The generated sample is:  

0.0138  0.0230  0.0447  0.2401  0.3091  0.3264  0.4597  0.5448  0.5841  0.7274 
0.9875  1.1164  1.2090  1.3519  1.4896  1.5041  1.6224  2.9952  3.4537  3.6385 

Via the EM algorithm discussed in Section 2, the computed MLEs of the 
parameters become:  

ˆ 0.7606a = , ˆ 0.8272b = , ˆ 1.0911α =  and ˆ 1.0365β =  

In Table 1 a Monte Carlo simulation for N = 500 was used to compute the 
RMSE and the mean estimates for different value of n, m and ( )2,2,1,1θ = . The 
following formula was used to compute the RMSE  

( ) ( )2

1

ˆ
ˆRMSE

N i

i N

λ λ
λ

=

−
= ∑  

where îλ  is the i-th estimates of the parameter λ   

3.2. Remarks 

• For fixed sample size n and by increasing m, we get smaller RMSE’s.  
• By increasing the sample size n, we get smaller RMSE’s.  
• The largest values of m in each case represent the complete sample case.  

 
Table 1. RMSE of the estimators.  

n m 
Estimates RMSE 

â  b̂  α̂  β̂  â  b̂  α̂  β̂  

25 15 1.6346 1.9228 1.2833 0.6301 2.1274 2.0622 1.5970 3.1484 

 20 2.0388 1.6436 1.1927 1.0383 1.0591 1.3232 0.9489 1.0364 

 25 2.0723 1.9273 0.9889 1.0761 0.4639 0.6423 0.3130 0.6419 

40 20 2.0371 1.9960 1.0133 1.0716 1.3787 1.8453 0.8290 0.8120 

 30 2.0199 2.0494 0.9433 1.0301 0.4582 0.8808 0.3870 0.2936 

 40 2.0011 1.9357 1.0222 1.0030 0.3196 0.5117 0.2313 0.1701 

65 30 2.0751 1.9770 1.0153 1.0176 0.3112 0.7451 0.2008 0.1108 

 45 2.0148 2.0949 0.9944 1.0012 0.2384 0.3315 0.1546 0.0536 

 65 2.0148 1.9991 1.0063 0.9988 0.2610 0.6053 0.1451 0.0720 
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4. Conclusion 

The parameters of the Exponentiated Generalized Weibull distribution were 
estimated using maximum likelihood estimation method via Expectation 
Maximization (EM) algorithm. The Root Mean Square Error were computed at 
different values of the sample size n and failures (observed data) m. It was 
observed that the RMSEs were smaller for fixed sample size n and increasing the 
size m of the observed data, and also for the increasing sample size n.  
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