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Abstract 
This paper presents a novel variable selection method in additive nonparame-
tric regression model. This work is motivated by the need to select the number 
of nonparametric components and number of variables within each nonpa-
rametric component. The proposed method uses a combination of hard and 
soft shrinkages to separately control the number of additive components and 
the variables within each component. An efficient algorithm is developed to 
select the importance of variables and estimate the interaction network. Ex-
cellent performance is obtained in simulated and real data examples.  
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1. Introduction 

Variable selection has played a pivotal role in scientific and engineering 
applications, such as biochemical analysis [1], bioinformatics [2] and text 
mining [3], among other areas. A significant portion of existing variable 
selection methods are only applicable to linear parametric models. Despite the 
linearity and additivity assumption, variable selection in linear regression 
models has been popular since 1970, referring to Akaike information criterion 
(AIC; [4]); Bayesian information criterion (BIC; [5]) and Risk inflation criterion 
(RIC; [6]).  

Popular classical sparse-regression methods such as Least absolute shrinkage 
operator (LASSO [7] [8]), and related penalization methods [9] [10] [11] [12] 
have gained popularity over the last decade due to their simplicity, computational 
scalability and efficiency in prediction when the underlying relation between the 
response and the predictors can be adequately described by parametric models. 
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Bayesian methods [13] [14] [15] with sparsity inducing priors offer greater 
applicability beyond parametric models and are a convenient alternative when 
the underlying goal is in inference and uncertainty quantification. However, 
there is still a limited amount of literature which seriously considers relaxing the 
linearity assumption, particularly when the dimension of the predictors is high. 
Moreover, when the focus is on learning the interactions between the variables, 
parametric models are often restrictive since they require very many parameters 
to capture the higher-order interaction terms. 

Smoothing based non-additive nonparametric regression methods [16] [17] 
[18] [19] can accommodate a wide range of relationships between predictors and 
response leading to excellent predictive performance. Such methods have been 
adapted for different methods of functional component selection with non- 
linear interaction terms: component selection and smoothing operator (COSSO; 
[20]), sparse addictive model (SAMS; [21]) and variable selection using adaptive 
nonlinear interaction structure in high dimensions (VANISH; [22]). However, 
when the number of variables is large and their interaction network is complex, 
modeling each functional component is highly expensive. 

Nonparametric variable selection based on kernel methods is increasingly 
becoming popular over the last few years. Liu et al. [23] provided a connection 
between the least square kernel machine (LKM) and the linear mixed models. 
Zou et al. [24], Savitsky et al. [25] introduced Gaussian process with dimension- 
specific scalings for simultaneous variable selection and prediction. Yang et al. 
[26] argued that a single Gaussian process with variable bandwidths can achieve 
the optimal rate in estimation when the true number of covariates ( )logs O n . 
However, when the true number of covariates is relatively high, the suitability of 
using a single Gaussian process is questionable. Moreover, such an approach is 
not convenient to recover the interaction among variables. Fang et al. [27] used 
the nonnegative Garotte kernel to select variables and capture interaction. 
Though these methods can successfully perform variable selection and capture 
the interaction, non-additive nonparametric models are not sufficiently scalable 
when the dimension of the relevant predictors is even moderately high. [27] 
claimed that extensions to additive models may cause over-fitting issues in 
capturing the interaction between variables (i.e. capture more interacting 
variables than the ones which are influential).  

To circumvent this bottleneck, Yang et al. [26], Qamar and Tokdar [28] 
introduced the additive Gaussian process with sparsity inducing priors for both the 
number of components and variables within each component. The additive 
Gaussian process captures interactions among variables, can scale up to moderately 
high dimensions and are suitable for low sparse regression functions. However, the 
use of two component sparsity inducing prior forced them to develop a tedious 
Markov chain Monte Carlo algorithm to sample from the posterior distribution.  

To overcome the computational challenge facing in Yang et al. [26], Qamar and 
Tokdar [28], we propose a novel method, called the additive Gaussian process with 
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soft interactions. More specifically, we decompose the unknown regression 
function F into k components, such as 1 1 2 2 k kF f f fφ φ φ= + + +� , for k 
hard shrinkage parameters , 1, ,l l kφ = � , 1k ≥ . Each component lf  is 
independent. Each of them is assigned to a Gaussian process prior. To induce 
sparsity within each Gaussian process, we introduce an additional level of soft 
shrinkage parameters. The combination of hard and soft shrinkage priors makes 
our approach very straightforward to implement and computationally efficient, 
while retaining all the advantages of the additive Gaussian process proposed by 
Qamar and Tokdar [28]. We propose a combination of Markov chain Monte 
Carlo (MCMC) and the Least Angle Regression algorithm (LARS) to select the 
Gaussian process components and variables within each component.  

The rest of the paper is organized as follows. Section 2 presents the additive 
Gaussian process model. Section 3 describes the two-level regularization and the 
prior specifications. The posterior computation is detailed in Section 4 and the 
variable selection and interaction recovery approach are presented in Section 5. 
The simulation study results are presented in Section 6. A couple of real data 
examples are considered in Section 7. We conclude with a discussion in Section 8.  

2. Additive Gaussian Process 

For observed predictor-response pairs ( ), p
i iy ∈ × x , where 1,2, ,i n= �  

(i.e. n is the sample size and p is the dimension of the predictors), an additive 
nonparametric regression model can be expressed as  

( ) ( )
( ) ( ) ( ) ( )

2

1 1 2 2

, ~ 0,

.
i i i i

i i i k k i

y F

F f f f

σ

φ φ φ

= + Ν

= + + +�

 x

x x x x              
(1) 

The regression function F in (1) is a sum of k regression functions, with the 
relative importance of each function controlled by the set of non-negative 
parameters ( )T

1 2, , , kφ φ φ φ= � . Typically the unknown parameter φ  is 
assumed to be sparse to prevent F from over-fitting the data. 

Gaussian process (GP) [29] provides a flexible prior for each of the 
component functions in { }, 1, ,lf l k= � . GP defines a prior on the space of all 
continuous functions, denoted ( )~ GP ,f cµ  for a fixed function : pµ →   
and a positive definite function c defined on p p×   such that for any finite 
collection of points { }, 1, ,i i L= �x , the distribution of ( ) ( ){ }1 , , Lf f�x x  is 
multivariate Gaussian with mean ( ) ( ){ }1 , , Lµ µ�x x  and variance-covariance 
matrix ( ){ }1 , ,

,i i i i L
c ′ ′≤ ≤

Σ = x x . The choice of the covariance kernel is crucial to 
ensure the sample path realizations of the Gaussian process are appropriately 
smooth. A squared exponential covariance kernel ( ) ( )2, expc κ′ ′= − −x x x x  
with an Gamma hyperprior assigned to the inverse-bandwidth parameter κ  
ensures optimal estimation of an isotropic regression function [30] even when a 
single component function is used ( 1k = ). When the dimension of the 
covariates is high, it is natural to assume that the underlying regression function 
is not isotropic. In that case, Bhattacharya et al. [31] showed that a single 
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bandwidth parameter might be inadequate and dimension specific scalings with 
appropriate shrinkage priors are required to ensure that the posterior 
distribution can adapt to the unknown dimensionality. However, Yang et al. [26] 
showed that single Gaussian process might not be appropriate to capture 
interacting variables and also does not scale well with the true dimension of the 
predictor space. In that case, an additive Gaussian process is a more effective 
alternative which also leads to interaction recovery as a bi-product. In this article, 
we work with the additive representation in (1) with dimension specific scalings 
(inverse-bandwidth parameters) ljκ  along dimension j for the lth Gaussian 
process component, 1, ,j p= �  and 1, ,l k= � .  

We assume that the response vector ( )1 2, , , ny y y y= �  in (1) is centered and 
scaled. Let ( )~ GP 0,l lf c  with  

( ) ( )2

1
, exp .

p

l lj j j
j

c x xκ
=

 
′ ′= − − 

 
∑x x

                
(2) 

In the next section, we discuss appropriate regularization on φ  and 

{ }, 1, , ; 1, ,lj l k j pκ = =� � . A shrinkage prior on the { }, 1, ,lj j pκ = �  facilitates 
the selection of variables within component l and allows adaptive local 
smoothing. An appropriate regularization on φ  allows F to adapt to the degree 
of additivity in the data without over-fitting. 

3. Regularization 

A full Bayesian specification will require placing prior distribution on both φ  
and κ . However, such a specification requires tedious posterior sampling 
algorithms to sample from the posterior distribution as seen in [28]. Moreover, 
it is difficult to identify the role of lφ  and , 1, ,jl j pκ = �  since one can remove 
the effect of the lth component by either setting lφ  to zero or by having 

0, 1, ,lj j pκ = = � . This ambiguous representation causes mixing issues in a 
full-blown MCMC. To facilitate computation, we adopt a hybrid approach 
between frequentist and Bayesian to regularize φ  and ljκ , respectively. The 
hybrid-algorithm is a combination of i) MCMC, to sample κ  conditional on 
φ  ii) and optimization to estimate φ  conditional on κ . With this viewpoint, 
we propose the following regularization on κ  and φ . With the parameter γ , 
each component controls the selection of variables and interaction among them. 
In addition to γ , the parameter Γ  allows the model (1) to select significant 
components, which includes interested variables and interaction network. 
Together, Γ  and γ  are the global-local shrinkage on F. 

3.1. L1 Regularization for φ  

Conditional on 1, , kf f� , (1) with lφ , and 0lφ > . Hence we impose 1L  
regularization on lφ , which is as following  

( ) ( )
1 1 1

1 N k k

i l l i l
i l l

y x f x
n

φ λ φ
= = =

 − + 
 

∑ ∑ ∑
                 

(3) 
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In the algorithm, lφ  is updated using least absolute shrinkage and selection 
operator (LASSO) [7] [32] [33]. The 1L  regularization enforces sparsity on φ  
at each stage of the algorithm, thereby pruning the unnecessary Gaussian 
process components in F. The parameter λ  in (3) is selected using five fold 
cross validation. 

3.2. Choice of k Components 

The proposed model has the number of components, k, which determines how 
many components to fit the data and build the prediction. We propose using 
LASSO to choose k. First, we start with a large k value. As jφ  is updated with 
the LASSO algorithm, the LASSO algorithm prunes unnecessary Gaussian 
process lf . Therefore, the value of k is updated, which is equal to the number of 
components which are not pruned. 

3.3. Global-local shrinkage for ljκ  

The parameters ljκ  controls the effective number of variables within each 
component. For each l, { }, 1, ,lj j pκ = �  are assumed to be sparse. As opposed 
to the two component mixture prior on ljκ  in [28], we enforce weak-sparsity 
using a global-local continuous shrinkage prior which potentially have substantial 
computational advantages over mixture priors. Many continuous shrinkage 
priors have been proposed recently [34]-[39]. These priors can be unified 
through a global-local (GL) scale mixture representation of [40] below,  

( )~ N 0, , ~ , ~ ,g l
lj lj l l ljf fκ ψ τ τ ψ

               
(4) 

for each fixed l, where gf  and lf  are densities on the positive real line. In 
(4), lτ  controls global shrinkage towards the origin while the local parameters 

{ }, 1, ,lj j pψ = �  allow local deviations in the degree of shrinkage for each 
predictor. Special cases include Bayesian lasso [34], relevance vector machine 
[35], normal-gamma mixtures [36] and the horseshoe [37] [38] among others. 
Motivated by the remarkable performance of horseshoe, we assume both gf  
and lf  to be square-root of half-Cauchy distributions. Both lτ  and ljψ  will 
be updated using the MCMC algorithm. 

4. Hybrid Algorithm for Prediction, Selection  
and Interaction Recovery 

In this section, we develop a fast algorithm which is a combination of 1L  
optimization and conditional MCMC to estimate the parameters lφ , ljψ , and 

lτ  for 1, ,l k= �  and 1, ,j p= � . Conditional on ljκ , (1) is linear in lφ  and 
hence we resort to the least angle regression procedure [8] with five fold cross 
validation to estimate , 1, ,l l kφ = � . The computation of the lasso solutions is a 
quadratic programming problem, and can be tackled by standard numerical 
analysis algorithms. 

The least angle regression procedure better approach which exploits the 
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special structure of the lasso problem, and provides an efficient way to compute 
the solutions. Next, we describe the conditional MCMC to sample from ljκ  and 

( )*F x  at a new point *x  conditional on the parameters lφ . For two 
collection of vectors vX  and vY  of size 1m  and 2m  respectively, denote by 
( ),v vc X Y   

the 1 2m m×  matr ix  ( ){ } ,
,

v vx X y Y
c x y

∈ ∈
.  Let  { }1 2, , , nx x x= �X  and define  

( ) ( ) ( )* *, , , , ,c c cX X x X X x  and ( )* *,c x x  denote the corresponding matrices. 
For a random variable q, we denote by |q −  the conditional distribution of q 
given the remaining random variables.  

Observe that the algorithm does not necessarily produce samples which are 
approximately distributed as the true posterior distribution. The combination of 
optimization and conditional sampling is similar to stochastic EM [41] [42] 
which is employed to avoid computing costly integrals required to find maximum 
likelihood in latent variable models. Conditional on , 1, ,l l kφ = � , the MCMC 
algorithm to update ljψ , lτ , and lφ  is as following:  

1) Compute the kernel ( ),k x x , ( )*,k x x , ( )*,k x x , ( )* *,k x x  with the 

kernel formula ( ) ( )2, exp djk x x x xγ′ ′= − − .  

2) Compute ( ) ( ).l i j j ij lf fφ−
≠

= ∑x x  Compute the predictive mean  

( ) ( ) ( )1* * 2, ,l lk c I y fµ σ
− − = + − x x X X               

(5) 

3) Compute the predictive variance  

( ) ( ) ( ) ( )1* * * * 2 *, , , , .l c c c cσ
−

 Σ = − + x x x X X X X x           
(6) 

4) Sample ( )* *| , ~ N ,l l lf y µ− Σ .  
5) Compute the predictive  

( )* * * *
1 1 2 2 .k kF f f fφ φ φ= + + +�x

                 
(7) 

6) Update ljψ  by sampling from the following posterior distribution, 

( )| ,ljp yψ −  

( )
( )

( )
( )

T 12

2

1exp ,
2| , .

,
lj lj

y c I y
p y p

c I

σ
ψ ψ

σ

−  − +   − ∝
+

X X

X X
        

(8) 

7) Update , 1, ,l j kτ = �  by sampling from the following posterior distribution, 
( )| ,lp yτ −   

( )
( )

( )
( )

T 12

2

1exp ,
2| , .

,
l l

y c I y
p y p

c I

σ
τ τ

σ

−  − +   − ∝
+

X X

X X
         

(9) 

8) Update djγ  by using the formula dj j djγ τ= Ψ .  
9) Update the vector Γ  with the LASSO estimation.  
10) Update ljκ  by sampling  

( )~ N 0,lj lj lκ ψ τ
                       

(10) 
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11) Update jφ  and prune unnecessary jf  where j l≠  with the LASSO 
algorithm.  

The MCMC algorithm above is illustrated with the following flow-chart.  
 

 
 

In the MCMC algorithm above, the conditional distributions of jτ  and ljψ  
are not available in closed form. Therefore, we sample them using Metropolis- 
Hastings algorithm [43]. In this paper, we give the algorithm for updating lτ  
only, as the steps for ljψ  are similar. Assuming that the chain is currently at the 
iteration t, the Metropolis-Hastings algorithm to sample 1t

lτ
+  independently for 

1, ,l k= �  proceeds as following:  
1) Propose ( )* 2log ~ log ,t

l lN ττ τ σ .  
2) Compute the Metropolis ratio:  

( )
( )

* |
min ,1

|
l

t
l

p
p

p

τ

τ

 −
 =
 −                       

(11) 
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3) Sample ( )~ U 0,1u . If u p<  then 1 *log logt
l lτ τ+ = , else 1log logt t

l lτ τ+ = .  
The flowchart for the above Metropolis-Hastings algorithm is as following:  

 

 
 

The proposal variance 2
τσ  is tuned to ensure that the acceptance probability 

is between 20% - 40%. We also propose a similar Metropolis-Hastings algorithm 
to sample from the conditional distribution of |ljψ − . 

5. Variable Selection and Interaction Recovery  
for Selected Variables 

In this section, we first state a generic algorithm to select important variables 
based on the samples of the parameter vector γ . This algorithm is independent 
of the prior for γ  and unlike other variable selection algorithms, it requires few 
tuning parameters making it suitable for practical purposes. The idea is based on 
finding the most probable set of variables in the median of the γ  samples. 
Since the distribution for the number of important variables is more stable and 
largely unaffected by the Metropolis-Hastings algorithm, we find the mode H of 
the distribution for the number of important variables. Then, we select the H 
largest coefficients from the posterior mean of γ .  

In this algorithm, we use k-means algorithm [44] [45] with 2k =  at each 
iteration to form two clusters, corresponding to signal and noise variables 
respectively. One cluster contains values concentrating around zero, corresponding 
to the noise variables. The other cluster contains values concentrating away from 
zeros, corresponding to the signals. At the tth iteration, the number of non-zero 
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signals ( )th  is estimated by the smaller cluster size out of the two clusters. We 
take the mode over all the iterations to obtain the final estimate H  for the 
number of non-zero signals i.e. ( )( )H mode th= . The H  largest entries of the 
posterior median of γ  are identified as the non-zero signals.  

We run the algorithm for 5000 iterations with a burn-in of 2000 to ensure 
convergence. Based on the remaining iterates, we apply the algorithm to jlκ  
for each component lf  to select important variables within each lf  for 

1, ,l k= � . Using this approach, we select the important variables within each 
function. We define the inclusion score of a variable as the proportion of 
functions (out of k) which contains that variable. Next, we apply the algorithm 
to φ  and select the important functions. Let us denote by fA  the set of active 
functions, obtained from the LASSO algorithm as discussed in Section 3.2. The 
interaction score between a pair of selected variables is defined as the 
proportion of functions within fA  in which the selected pair appears together. 
Using these interaction scores, we can find the interaction between important 
variables with optimal number of active components. Observe that the inclusion 
and interaction scores are not a functional of the posterior distribution and is 
purely a property of the additive representation. Hence, we do not require the 
sampler to converge to the posterior distribution. As illustrated in Section 6, 
these inclusion and the interaction scores provide an excellent representation of 
a variable or an interaction being present or absent in the model. An illustratfor 
both variable selection and interaction will be displayed in Section 6. 

6. Simulation Examples 

In this section, we consider eight different simulation settings with 50 replicated 
datasets each and test the performance of our algorithm with respect to variable 
selection, interaction recovery, and prediction. To generate the simulated data, 
we draw ( )~ Unif 0,1ijx , and ( )( )2~ N ,i iy f x σ , where 1 i n≤ ≤ , 1 j p≤ ≤  
and 2 0.02σ = . Table 1 and Table 2 summary the result and signal to noise 
ratio (SNR) for the eight different datasets with different combinations of p and 
n for both non-interaction and interaction cases, respectively.  

6.1. Variable Selection 

We compute the Inclusion score for each variable in each simulated dataset, then 
provide the bar plots as in Figures 1-4 below.  

 
Table 1. Non-interaction simulated datasets.  

   Equation for the Dataset 

Simulated Dataset n p Non-interaction Data SNR 

1 100 10 2
1 2 3x x x+ + +   37.3274 

2 100 100 2
1 2 3x x x+ + +   36.9188 

3 100 20 2 2
1 2 3 4 5x x x x x+ + + + +   41.1118 

4 100 100 2 2
1 2 3 4 5x x x x x+ + + + +   41.6303 
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Table 2. Interaction simulated datasets.  

   Equation for the Dataset 

Simulated Dataset n p Interaction Data SNR 

1 100 10 2
1 2 3 1 2 2 3 3 1x x x x x x x x x+ + + + + +   41.9095 

2 100 100 2
1 2 3 1 2 2 3 3 1x x x x x x x x x+ + + + + +   42.1258 

3 100 20 2 2
1 2 3 4 5 1 2 2 3 3 4x x x x x x x x x x x+ + + + + + + +   43.0888 

4 100 100 2 2
1 2 3 4 5 1 2 2 3 3 4x x x x x x x x x x x+ + + + + + + +   44.4024 

 

 
Figure 1. Inclusion score for dataset 1. (a) Non-interaction Case; (b) Interaction Case. 

 

 

Figure 2. Inclusion score for dataset 2. (a) Non-interaction Case; (b) Interaction Case. 
 

 

Figure 3. Inclusion score for dataset 3. (a) Non-interaction Case; (b) Interaction Case.  
 

 

Figure 4. Inclusion score for dataset 4. (a) Non-interaction Case; (b) Interaction Case. 
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From these histograms, we rank the Inclusion score value. Based on our 
ranking, we select a threshold value to identify the signal based on the top 
Inclusion score values. From our ranking, the selected threshold value is 0.1. The 
ranking of variables selection has been mentioned in Guyon and Elisseeff [46], 
Forman [47], Stoppiglia et al. [48]. The choice of the threshold variable based 
upon the data has been mentioned in Genuer et al. [49]. When we obtain selected 
variables, we compute the false positive rate (FPR), which is the proportion of true 
signals not detected by our algorithm, and false negative rate (FNR), which is the 
proportion of false signals detected by our algorithm. Both values are recorded in 
Table 3 to assess the quantitative performance of our algorithm.  

Based on the results in Table 3, it is immediate that the algorithm is very 
successful in delivering accurate variable selection for both non-interaction and 
interaction cases. 

6.2. Interaction Recovery 

In order to capture the interaction network, we compute the probability of 
interaction between two variables by calculating the proportion of functions in 
which both the variables jointly appear. Since we are interested in capturing the 
interaction between selected variables, we plot interaction heat map for selected 
variables with their probability of interaction values, for each dataset for both 
the non-interaction and interaction cases.  

Based on Figures 5-8, it is evident that the estimated interaction probabilities 
for the non-interacting variables are less than the corresponding number for 
interacting variables. With these heat map values, we plot the interaction  

 
Table 3. The average false positive (FPR) and false negative (FNR) for replicated datasets.  

 Non-interaction Dataset Interaction Dataset 

Dataset FPR FNR FPR FNR 

1 0.0 0.0 0.0 0.0 

2 0.0 0.0 0.0 0.0 

3 0.0 0.0 0.0 0.05 

4 0.0 0.01 0.0 0.01 

 

 
Figure 5. Interaction heat map for dataset 1. (a) Non-interaction Case; (b) Interaction Case. 
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Figure 6. Interaction heat map for dataset 2. (a) Non-interaction Case; (b) Interaction Case. 
 

 

Figure 7. Interaction heat map for dataset 3. (a) Non-interaction Case; (b) Interaction Case. 
 

 

Figure 8. Interaction heat map for dataset 4. (a) Non-interaction Case; (b) Interaction Case. 
 

network in Figure 9 & Figure 10 for selected variables.  
Based on the interaction network in Figure 9 & Figure 10, we observe that 

edges for interaction cases are thicker than edges for non-interaction cases. In 
interaction cases, interacted variables are connected in the network, while every 
variables is connected in non-interaction cases. Therefore, our algorithm 
successfully captures the interaction network in all the datasets for selected 
variables according to the Inclusion score. 

6.3. Predictive Performance 

We randomly partition each dataset into training (50%) and test (50%) 
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observations. We apply our algorithm on the training data and compare the 
performance on the test dataset. For the sake of brevity we plot the predicted vs. 
the observed test observations only for a few cases in Figure 11.  

From Figure 11, the predicted observations and the true observations fall very 
closely along the y x=  line demonstrating a good predictive performance. We 
compare our results with [27]. However, their additive model was not able to 
capture higher order interaction and thus have a poor predictive performance 
compared to our method. 

 

 
Figure 9. Interaction network for dataset 1 and 2, respectively. (a) Non-interaction 1; (b) 
Interaction 1; (c) Non-interaction 2; (d) Interaction 2. 

 

 
Figure 10. Interaction network for dataset 3 and 4, respectively. (a) Non-interaction 3; (b) 
Interaction 3; (c) Non-interaction 4; (d) Interaction 4]  

 

 
Figure 11. Prediction versus Response for Simulated Data. (a) Prediction for Non- 
interaction 1; (b) Prediction for Non-interaction 3; (c) Prediction for Interaction 1; (d) 
Prediction for Interaction 3. 
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6.4. Comparison with BART 

Bayesian Additive Regression Tree (BART; [50]) is a state of the art method for 
variable selection in nonparametric regression problems. BART is a Bayesian 
“sum of tree” framework which fits and infers the data through an iterative 
back-fitting MCMC algorithm to generate samples from a posterior. Each tree in 
BART [50] is constrained by a regularization prior. Hence BART is similar to 
our method which also resorts to back-fitting MCMC to generate samples from 
a posterior.  

Since BART is well-known to deliver excellent prediction results, its 
performance in terms of variable selection and interaction recovery in high- 
dimensional setting is worth investigating. In this section, we compare our 
method with BART in all the three aspects: variable selection, interaction 
recovery and predictive performance. For comparison, with BART, we used the 
same simulation settings as in Table 1 with all combinations of (n, p), where 

100n =  and 10,20,100,150,200p = .  
We used 50 replicated datasets and compute average inclusion probabilities 

for each variable. Similar to §6.1, we ranked the Inclusion score, and chose the 
threshold value equal to 0.1 in order to find selected variables. Then, we 
computed the false positive and false negative rates for both algorithms as in 
Table 3. These values are recorded in Table 4.  

In Table 4, the first column indicates which equations are used to generate the 
data with the respective p and n values in the second and third column for both 
non-interaction and interaction cases. For example, if the dataset is 1, the equations 
to generate the data is 2

1 2 3x x x+ + +   and 2
1 2 3 1 2 2 3 3 1x x x x x x x x x+ + + + + +   for 

non-interaction and interaction case, respectively. NA value means that the 
algorithm cannot run at all for that particular combination of p and n values.  

According to Table 4, BART performs similar to our algorithm when 10p =  
and 100n = . However, as p increases, BART fails to perform adequately while 
our algorithm still performs well even when p is larger than n. When p is twice  

 
Table 4. Comparison between our algorithm and BART for variable selection. 

   Our Algorithm BART 

Dataset p n Non-interaction  Interaction  Non-interaction  Interaction  

   FPR FNR FPR FNR FPR FNR FPR FNR 

1 10 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 100 100 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 

3 20 100 0.0 0.05 0.0 0.05 1.0 1.0 1.0 1.0 

4 100 100 0.0 0.01 0.0 0.01 1.0 1.0 1.0 1.0 

1 150 100 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 

4 150 100 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 

1 200 100 0.01 0.0 0.0 0.0 NA NA NA NA 

4 200 100 0.0 0.0 0.0 0.0 NA NA NA NA 
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as n, BART fails to run while our algorithm provides excellent results in variable 
selection. Overall, our algorithm performs significantly better than BART in 
terms of variable selection. 

7. Real Data Analysis 

In this section, we demonstrate the performance of our method in two real data 
sets. We use the Boston housing data and concrete slump test datasets obtained 
from UCI machine learning repository. Both data have been used extensively in 
the literature. 

7.1. Boston Housing Data 

In this section, we used the Boston housing data to compare the performance 
between BART and our algorithm. The Boston housing data [51] contains 
information collected by the United States Census Service on the median value 
of owner occupied homes in Boston, Massachusetts. The data has 506 number of 
instances with thirteen continuous variables and one binary variable. The data is 
split into 451 training and 51 test observations. The description for each variable 
is summarized in Table 5.  

MEDV is chosen as the response and the remaining variables are included as 
predictors. We ran our algorithm for 5000 iterations and the prediction result 
for both algorithms is shown in Figure 12.  

Although our algorithm has a comparable prediction error with BART, we 
argue below that we have a more convincing result in terms of variable selection. 
We displayed the Inclusion score barplot in Figure 13.  

 
Table 5. Boston housing Dataset variable. 

Variables Abbreviation Description 

1 CRIM Per capita crime rate 

2 ZN Proportion of residential land zoned for lots over 25,000 squared feet 

3 INDUS Proportion of non-retail business acres per town 

4 CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 

5 NOX Nitric oxides concentration (parts per 10 million) 

6 RM Average number of rooms per dwelling 

7 AGE Proportion of owner-occupied units built prior to 1940 

8 DIS Weighted distances to five Boston employment centers 

9 RAD Index of accessibility to radial highways 

10 TAX Full-value property-tax rate per $10,000 

11 PTRATIO Pupil-teacher ratio by town 

12 B ( )21000 Bk 0.63−  where Bk  is the proportion of blacks by town 

13 LSTAT Percentage of lower status of the population 

14 MEDV Median value of owner-occupied homes in $1000’s 
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Figure 12. Prediction versus Response’s for Boston Housing Dataset. (a) Our Algorithm; 
(b) BART. 

 

 
Figure 13. Inclusion score for the Boston Housing Dataset. (a) Our Algorithm; (b) 
BART. 

 
Based on the histograms, we chose the threshold value equal to 0.1 for easily 

comparing BART and our algorithm. From the ranking and the chosen 
threshold value, BART only selected NOX and RM, while our algorithm selected 
CRIM, ZN, NOX, DIS, B and LSTAT. In order to compare the performance, we 
looked at Savitsky et al. [25], which previously analyzed this dataset and selected 
variables RM, DIS and LSTAT. Clearly, the set of selected variables from our 
method has more common elements with that of Savitsky et al. [25]. 

7.2. Concrete Slump Test 

In this section we consider an engineering application to compare our algorithm 
against BART. The concrete slump test dataset records the test results of two 
executed tests on concrete to study its behavior [52] [53]. 

The first test is the concrete-slump test, which measures concrete’s plasticity. 
Since concrete is a composite material with mixture of water, sand, rocks and 
cement, the first test determines whether the change in ingredients of concrete is 
consistent. The first test records the change in the slump height and the flow of 
water. If there is a change in a slump height, the flow must be adjusted to keep 
the ingredients in concrete homogeneous to satisfy the structure ingenuity. The 
second test is the “Compressive Strength Test”, which measures the capacity of a 
concrete to withstand axially directed pushing forces. The second test records 
the compressive pressure on the concrete.  

The concrete slump test dataset has 103 instances. The data is split into 53 
instances for training and 50 instances for testing. There are seven continuous 
input variables, which are seven ingredients to make concrete, and three outputs, 
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which are slump height, flow height and compressive pressure. Here we only 
consider the slump height as the output. The description for each variable and 
output is summarized in Table 6.  

The predictive performance is illustrated in Figure 14.  
Similar to the Boston housing dataset, our algorithm performs closely to 

BART in prediction. Next, we investigated the performances in terms of variable 
selection. We plotted the bar-plot of the Inclusion score for each variable in 
Figure 15.  

Yurugi et al. [54] determined that coarse aggregation has a significant impact 
on the plasticity of a concrete. Since the difference in slump’s height is to  

 
Table 6. Concrete Slump Test dataset.  

Variables Ingredients Unit 

1 Cement kg 

2 Slag kg 

3 Fly ash kg 

4 Water kg 

5 Super-plasticizer (SP) kg 

6 Coarse Aggregation kg 

7 Fine Aggregation kg 

8 Slump cm 

9 Flow cm 

10 28-day Compressive Strength Mpa 

 

 
Figure 14. Prediction versus Response’s for Concrete Slump Test Dataset. (a) Our 
Algorithm; (b) BART. 

 

 
Figure 15. Inclusion score for the Concrete Slump Test Dataset. (a) Our Algorithm; (b) 
BART. 
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measure the plasticity of a concrete, coarse aggregation is a critical variable in 
the concrete slump test. According to Figure 15, our algorithm selects coarse 
aggregation as the most important variable unlike BART, which clearly 
demonstrates the efficacy of our algorithm compared to BART. 

7.3. Community and Crime Dataset 

In this section we consider a dataset, which has more than 100 predictors to 
compare our algorithm against BART. Therefore, we chose the Community and 
Crime dataset. This dataset describes the socio-economic, law enforcement, and 
crime data in communities of the United States in 1995 [55] [56]. 

In this data, there are about 124 predictors, 5 non-predictors, and 18 response 
values. The details for each response value can be found at University of 
California, Irvine (UCI) Machine Learning Database [57]. Since this data has 
missing values and non-predictors, we preprocessed the data before applying our 
algorithm and BART on it. After the preprocessing, the number of observations n 
goes from 2215 to 114 observations, and the number of predictors p becomes 
123. Therefore, in this example, we have a case that the number of predictors p is 
larger than the number of observation n. We split the data into 79 instances for 
training and 35 instances for testing. We investigated both algorithms’ performance 
in variable selection. We plotted the histogram of the Inclusion score for each 
variable in Figure 16.  

Since BART and our algorithm has different Inclusion score values, we cannot 
pick the threshold values to identify variables for comparison. Since our 
algorithm only selects 10 predictors, we decided to rank predictors in BART 
based on their Inclusion score. Then, we chose BART’s top 10 predictors with 
highest Inclusion score to compare with ours. Table 7 lists selected factors 
affecting violent crime rate based on our algorithm and BART.  

According to Blumstein and Rosenfeld [58], the crime trend in the United 
States is contributed by the following factors 1) Economic condition 2) Policing 
3) Control of firearms 4) Drugs markets 5) Gangs 6) Socialization and social 
service 7) Incarceration percent 8) Demographic change. Our selected variables 
can be grouped into three categories based on above factors. The first category 

 

 
Figure 16. Inclusion score for the Concrete Slump Test Dataset. (a) Our Algorithm; (b) 
BART. 
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Table 7. Selected variables between our algorithm and BART.  

Variables Our Algorithm BART 

1 % household with social security income % African-American 

2 % Mom and kids under labor force income per capita for Asian heritage 

3 % immigrants in the last 8 years % employed in manufacturing 

4 % immigrants in the last 3 years % kids in two parents family 

5 % housing occupied % of working mom 

6 % vacant housing more than 6 months % kids in unmarried families 

7 Number of housing occupied in upper quantile % immigrants in the last 8 years 

8 Number of sworn full time police officer number of unit house built 

9 Number of sworn police officer in operation number of housing without plumbing facilities 

10 Total request for police per police officer % people living in the same city since 1985 

 
is economic condition: variables 1, 2, 5, 6, and 7. The second category is 
demographic change: variables 3 and 4. The third category is policing: variables 
8, 9, and 10. Similarly, selected variables in BART can be grouped into three 
categories. The first category is economic condition: variables 3, 2, 5 and 8. The 
second category is demographic change: variables 1 and 7. The third category is 
socialization and social service: variable 6. Based on these grouping, one can see 
that our selected variables is more agreeable to the study of Blumstein and 
Rosenfeld [58] than BART. 

8. Conclusion 

In this paper, we propose a novel Bayesian nonparametric approach for variable 
selection and interaction recovery with excellent performance in selection and 
interaction recovery in both simulated and real datasets. Our method obviates 
the computation bottleneck in recent unpublished work [28] by proposing a 
simpler regularization involving a combination of hard and soft shrinkage 
parameters. 

Although such sparse additive models are well known to adapt to the 
underlying true dimension of the covariates [26], literature on consistent 
selection and interaction recovery in the context of nonparametric regression 
models is missing. As a future work, we propose to investigate consistency of the 
variable selection and interaction of our method. 
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