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Abstract 
The impact of long-memory on the Before-After-Control-Impact (BACI) de-
sign and a commonly used nonparametric alternative, Randomized Interven-
tion Analysis (RIA), is examined. It is shown the corrections used based on 
short-memory processes are not adequate. Long-memory series are also 
known to exhibit spurious structural breaks that can be mistakenly attributed 
to an intervention. Two examples from the literature are used as illustrations. 
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1. Introduction 

Ecological studies often involve data collected over time. Examples are 
observations of population densities such as the relative abundance of the white 
sea urchin (Lytechinus anamesus) in an area offshore the San Onofre Nuclear 
Generating Station (Schroeter et al. [1]), or of the difference in chlorophyll 
concentrations between two lakes (Carpenter et al. [2]). This data need not 
satisfy the standard assumption of independent observations but can in fact be 
autocorrelated. A long-memory time series has autocorrelation that decays at a 
slow hyperbolic rate. Long-memory has been shown to be effective in modeling 
natural processes such as observations of the yearly minimal water levels of the 
Nile River and the monthly temperatures for the northern hemisphere (Beran 
[3]). 

Researchers have explored the relationships among long-memory, aggregation, 
and structural breaks in time series [4] [5] [6]. In [5] the authors show that the 
number of spurious breaks in a long-memory series approaches infinity as the 
sample size does, while in [4] [5] and [6] the authors explore the fact that 
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structural breaks in a time series can create spurious long memory. In [6] the 
authors propose a test to detect spurious long memory using aggregation tests. 
Unfortunately, these aggregation tests depend upon very long time series, which 
is rarely the case in ecological experiments, making undetectable long memory a 
real danger. 

Tests which seek to detect breaks due to an intervention in a series whose true 
data generating process is long memory are in danger of detecting spurious 
breaks. Later in this paper we examine two examples taken from the literature. 
They were chosen because they present instances in the literature where a 
significant intervention effect was detected when in fact no intervention 
occurred. A possible explanation for this is the presence of strong correlation in 
the data, perhaps long-memory, which could have produced the spurious 
detection of a significant intervention effect. This possibility provided the 
impetus for this manuscript. 

The Before-After-Control-Impact (BACI) design [7] uses two ecological units, 
one as a control and the other as an impact, i.e., the impact unit has an 
intervention applied to it. Repeated measurements are taken on each of the units, 
before and after the intervention. The paired in time differences between impact 
and control units are the object of statistical analysis. The original BACI analysis 
uses a 2-sample t-test to compare the pre-intervention mean paired difference 
with the post-intervention mean paired difference. An alternative to the 
2-sample t-test is Randomized Intervention Analysis (RIA) [2], which uses a 
permutation test to conduct the comparison. BACI and RIA both assume the 
pre-intervention differences and the post-intervention differences from the 
repeated measurements on the control and the impact units form two 
independent random samples. 

In lieu of ignoring the autocorrelation, strategies have been proposed to adjust 
the BACI and RIA analyses for autocorrelated data. One approach is parametric: 
estimate the correlation structure using an assumed (short memory) model and 
use the estimated correlation to adjust the 2-sample t-test and confidence 
interval in the BACI analysis (see Bence [8] for a survey). A second option is to 
adopt a nonparametric approach, whereby the original data is block resampled, 
the blocks being groups of observations chosen large enough to take the 
correlation into account. RIA is essentially block resampling using blocks of size 
one. This is completely accurate only where the observations are independent. 
Neither approach is entirely satisfactory when the data is collected from a 
long-memory process, leaving the experimenter vulnerable to spurious break 
detection. 

This paper is structured as follows: Section 2 contains definitions and some 
simple derivations. In Section 3 we conduct numerical studies to illustrate the 
inadequacy of short-memory corrections for long-memory series. Section 4 
contains two examples from the literature, and Section 5 concludes the paper 
with a brief discussion. 
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2. Definitions and Derivations 
2.1. Time Series 

The following facts from time series theory and methodology may be found in 
standard texts such as [9]. The autocorrelation structure of a stationary time 
series { }tX  is described by its autocorrelation function (ACF) denoted ( )X hρ , 
where h denotes the time lag between the two random variables:  

( ) ( ): , , 1, 2,3, .X t t hh Corr X X hρ += = ±   

A short-memory time series has an ACF that decays at an exponential rate, i.e., 
( ) h

X h rρ  approaches a positive constant as h →∞  for some 0 1r< < . A 
long-memory time series has an ACF that decays at a hyperbolic rate: ( ) h

X h rρ  
approaches a positive constant as h →∞  for some 0 1r< < . 

Suppose { }tW  is a white noise process. We consider the following short- 
memory process, the autoregressive model of order 1 (AR(1))  

1 , 1.t t tX X Wφ φ−= + <  

The ACF of the AR(1) is given by  

( ) , 0,1, 2,h
X h hρ φ= =   

Long-memory processes, as described by fractionally differenced white noise 
(FD(d)), define the time series { }tX  by  

( )1 , 0.5 0.5.d
t tB X W d− = − < <  

where B defined by 1t tBX X −=  is the backshift operator and the fractional 
differencing operator ( )1 dB−  has the polynomial expansion  

( ) ( )
( ) ( )0

1 , .
1

d j
j j

j

j d
B B

j d
π π

≥

Γ −
− = =

Γ + Γ −∑  

The exact form of the ACF of the FD(d) process is known (see [3] pgs. 63ff.):  

( ) ( ) ( )
( ) ( ) 0

1 1 , 1,2,
1X

i h

h d d i dh h
h d d i d

ρ
< ≤

Γ + Γ − − +
= = =
Γ − + Γ −∏ 

         
(1) 

The AR(1) and FD(d) are both stationary processes. Fractionally differenced 
white noise is a classic long-memory time series, having an ACF that decays at a 
hyperbolic rate: ( ) 1 2dh hρ −  approaches a positive constant as h →∞ . The 
AR(1) model is short-memory since its ACF converges to zero at an exponential 
rate as h →∞ . 

2.2. BACI Analysis 

Consider the BACI design. Suppose 1, , nY Y  are observations on the impact 
site, 1, , nX X  are observations on the control site and 1, , nD D  are the 
differences between the two:  

: , 1, , .t t tD Y X t n= − =   

Assume { }tY  and { }tX  are jointly stationary, yielding a stationary { }tD , 
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and that ( ) 2
iVar D σ= . As is well-known, if 1, , nD D  form a random sample 

then ( ) 2Var D nσ= . However, when 1, , nD D  are realizations from a 
stationary time series with autocorrelation function ( )D hρ , then  

( ) ( )
2 1

1
1 2 1 .

n

D
h

hVar D h
n n
σ ρ

−

=

  = + −    
∑

               
(2) 

The quantity  

( )
1

1
1 2 1

n

D
h

h h
n

ρ
−

=

 + − 
 

∑
                      

(3) 

is sometimes called the variance correction factor [8] [3]. 
The estimated correction factor  

( )
1

1

ˆ1 2 1
n

h

h h
n

ρ
−

=

 + − 
 

∑
                       

(4) 

is used to adjust the usual estimate of ( )Var D , 2s n , when 1, , nD D  are 
realizations of a stationary time series. Bence [8] made an extensive investigation 
of the effect of the estimated correction factor when the autocorrelation is 
assumed to be that of an AR(1) model and is estimated by ( ) ˆˆ hhρ φ= , where φ̂  
is an estimate of the autoregression coefficient. 

The BACI design uses a 2-sample t-test to compare the pre-intervention and 
post-intervention control-impact mean differences. Let PreD  denote the 1n  
pre-intervention differences, PostD  the 2n  post-intervention differences, 

1 2n n n+ = , and ( )ˆ
Post PreSE D D−  be the estimated standard error of Post PreD D−  

where  

( ) ( ) ( )
1 21 1

1 11 1 2 2

1 1ˆ ˆ ˆˆ 1 2 1 1 2 1 .
n n

Post Pre D D D
h h

h hSE D D h h
n n n n

σ ρ ρ
− −

= =

      
− = + − + + −      

         
∑ ∑  

The estimated standard error ( )ˆ
Post PreSE D D−  is calculated using (2) and 

the estimated variance correction (4). The estimates ˆDσ  and ˆDρ  are obtained 
from pooling the two sets of differences. Note ( )ˆ

Post PreSE D D−  ignores the 
correlation between the two samples since  

( ) ( ) ( ) ( )2 , .Post Pre Post Pre Post PreSE D D Var D Var D Cov D D− = + −  

This is another reason for the inacccuracy of the method in the presence of 
long-memory; for a short-memory process the problem will not be as severe. 

The assumption that { }tX  and { }tY  are jointly stationary allows the use of 
the 2-sample t-test with equal variances. Combined with the null hypothesis of 
no intervention effect, this suggests the following approximate test statistic for 
the 2-sample t-test  

( ) 1 2 2~ .ˆ
Post Pre

n n
Post Pre

D D t
SE D D + −

−

−
 

The use of the t-distribution depends on asymptotic theory which requires 
very large samples when the process is long-memory. For smaller samples it is 
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not exactly correct, but it is difficult to work out the exact distribution ([3], 
Section 8.6.3). 

2.3. RIA and Permutation Tests 

An alternative to using a correction factor for the standard error of the mean is 
the use of nonparametric methods. The procedure is to resample blocks (the 
block bootstrap), the blocks being chosen large enough to properly capture the 
autocorrelation. The permutation test used in RIA is essentially block 
resampling from blocks of size one. This can be effective where the correlation 
structure is that of a short-memory process since blocks of minimal size are 
required. However, when long-memory is present the blocks must be large, 
requiring very large samples. 

The problems that correlated data pose for RIA have been studied previously. 
One examination is in Carpenter et al. [2]. The authors simulated data from 
short-memory AR(1) and MA(1) processes and analyzed these with a 
permutation test. Recognizing RIA is affected by autocorrelations, the authors 
recommended a correction to the p-value when dealing with positive autocorrelations, 
for example, using a declared p-value of 0.01 to get a true p-value of 0.05. 
However, the autocorrelations used in this study were short-memory and 
moderate at most in strength. The simulation results in Section 3 suggest such a 
correction is not adequate for data with long-memory, as in a FD(d) process. 

3. Simulations 

All simulations were run using the R environment [10]. The R package fracdiff 
[11] calculates the maximum likelihood parameters of a FD(d) model, following 
Haslett and Raftery [12]. There is a large body of literature concerned with 
estimating the long-memory parameter d, but this is not the focus of this paper. 
The package also contains a routine which will simulate observations from the 
process. In all simulations we assumed the white noise process followed a 
standard normal distribution. 

3.1. Variance Correction Factors 

The correction factors for FD(d) and AR(1) processes can be computed from (1) 
and (3) when the values of ,d φ  are known. Table 1 below contains the  

 
Table 1. Variance corrections of autoregressive (AR) and fractionally differenced (FD) 
models, rounded to 2 decimal places. Parameter values are in parentheses. 

n AR(0.7) AR(0.9) AR(0.99) FD(0.3) FD(0.49) 

5 3.08 7.19 8.80 2.40 8.57 

10 4.16 12.03 18.12 3.61 17.82 

25 5.04 17.56 43.44 6.24 45.10 

50 5.36 18.90 78.00 9.46 89.84 

100 5.51 19.00 125.79 14.33 178.08 
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correction factors for the FD(d) process for 0.3,0.49d =  and those of the AR(1) 
process for values 0.7,0.9,0.99φ = . Several sample sizes were used. 

The most striking difference between the AR(1) and the FD(d) correction 
factors are the rates at which they increase as the sample size increases. FD(d) 
processes increase more due to the fact the autocorrelations persist longer. For 
small sample sizes the AR(1) corrections tend to be equal to or slightly larger 
than the FD(d) corrections, while for large sample sizes they are too small. 

Bence [8] observes that setting φ  to 0.99 or 0.9999 makes little difference 
because in either case the confidence bounds will be so broad that little could be 
claimed on the basis of the estimate. AR(0.99) is competitive for small samples, 
but for moderate to large samples it underestimates the variance correction 
factor; setting 0.99φ =  is too conservative for data with very strong long- 
memory, indicating how serious the situation is. Also, simulated data from 

0.49d =  has a reasonable probability of returning a non-stationary AR(1) 
model, particularly for smaller samples, rendering the short-memory correction 
unusable. 

3.2. Size of 2-Sample t Hypothesis Tests with and without AR(1) 
Variance Corrections 

To investigate the size α  of 2-sample t-tests when the data are from a long 
memory process, series of various lengths for several values of d were simulated. 
Each simulated series was split into two equal halves to be the two series. The 
case 0d =  corresponds to white noise for the errors. The t-test statistic was 
calculated both with and without the AR(1) variance correction, and the null was 
rejected if the test statistic exceeded the appropriate critical value. The 
proportion of rejections was the estimated size of the test. The AR(1) correction 
used the value of φ  estimated from the simulated series. Results are in Table 2. 

For white noise ( 0d = ) processes the uncorrected and AR(1) corrected tests 
have size approximately equal to the nominal size. As d increases, the sizes of the 
tests increase. Though the AR(1) performs better than no correction, the 
performance is very poor for strong long-memory. Also, in the presence of 
long-memory the size of the test increases from the nominal size as the sample 
size increases, the performace being worse the stronger the long-memory.  

3.3. Randomized Intervention Analysis 

Carpenter et al appear to have introduced RIA in [2]. The RIA permutation test 
examines all possible permutations of the observed pre-intervention and 
post-intervention differences, determines a distribution from this for the 
absolute value of the difference between the pre-intervention and the post- 
intervention means and uses this distribution to compute a p-value for the 
observed data. The case where there is no intervention effect is equivalent to 
splitting a single series of differences { }tD  into two series at the time of the 
ineffective intervention, and then comparing these two series with a permutation  

https://doi.org/10.4236/ojs.2017.75054


T. R. Boucher   
 

 

DOI: 10.4236/ojs.2017.75054 774 Open Journal of Statistics 
 

Table 2. Hypothesis test size Monte Carlo approximations for 10,000 simulated FD(d) 
with 0.10,0.05,0.01α = , 0.0, 0.2, 0.4d =  and 1 2 20, 40, 60,80,100n n+ =  with 

1 2n n= . “None” denotes the ordinary 2-sample t-test, “AR” denotes the 2-sample t-test 
with the AR(1) correction. 

α 0.10 0.05 0.01 

d n None AR None AR None AR 

 20 0.107 0.105 0.052 0.044 0.009 0.003 

 40 0.099 0.101 0.050 0.047 0.010 0.006 

0.0 60 0.100 0.100 0.051 0.049 0.010 0.008 

 80 0.099 0.100 0.050 0.048 0.010 0.008 

 100 0.102 0.101 0.049 0.047 0.010 0.009 

 20 0.221 0.157 0.138 0.075 0.048 0.009 

 40 0.275 0.193 0.189 0.110 0.083 0.026 

0.2 60 0.309 0.218 0.225 0.137 0.107 0.041 

 80 0.332 0.240 0.247 0.154 0.127 0.052 

 100 0.352 0.254 0.268 0.169 0.145 0.063 

 20 0.361 0.211 0.271 0.114 0.135 0.017 

 40 0.472 0.287 0.382 0.181 0.242 0.053 

0.4 60 0.529 0.327 0.444 0.228 0.311 0.090 

 80 0.571 0.364 0.491 0.269 0.358 0.119 

 100 0.603 0.397 0.520 0.293 0.398 0.149 

 
test. The permutation test assumes the differences are independent, an assumption 
violated by data possessing long-memory. 

Computing the exact p-value for a permutation test can be computationally 
taxing even for moderate sample sizes. The p-value can be approximated via 
Monte Carlo methods, using random assignments of the data to each of the two 
samples. The estimate of the p-value is taken to be the ratio of the number of 
random assignments resulting in an absolute mean difference that meet or 
exceed the observed difference to the number of random assignments. Since the 
aim of the simulation is to approximate the distribution of the p-value returned 
for RIA applied to a FD(d) time series, Monte Carlo methods are again applied 
to simulate many realizations from a FD(d) process and an approximate p-value 
is calculated for each. 

Carpenter et al. recognized RIA is affected by autocorrelations. They 
simulated data from short-memory AR(1) and MA(1) processes and ran these 
through RIA, also checking these for true rejections when a given intervention of 
size ms occurred, that is, sizes that are multiples m of the standard deviation. As 
a result they recommend a correction to the p-value when dealing with positive 
autocorrelations, i.e., using a declared p-value of 0.01 to get a true p-value of 
0.05. 
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Table 3. Quartile summary of Monte Carlo distribution results of estimated RIA p-values 
for 10,000 random permutations of each of 1000 simulated FD(d) series with the 
indicated values of d and n. 

 0.1d =  0.3d =  0.49d =  

n Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 

10 0.2100 0.4469 0.7062 0.13 0.3648 0.6584 0.09463 0.29745 0.59205 

20 0.1779 0.4214 0.6966 0.08017 0.28870 0.61352 0.02045 0.14620 0.46227 

50 0.1344 0.4110 0.6842 0.0237 0.1892 0.5373 0.00160 0.04795 0.34013 

100 0.1515 0.3740 0.6693 0.0087 0.1196 0.4537 0.0000 0.0121 0.2185 

 
In the simulation a permutation test was applied to each of 1000 simulated 

long-memory FD(d) series, of the values of d and n indicated. The estimated 
permutation test p-values were based on 10,000 random permutations of each 
simulated data set. Note the simulated long-memory series contain no intervention but 
as mentioned do strongly violate the assumption of independent observations behind 
the permutation test. Estimated quartiles of the p-value distributions are 
summarized below in Table 3. 

For fixed d, as the sample size n increases, the distribution becomes 
increasingly right-skewed, with the p-values increasingly concentrated near zero. 
This is also true for fixed n, as the long-memory parameter d increases. The 
simulation results indicate long-memory data analyzed with a permutation test 
will result in many false detections of trend or intervention. 

4. Data Examples 

As mentioned, the R package fracdiff [11] calculates the maximum likelihood 
parameters of a FD(d) model, following Haslett and Raftery [12]. The log- 
likelihood from fitting an FD(d) model to data is optional output and can be 
used to test for long-memory vs. the null hypothesis of white noise. Asymptotically, 
−2 times the log-likelihood follows a Chi-Square distribution under the null 
hypothesis. However, fearing slow convergence due to long-memory (for 
long-memory time series the rate of convergence in the Central Limit Theorem 
occurs at rate 1 2 dn −  rather than 1 2n . (See Beran [3], Taqqu [13])) it is wise to 
approximate the p-value using Monte Carlo methods. This is accomplished by 
simulating many white noise series, fitting a FD(d) model to the simulated series 
and calculating the log likelihood. The estimated p-value is the proportion of 
simulated series with a value of −2 times the log likelihood which exceeds the 
observed value of −2 times the log likelihood. Another approximate p-value for a 
test for the significance of the observed value of d can be computed by 
calculating the proportion of simulated series with an estimated d which exceeds 
that observed. The exact hypotheses being tested are 0 : 0H d =  (white noise) 
vs. : 0aH d >  (long-memory in the form of a FD(d) model). 

The following two examples were taken from the literature. They were chosen 
because they present instances in the literature where the BACI analysis with the 
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short-memory AR(1) variance correction and the RIA analysis utilizing a 
permutation test returns a significant intervention effect when in fact no 
intervention occurred. A possible explanation for this is the presence of strong 
correlation in the data, perhaps long-memory, which could have produced the 
spurious detection of a significant intervention effect. The observations in the 
following examples are only approximately equally spaced in time. They were 
assumed so in order to simplify the analyses. 

4.1. Sea Urchin Data 

The first example involves data read from figure 4a in Bence [8], concerning the 
relative abundance of the white sea urchin (Lytechinus anamesus) in an area 
offshore the San Onofre Nuclear Generating Station. The data first appeared in 
Schroeter et al. [1]. The data values are differences in log-transformed density 
(numbers per square meter) of white sea urchins between an impact site and a 
control site; a plot appears in Figure 1. It is important to note there was no 
intervention in the series, despite the apparent and unexplained structural break 
prior to mid-1981. 

The analysis by Bence estimated the mean difference with a t confidence 
interval. He assumed an AR(1) correlation structure after the Durbin-Watson 
test detected significant autocorrelation. However, estimation returned a non- 
stationary model, ruling out the AR(1) and another indication the data may 
possess long-memory. 

Fitting a long-memory model to the sea urchin data yielded the estimate 
ˆ 0.3d = . The value of the approximate chi-square test statistic equaled 34.66, 

with a Monte Carlo approximate p-value of 0.00161. The test for significance of  
 

 
Figure 1. Approximate differences in log-transformed density (numbers per square meter) 
of white sea urchins between an impact site and a control site (see [1] [8]); the 
approximate interlake differences in chlorophyll concentrations between Big Muskellunge 
and Trout lakes, 1984-1986 (see Carpenter et al. [2]). 
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the long-memory parameter yielded a Monte Carlo approximate p-value of 
0.01222. The long-memory corrected 95% confidence interval (using (3) with 
the estimated FD(d) ACF using d̂ ) for the mean difference is 1.84 5.13− ± , 
indicating the mean difference is equal to 0. This compares with the (from Bence 
[8]) OLS estimate ( 1.83 1.36− ± ), conventional 2-stage estimate ( 2.40 3.25− ± ) 
and bias-corrected 2-stage estimate ( 3.41 26.26− ± ). Moderate long-memory in 
the data is a possible explanation for the non-stationary AR(1) fitted model and 
the unexpected structural break. 

4.2. Interlake Differences 

Carpenter et al. ([2], in figure 5) report an example using the difference in 
chlorophyll concentrations between two lakes (Big Muskellunge Lake and Trout 
Lake in the Northern Highlands Lake District of Wisconsin). This data was read 
from the figure and a plot appears in figure 3. RIA was significant even though 
no effect was evident from the mid-1985 intervention. The plot of the data 
reveals a possible trend; no explanation was given for this. 

Durbin-Watson does not detect a statistically significant autocorrelation at lag 
1 (p-value = 0.346), ruling out the AR(1). The fitted FD(d) model yielded the 
estimate ˆ 0.15d = . The value of the approximate chi-square test statistic 
equaled 81.21, with a Monte Carlo approximate p-value of 0.09075. The test for 
the significance of the long-memory parameter yielded a Monte Carlo 
approximate p-value of 0.05785. Weak to moderate long-memory in the data is a 
possible explanation of the significance of RIA, creating a false trend which was 
detected by the permutation test as a spurious break due to the intervention. 

5. Discussion 

Murtaugh [14] [15] and Stewart-Oaten [16] debated the effectiveness of the 
BACI and RIA designs. However, their points concerned incorrect specification 
of the process mean structure and not the process autocorrelation structure. An 
examination of RIA for correlated data is in Carpenter et al. [2]. However, the 
autocorrelations studied were short-memory and moderate at most in strength. 
Bence [8], recognized short-memory variance corrections may not always be 
adequate for ecological data, that the actual correlation structure of the process 
may be more elaborate than that of a short-memory process. The simulation 
results in Section 3 indicate short-memory variance corrections in the 2-sample 
t-test used in the BACI analysis are not adequate for data with long-memory. 

However, the BACI design and analysis will work better than RIA in these 
situations because it is amenable to a simple long-memory variance correction 
which will improve its performance. It is also known [3] that the sample mean is 
nearly optimal when estimating the location parameter of a Gaussian 
long-memory series, in the sense that the sample mean is unbiased and its 
efficiency when compared to the best linear unbiased estimator is very high. 

Researchers have examined the relationships among long-memory, aggregation 
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and structural breaks in time series [4] [5] [6]. Tests such as RIA which seek to 
detect breaks in a series whose true data generating process is a long memory 
process may result in spurious break detection. In the other direction, structural 
breaks in a time series may cause the manifestation of long-memory behavior. 
RIA would not be sensitive to structural breaks in a series since RIA does not 
detect the time at which a change occurred. 

One solution is to detect and account for the breaks in a series, correct for 
them and then analyze the corrected time series. However, aggregation tests [6] 
for long memory depend upon very long time series, which is rarely the case in 
ecological experiments. Researchers should consider using long-memory 
corrections when short-memory corrections return non-stationary models, data 
exhibits persistent autocorrelation, an intervention where none occurred, or a 
trend with no apparent explanation. 
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