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Abstract 
Small area estimation (SAE) tackles the problem of providing reliable esti-
mates for small areas, i.e., subsets of the population for which sample infor-
mation is not sufficient to warrant the use of a direct estimator. Hierarchical 
Bayesian approach to SAE problems offers several advantages over traditional 
SAE models including the ability of appropriately accounting for the type of 
surveyed variable. In this paper, a number of model specifications for esti-
mating small area counts are discussed and their relative merits are illustrated. 
We conducted a simulation study by reproducing in a simplified form the 
Italian Labour Force Survey and taking the Local Labor Markets as target 
areas. Simulated data were generated by assuming population characteristics 
of interest as well as survey sampling design as known. In one set of experi-
ments, numbers of employment/unemployment from census data were uti-
lized, in others population characteristics were varied. Results show persistent 
model failures for some standard Fay-Herriot specifications and for genera-
lized linear Poisson models with (log-)normal sampling stage, whilst either 
unmatched or nonnormal sampling stage models get the best performance in 
terms of bias, accuracy and reliability. Though, the study also found that any 
model noticeably improves on its performance by letting sampling variances 
be stochastically determined rather than assumed as known as is the general 
practice. Moreover, we address the issue of model determination to point out 
limits and possible deceptions of commonly used criteria for model selection 
and checking in SAE context. 
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1. Introduction 

In recent years, small area estimation (SAE) has emerged as an important area of 
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statistics as private and public agencies try to extract the maximum information 
from sample survey data. Sample surveys are generally designed to provide esti-
mates of characteristics of interest for large areas or domains. However, gov-
ernments are more and more interested in obtaining statistics for smaller geo-
graphical areas such as counties, districts or census divisions, or smaller demo-
graphic subsets such as specific age-sex-race subgroups. These domains are 
called small areas. SAE concerns statistical techniques aimed at producing esti-
mates of characteristics of interest for small areas or domains. A review of SAE 
methods is in [1] [2] [3]. The simplest approach is to consider direct estimators, 
that is estimating the variable of interest using the domain-specific sample data. 
However, it is well known that the domain sample sizes are rarely large enough 
to support reliable and accurate direct estimators since budget and other con-
straints usually prevent drawing adequate samples from each of the small areas. 
When direct estimates are unreliable (or even non computable), a major direc-
tion considers the use of explicit small area models that “borrow strength" from 
related areas across space and/or time or through auxiliary information which is 
supposed to be correlated to the variable of interest. Explicit models can be clas-
sified into two categories: 1) area level models and 2) unit level models. They can 
be estimated by adopting several alternative approaches and one of these has 
been the hierarchical Bayesian (HB) paradigm. However, applications of HB 
models to SAE, though growing [1], still are quite a few. Moreover, they have 
mainly focused on continuous variables. To date, there is no thorough discus-
sion on what is the most appropriate nonlinear specification of area level models 
when small area estimates are needed for discrete or categorical variables. 

In this paper, we focus on HB area level models for producing small area es-
timates of counts. In the literature, Bayesian specifications commonly derive 
from classical models for SAE, e.g. the Fay-Harriot model [4], or more properly 
consider either a generalized linear Poisson model [5] [6] or a multinomial logit 
model [7]. [8] presented a Normal-logNormal model within the class of the so 
called unmatched models. Following the HB way of thinking, we independently 
proposed a Normal-Poisson-logNormal model arguing that this unmatched 
form could be more appropriate for taking explicitly into account the nature of 
the variable of interest [9] [10]. An application of this model, originally extended 
to enable the use of multiple data sources possibly misaligned with small areas, is 
in [11]. Moreover, we suggested a Gamma-Poisson-logNormal model, that in-
troduces a nonnormal sampling error stage, and advocated a natural extension 
of the several above specifications by letting sampling variances be stochastically 
determined rather than fixed to design estimates as is the general practice [12]. 

For completeness, we mention [13] who compare four HB small area models 
for producing state estimates of proportions: the original proposal consists of a 
Beta sampling stage with a logit linking model. Still in a Bayesian context, [14] 
[15] [16] handle the problem of unknown sampling variances. 

Under appropriate conditions each of these models may have some merits and 
whether it is appropriate depends on various circumstances like size of the areas, 
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availability of good explanatory variables at area level, accuracy of sampling va-
riance estimates, etc. Practical use of HB models has been boosted by the availa-
bility of software that implements Markov chain Monte Carlo (MCMC) simula-
tions so that model estimation can be straightforward and relatively easy. Room 
is left for investigating the peculiarity of different specifications and for identi-
fying criteria and guidelines for choosing among alternative Bayesian specifica-
tions. 

Purpose of the present work is comparing alternative HB area level models for 
SAE of counts. Comparison is made first on a theoretical side and then by a si-
mulation study. This last is aimed to reproduce one of the most relevant in-
stances where SAE has proven its potential, i.e. estimation of labour force statis-
tics at a local level finer than the survey planned domains. The specific frame-
work for the simulation is estimation of the number of unemployed (employed) 
within Local Labor Markets (LLMs, i.e. areas including a group of municipalities 
which share the same labor market conditions). In most developed countries, the 
major source of information on the labor market is a Labor Force Survey (LFS). 
In Italy, LFS design has been planned so that reliable (design-based) estimates of 
given precision can be obtained for regional and provincial quantities, quarterly 
and yearly respectively. LLMs are a finer regional partition and the sample sizes 
associated with such minor domains result inadequate to allow for stable (de-
sign-based) estimates [12]. Simulated data were generated by assuming popula-
tion characteristics of interest as well as sampling survey design as known. In 
one set of experiments, the actual LLM unemployment (employment) figures 
from census data were utilized, in others population characteristics were varied 
(by changing the type of distribution symmetry). Still, LLM survey sample sizes 
were either maintained fixed at actual LFS values or given different values. The 
sampling design was kept quite simple across all studies, moreover, synthetic es-
timates comprise the sole source of auxiliary information incorporated into 
model framework. Although the core of models is quite basic, it is worth noting 
that it is the framework actually used in Italy to produce totals of unemployed 
for LLMs since late nineties. 

In summary, this paper, through a number of HB area level models for SAE of 
totals, compares three broad classes: matched, unmatched and nonnormal sam-
pling stage models. A first comparison, on the basis of a design-based simulation 
from census data, is made by assuming known sampling variances. Secondarily, 
once detected specific model failures in terms of bias, accuracy and reliability, 
this hypothesis is abandoned and minor ameliorations are furtherly carried out 
to models. The comparison is repeated also by varying the finite-population si-
mulation. Moreover, we address the issue of model determination to point out 
limits and possible deceptions of commonly used criteria for model selection 
and checking in SAE context, namely, the deviance information criterion (DIC) 
and the posterior predictive p-value (PPp). In the sequel, Section 2 presents the 
alternative HB models at comparison specifying motivations behind their intro-
duction, Section 3 describes the simulation study, discusses the results and pro-
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poses a number of model refinements, finally, Section 4 contains some conclud-
ing remarks. 

2. HB Models for Small Area Estimation with Count Data 
2.1. General Framework 

The core of classical small area models consists of linear mixed models. The ba-
sic small area model for area level data is the Fay-Herriot model [4] which con-
sists of an area-linking model, e.g. T

i i iθ β ν= +x , ( )~ 0,i Nν τ  (hereafter ~ 
stays for “independently distributed as”), coupled with a sampling error model, 
e.g. î i iθ θ= +  , ( )| ~ 0,i i iNθ σ , with iθ , îθ  and ix  denoting respectively 
characteristic of interest, survey estimate (when available) and possible auxiliary 
data, for each area i. The linking model is merely a linear model with mixed 
coefficients: fixed coefficients β , accounting for x  effects valid for the entire 
population, and random area-specific effects iν . Sampling variances iσ  are 
usually assumed to be known; parameters β  and τ  have to be estimated. 

Under a HB approach mixed models are stage-wise specified; in particular, the 
Fay-Herriot model gives rise to the following specification: 

( )ˆ | , ~ ,i i i i iNθ θ σ θ σ                     (1) 

( )T| , ~ ,i iNθ β τ β τx                     (2) 

( ) ( ), ~ , .pβ τ β τ                        (3) 

Sampling and linking models, (1) and (2), are unchanged, whereas an addi-
tional hyperprior stage, (3), is required within a full HB approach. 

Notwithstanding a (proper) informative prior distribution on the hyperpara-
meters would be appropriate for a full Bayesian analysis, for ignorance or be-
cause we want inference to be driven solely by the data at hand, noninformative 
priors are often used (this is still mainstream practice in SAE analyses). In this 
case, to avoid posterior density to be improper, diffuse yet proper (otherwise 
said, weakly-informative) priors are routinely assumed. Such a choice—which 
however needs a careful sensitivity analysis especially when models are barely 
identified—generally ensures a valid inference. 

The classical FH specification may be defective either because it: 1) assumes 
the sampling errors ˆ

i i iθ θ= −  as normal or because 2) sets a linear link 
T

i i ixθ β ν= +  directly between iθ  and ix . Indeed, θi’s are counts (i.e. posi-
tive-integer valued variates), moreover, a non-identity link ( ) T

i i ig xθ β ν= +  
may be more appropriate when the predicted variable iθ  is non-continuous 
and/or the covariates ix  are thought to produce a non-additive effect on it. Of 
course, the Normal-Normal model (1 - 3) owes its popularity to being in general 
computationally convenient and inferentially tractable by classical estimation 
methods. On the other hand, in a HB approach inference is straightforward and 
computationally feasible thanks to MCMC methods, the most popular compu-
ting tools in Bayesian practice. The flexibility inherent to HB modeling and its 
computational tractability allow the choice of more realistic models for SAE 
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problems than alternative approaches could never envision. 

2.2. Alternative HB Models 

We define alternative HB area level models for a SAE problem with count data. 
In the following, ˆ

S iθ  indicates a synthetic estimate for small area i, while iθ , 

îθ  and ix  have the same meaning as in Section 2.1. 
Six model specifications are theoretically conceivable when the parameter of 

interest is the small area total (such as the number of unemployed or employed 
in our application). They are: 

the Normal-Normal model (NN) 

( )ˆ | , ~ ,i i i i iNθ θ σ θ σ                             (4) 

( )ˆ| , ~ , ,i S i iN xθ β τ θ α β τ+ +                     (5) 

the log-Normal-Normal model (FH) 

( ) ( )( )ˆlog | , ~ log ,i i i i iNθ θ σ θ σ                         (6) 

( ) ( )( )ˆlog | , ~ log , ,i S i iN xθ β τ θ α β τ+ +                (7) 

the Normal-logNormal model (YR) 

( )ˆ | , ~ ,i i i i iNθ θ σ θ σ                                 (8) 

( ) ( )( )ˆlog | , ~ log , ,i S i iN xθ β τ θ α β τ+ +                (9) 

the Normal-Poisson-logNormal model (NPlN) 

( )ˆ | , ~ ,i i i i iNθ θ σ θ σ                                (10) 

( )| ~i i iPoissonθ µ µ                                (11) 

( ) ( )( )ˆlog | , ~ log , ,i S i iN xµ β τ θ α β τ+ +               (12) 

the Poisson-logNormal model (PlN) 

( )ˆ | ~i i iPoissonθ µ µ                                (13) 

( ) ( )( )log | , ~ log ,i i i i iNµ θ σ θ σ                        (14) 

( ) ( )( )ˆlog | , ~ log , ,i S i iN xθ β τ θ α β τ+ +               (15) 

and the Gamma-Poisson-logNormal model (GPlN) 

( )ˆ | ~i i iPoissonθ µ µ                               (16) 

( )| , ~ ,i i i i i ia Gamma a aµ θ θ                         (17) 

( ) ( )( )ˆlog | , ~ log , .i S i iN xθ β τ θ α β τ+ +               (18) 

For a fully Bayesian specification, the basis of every model hierarchy consists 
of an hyperprior stage, like as (3), which we leave generically expressed since the 
discussion is focused on analysing how closer-to-data stages can be variously 
specified. 
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Either the NN (4 - 5) or the FH (6 - 7) specifications consist in the Fay-Herriot 
model with îθ  and iθ  both untransformed (NN) or both log-transformed (FH). 
NN and FH are both members of the so-called matched models [7] in the sense 
that sampling and linking models can be combined to produce a linear mixed 
model. Namely, once a suitable function ( )g ⋅  is chosen to relate the parameter 
of interest to auxiliary variables through a Normal model ( ( )i i ig θ β ν= +x , with 

iν  normal variates), also direct estimates are accordingly transformed in the 
sampling model ( ( ) ( )î i ig g eθ θ= + , again with normal errors ie ) in order to 
combine the two equations into a single linear model (from the foregoing equa-
tions, ( )î i i ig eθ β ν= + +x ). Small area estimates are then obtained by inverting 
( )g ⋅ . 
On the other side, YR (8 - 9) and NPlN (10 - 12) forms are both unmatched 

models in the sense that stage-1 and stage-2 models cannot be combined into a 
single equation model. You and Rao [8] proposed the YR form when g is specif-
ically the log-function, but their arguments can be generalized to any nonlinear 
function of iθ . They warned that customary hypotheses on sampling errors ie  
may be quite questionable when g is nonlinear and area sample size is small (in 
particular, they refer to the unbiasedness assumption ( )| 0i iE e θ =  and the Tay-  

lor approximation ordinarily set for the variance, i.e. ( ) ( ){ }2
|i i i ivar e gθ θ σ′≈   

with ( )|i i ivarσ θ=  ). Thus their advice is to let sampling model î i iθ θ= +   
be unaltered so that condition ( )| 0i iE θ =  (i.e. design-unbiasedness of îθ ) 
holds and, moreover, the design-variance ( )ˆ

p iv θ , which is taken as known, can 
be imputed to the sampling variance iσ . (Note that we use i  instead of ie  
whenever direct estimates îθ  are left untransformed in the sampling model.) 
Finally, they choose the HB approach since inference on non-standard specifica-
tions may not be feasible by means of classical estimation methods. We note also 
that with specific reference to FH (6 - 7) model, survey information may be 
partly wasted, in that transformed direct estimates ( )ˆlog iθ  are not defined 
when ˆ 0iθ = . Thus, missing data originate both from areas with null direct es-
timates (which may not be so rare when area sample size is small) and, as usually, 
from non-sampled small areas. 

Trevisani and Torelli [9] [10] proposed the NPlN model which derives from 
building, stage by stage, a HB structure suited for SAE problems with count va-
riables. Thereby, first stage (10) is modeled, similarly to YR (8), in terms of un-
transformed direct estimates îθ , so that both design-unbiasedness and ( )ˆ

i p ivσ θ=  
assignment hold. Then, noting that response variable iθ  of the linking regres-
sion analysis is a count, second (11) and third (12) stages consist of a standard 
Poisson-log-Normal model. 

Indeed, this choice has been (determined not only by the type of iθ  variable 
but also) borrowed from the extensive literature on disease mapping. In such an 
area, disease counts are modelled as Poisson variates with mean i i iEµ ρ= ×  
where iρ  is the relative risk in area i and iE  the expected count. A regression 
equation is then usually set on a logarithmic scale, ( )log i i iρ β ν= +x , to op-
portunely accommodate for a linear predictor iβx  and any random effect iν  
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(which is customarily assumed to be normally distributed). Note that Ei may be 
taken as random but is usually taken as known and (for including any informa-
tion prior to inference,) enters the regression equation as an offset. In SAE con-
text, Ei can be set at known synthetic estimate ˆ

S iθ  and a model-like-disease 
mapping is then fitted to counts iθ . 

To some readers the specification of îθ  might appear inconsistent with that 
of iθ : îθ  are generated from a continuous distribution over the real line while 

iθ  are drawn from a discrete distribution like the Poisson one. Yet, at a second 
insight, one realizes that it is the sampling model for îθ ’s to be really inconsis-
tent with the integer type of the variable of interest iθ . Nonetheless, we decided 
to let sampling model be specified as standardly is in SAE literature (indeed, îθ  
might be non-integer since it derives from an estimation process not necessarily 
constrained to produce integer values, though definitely it cannot be negative) 
while we originally assumed iθ  to be generated from a Poisson model. It is su-
perfluous to remark that there is no inconsistency in restricting the parameter 
space of a Normal distribution mean ( iθ ) to the sole integers. Moreover, there is 
no need of discretizing îθ : iθ  naturally arises as an integer for being generated 
as a Poisson variate. (Incidentally, Bugs software allows specifying a Poisson 
prior for any continuous quantity.) We apologize to those readers not in need of 
clarification for such a “byzantine” digression. Even more, if one considers that 
the core feature for which we turned to a Poisson model was its variance-pro- 
portional-to-mean property; though nonnegativity and discreteness of its sam-
pling space are undoubted advantages, they are not so urgent as to require the 
replacement of the standardly assumed Normal model. 

Finally, the two last models, PlN (13 - 15) and GPlN (16 - 18), are characte-
rized by non-normal first stage specifications. The characteristic of interest is a 
count, thus a canonical Poisson model is set from the very first stage. The PlN 
specification is a standard generalized linear mixed model for count variates— 
the îθ s—here written in a form suitable to SAE problems. In particular, the 
log-Normal stage (14) depends on two sources of random variability: the sam-
pling error, ie , and the random effect, iν . Again, the sampling error variance is 
set according to the Taylor approximation defined above, i.e. 2

i i iσ θ σ−= . In or-
der to remedy possible failures implied by the Taylor approximation, GPlN 
model sets a Gamma distribution for inflating the Poisson variance to the extent 
of the sampling variability, i.e. i i iµ θ γ=  where ( )~ ,i i i ia aγ θΓ  is conve-  

niently specified so that both design unbiasedness ( )( )ˆ |i i iE θ θ θ=  and design  

variance imputation ( ) ( )( )ˆ ˆ|i i p ivar vθ θ θ=  hold. An ordinary log-Normal 
model follows at the linking stage (18). 

3. A Simulation Study 
3.1. Simulation Plan and Performance Measures 

To compare the performance of the six HB models, we carried out a simulation 
study based on reproducing a simplified LFS in the “world” of 1991 Veneto 
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census data. That is, we generate each LLM population with employment and 
unemployment rates (% over population iN ) fixed at e

ip  and u
ip  values as 

derived from census data. Hence, a sample of size 1000i i in r N= , with sampling 
fraction ir  (over population) fixed at 1999 LFS value, was repeatedly selected by 
simple random sampling without replacement (SRSWOR) from each LLM. 
(Table 7 in Section 5 presents census, sampling design as well as one sample of 
simulated LFS data that were used in our study.) 

To strengthen the results of our study, a further series of simulations was car-
ried out by generating over the small areas set considered above three synthetic 
populations having, in particular, a positively asymmetric (Table 8), an essen-
tially symmetric (Table 9) and a negatively asymmetric (Table 10) distribution 
of numbers of unemployed (in all cases keeping fixed the mean to the historical 
value of 3.35% of the LLM unemployment rates). Moreover, as regards the LFS 
simulation, non-sampled areas were randomly selected (keeping fixed the num-
ber to 14 over the total 51 small areas) and sample sizes were varied from 

100in =  to 300 up to 500, i∀  (i.e. balanced designs), yet with sampling frac-
tion ir  kept fixed to the realized historical value of 4/5‰. 

From each simulated survey sample, the following estimators were calculated: 
(a) (poststratified) direct estimator ˆ ˆi i iN pθ = , with ˆ i i ip y n= , yi being the ob-
served number of employed/unemployed over in  sampled units; (b) synthetic 
estimator ˆ ˆS i iN pθ = , where p̂ y n= , iiy y= ∑  and iin n= ∑ ; (c) coeffi-  

cient of variation (cv) of direct estimator was estimated by  ( )ˆ ˆˆi p i icv v θ θ=   

with ( ) ( ) ( ) ( )ˆˆ ˆ ˆ= 1 1p i i i i i i iv N N n p p nθ − − −  being the sampling design va-
riance estimated according to a SRSWOR scheme; lastly; (d) cv  of synthetic  

estimator was estimated by   ( )ˆ ˆ
S i S i S icv mse θ θ=  with mean squared error  

of synthetic estimator, ( )ˆ
S imse θ , computed by the method of Marker [1]. (In 

Table 7, the suffix e u  denotes whether the quantity is related to employment 
or unemployment.) 

Variances iσ  of sampling models (1)—when assumed as known—are set to 

( )ˆˆ ˆi p ivσ θ=  for sampled areas with non-null direct estimates îθ . Whilst, for 
those areas having yi = 0 with ni > 0, we impute the synthetic proportion of em-
ployed/unemployed, that is we replace ˆ ip  with p̂ , in the formula for ( )ˆˆp iv θ . 
Lastly, for those areas having ni = 0, missing data îθ  are considered as latent 
variables according to a Bayesian approach. Various alternatives of value-impu- 
tation for the associated iσ ’s are then sensible: e.g. in the trials where synthetic 
estimates are given as initial values to MCMC chains of latent (missing) îθ , the 
associated iσ ’s were consistently fixed at Marker’s estimate of ( )ˆ

S imse θ . 
To compare the performance of ˆHB

iθ  estimators, based on the formerly in-
troduced HB models, we compute a series of measures out of 100R =  simu-
lated samples. (We came to this number after found out that results kept fairly 
stable even stopping at 50 replications.) Let ( )1 2

ˆ ˆ ˆ, ,θ θ= θ  be the vector of the 
overall direct estimates, then ˆHB

iθ  is defined as the posterior mean ( )ˆ|iE θ θ  
of small area parameter iθ  in the considered HB model. For both FH and PlN 
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models, where iθ  is modelled on the log-scale, a definition of ˆHB
iθ  has to be 

properly settled. The one (ones) that we adopt are described in Section 3.2. 
Computations have been made by means of arm package which allows running 
Bugs, the best-known Bayesian inference software, from within the general sta-
tistical package R. Same standard (proper) non-informative hyperpriors are 
chosen for every model under comparison. 

The quantities calculated, for each area i, are: 
relative bias (rb) and the absolute relative bias (arb), 

( ) ( )
1 1

1 1ˆ ˆ1 , 1 ,
R R

HB HB
i ir i i ir i

r r
rb true arb true

R R
θ θ

= =

= − = −∑ ∑  

both measuring the bias of the estimator ( ˆHB
irθ  denotes the value of the consi-

dered estimator of iθ  for the rth simulation, itrue  is the census number of 
employed/unemployed); 

absolute relative error (are) and the relative root mean squared error (rE) 

 ( )
1

1 ˆ ˆ1 ,
R

HB HB
i ir i i i i

r
are true rE mse true

R
θ θ

=

= − =∑  

with  ( ) ( )2

1
ˆ ˆRHB HB
i ir irmse true Rθ θ

=
= −∑ , both relating to estimator accuracy; 

efficiency (eff) 

 ( )
1

1 ˆ
R

HB
i ir

r
eff cv

R
θ

=

= ∑  

where expressions for  ( ) 

î icv cvθ =  and  ( ) ˆ
S i S icv cvθ =  have already been  

given whereas  ( )ˆHB
icv θ  is measured by  ( )ˆ ˆ| HB

i isd θ θθ  with ( )ˆ|isd θ θ  de-  

noting the posterior standard deviation of iθ ; lastly 
reliability (rel) 

 ( )2

1

1 ˆ
R

HB
i ir i

r
rel cv rE

R
θ

=

= ∑  

which is intended to measure how much reliable is a standardly used indicator 
of estimator efficiency (cv) when related to a comparable measure (rE) yet based 
on known true values. 

The degree of cv reduction with respect to direct estimators is largely used for 
selecting the best (model- or design-based) estimator. Nevertheless, it consists of 
one aspect (essentially depending on the shrinkage degree of direct estimates to 
the mean level ˆ

S i ixθ α β+ +  or ( )ˆ expS i ixθ α β+ ) which is not necessarily the 
preferential one; furtherly, estimation goal is not unique (is triple according to [1] 
and [17]). Regardless, we need to know to what extent such an indicator is relia-
ble for measuring the degree of uncertainty about the provided estimates. 

Comparison among different HB models is finally completed by looking at 
some standard criteria for model selection in a Bayesian framework, namely we 
consider: 1) a likelihood based criterion, the DIC and 2) a predictive distribu-
tion-based method, the PPp. The DIC is based upon posterior expectation of the 
deviance which is defined as ( ) ( ) ( )ˆ ˆ2 log ; 2 logD L f= − +θ θ θ θ  for a chosen 
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likelihood ( )ˆ;L θ θ  and for some standardizing function f , where θ̂  serve 
as data in small area context. In Table 4 and similar ones, ( )( )ˆ|D E D= θ θ , 

( ) ( )( )ˆ|D D E θ=θ θ , ( )Dp D D= − θ , DIC DD p= + , according to the defi-
nition given by [18] in their article first proposing this criterion (and the nota-
tion therein). PPp is defined, for normal sampling stage models (NN, FH, YR, 
NPlN), as 

( ) ( )22
,

ˆ ˆPP |i rep i i i i i
i i

p P y θ σ θ θ σ = − > − 
 
∑ ∑ θ           (19) 

whereas, for the remaining ones (PlN, GPlN), as 

( ) ( )22
,

ˆ ˆPP | ,i rep i i i i i
i i

p P y µ µ θ µ µ = − > − 
 
∑ ∑ θ          (20) 

with ,i repy  indicating hypothetical replicated data under the assumed model 
and where the reference distribution is derived from the posterior distribution of 

( ),repy θ  or, in the last case, ( ),repy µ . According to these criteria, the smaller 
the DIC or PP 0.5p −  the better the model. 

3.2. First Findings 

Table 1 and Table 2 display averages, over the I small areas, of rb, arb, are, rE, 
eff and rel (%), for design-based as well as HB model-based estimators, from si-
mulated data (based on the real population) on employment and unemployment 
respectively. The “average” is measured in terms of the mean and the median 
(first and second columns respectively for each measure). In Table 2 and related 
ones which follow, averages were computed by excluding non-sampled areas as 
well (rows named as non-na). 

In Table 1 and similar ones, three ways have been adopted to transform 
( )logi iη θ=  in the FH model back to the original scale. The “classical way” (FH) 

provides the required estimator by exponentiating ( )ˆˆ |HB
i iEη η= θ  i.e. as  

 
Table 1. Comparison between design-based and HB model-based estimators (simulated data on employment). 

 bias accuracy efficiency reliability 

estimator rb  Mrb  arb  Marb  are  Mare  rE  MrE  eff  Meff  rel  Mrel  

Synthetic 0.3 −0.1 4.1 3.4 4.2 3.4 4.4 3.6 4.3 4.3 175 141 

Direct −0.2 0.1 0.9 0.8 6.2 5.5 7.8 6.8 7.8 7.1 102 102 

NN −0.3 −1.0 3.9 3.4 4.7 3.7 5.2 3.9 3.5 1.8 69 55 

FH 1.0 0.7 3.4 2.6 3.8 2.8 4.2 3.3 0.3 0.3 9 9 

FH(2) 1.1 0.7 3.4 2.7 3.8 2.8 4.2 3.3 3.0 3.6 93 93 

FH(3) 1.1 0.7 3.4 2.7 3.8 2.8 4.2 3.3 3.1 3.6 94 93 

YR 0.3 0.0 3.2 2.4 3.7 2.8 4.2 3.4 3.4 4.0 99 96 

NPlN 0.3 0.0 3.1 2.4 3.7 2.8 4.2 3.5 3.6 4.1 100 101 

PlN 1.1 0.7 3.2 2.2 3.7 2.8 4.2 3.4 3.7 4.3 106 111 

GPlN 0.0 0.0 3 2.4 3.7 2.8 4.2 3.4 3.6 4.1 100 100 
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Table 2. Comparison between design-based and HB model-based estimators (simulated data on unemployment). 

 bias accuracy efficiency reliability 

estimator rb  Mrb  arb  Marb  are  Mare  rE  MrE  eff  Meff  rel  Mrel  

Synthetic 10 14 25 24 26 24 26 25 26 26 179 114 

non-na 11 14 27 29 27 29 27 30 26 26 169 93 

Direct −2 −1 3 2 29 28 36 34 39 36 110 110 

NN −4 −4 21 17 25 25 28 28 28 20 106 82 

non-na 1 0 18 16 24 26 27 28 23 20 99 86 

FH 10 10 19 16 21 18 24 20 2 2 12 10 

non-na 10 10 18 16 21 18 24 20 3 3 13 10 

FH(2) 11 12 20 17 22 17 24 20 17 19 85 81 

non-na 12 12 19 17 22 17 25 21 20 21 98 91 

FH(3) 11 12 20 17 22 17 24 20 17 19 86 80 

non-na 12 12 19 17 22 17 25 21 20 22 98 89 

YR −8 −6 14 11 18 16 21 20 20 22 105 109 

non-na −7 −6 12 10 18 17 21 21 24 24 118 110 

NPlN −7 −7 14 11 18 16 21 20 20 23 109 109 

non-na −7 −7 12 9 18 17 21 21 24 24 117 110 

PlN 8 9 18 14 22 17 25 21 19 21 89 87 

non-na 10 9 17 14 22 17 25 22 22 23 102 92 

GPlN −6 −4 13 11 19 17 22 21 20 22 96 102 

non-na −5 −4 11 9 19 17 23 22 24 23 108 108 

 

( )ˆ ˆexpHB HB
i iθ η= ; the derived cv is necessarily given by multiplying 

( ) ( )ˆˆ ˆ|HB HB
i i icv sdη η η= θ  by ˆHB

iθ , which, though, shows to be clearly inade-
quate as a measure of efficiency (in Table 2, 9%Mrel rel= = , in Table 1, 

12%rel = , 10%Mrel = , and the size of mse coverage keeps being around 10% 
also in the subsequent unemployment simulation experiments). The “Bayesian 
way” (referred to as FH(2)) provides ˆHB

iθ  as posterior expectation of the 
back-transformed parameter ( )expi iθ η= . Lastly, FH(3) estimator stems from 
using the classical formulas for deriving expectation and standard deviation of a 
lognormal variable i.e. by computing ( )( )ˆ ˆˆexp | 2HB HB

i i ivarθ η η= + θ  and 

( ) ( )( )( ) ( )( )ˆ ˆ ˆˆ ˆ| exp 2 | exp 2 |HB HB
i i i i ivar var varθ η η η η= + − +θ θ θ . (In each case, 

ordinary ( )ˆHB
icv θ  formula is then used for cv  computation.) PlN ˆHB

iθ  is 
obtained solely by the Bayesian way. 

It is worth noting that any discrepancy in percent numbers of Table 1 can be 
appreciated just at one decimal digit. In fact, employment rates range from 34.7% 
to 44.5% (Table 7) whence icv ’s range from 13.8/4.3% to 11.2/3.5% with ni = 
100/1000 (Figure 1). Then, to assess model performance we will focus especially  
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Figure 1. Percentual cv’s with respect to proportion p and varying n. 

 
on simulation experiments on unemployment whose rates range from 2.1% to 
8.4% whence icv ’s are much more relevant (from 68.6/21.6% to 33.2/10.4% 
with ni = 100/1000). 

Outcomes pointed out in Table 2 will be basically repeated in subsequent si-
mulation experiments, thus revealing somehow a typical performance for each 
model at comparison. Ranking of model-based estimators is to be interpreted as 
follows: best performance values are boxed while the others are gray/green-co- 
lored with intensity growing with worsening performance (the range of expecta-
tion/median values, for each measure, has been divided into six equal inter-
vals—being seven the models at comparison; in rel columns, only values less 
than 100% have been shadowed). FH row has been excluded from shadowing 
since FH estimator is clearly unusable (as will be clarified below). With regard to 
columns related to efficiency, it is of interest only detecting whether efficiency 
measures (as they are ordinarily computed) are instead a “lark-mirror”. Thus, 
low eff values (i.e. low cv whence high efficiency) coupled with low rel values (i.e. 
low reliability of cv in measuring actual estimator accuracy) are boxed and gray- 
filled. 

Direct estimates are expected to be, on average, unbiased, increasingly accu-
rate with growing sample size, as well as their cv  (since it is analitically derived 
from a formula consistent with the sampling design) ought to be a reliable 
measure of accuracy. Table 1 and Table 2 (as well as 8 - 10) prove these expec-
tations, though showing a tendency of such cv ’s to overestimate direct esti-
mates’ uncertainty. On the contrary, synthetic estimates are typically biased and 
bias (and/or accuracy, their variance being irrelevant) gets worse for data tend-
ing to negative asymmetry (see the worsening of bias across Tables 8-10). 
Moreover, it turns out that mse of synthetic estimates is badly estimated by 
Marker’s method which tends to heavily overestimate it. 

NN gets the worst scores in terms of (absolute) bias and accuracy (Table 2). 
Looking at single small areas situation, ˆHB

iθ s suffer from a terrific underestima-
tion especially for the least populated/sampled areas (see the reduced bias for 
non-na areas and Figure 2, second column of panels). Moreover, the estimated 
cv is, in median terms, scarcely reliable (Figure 2, fifth row) except for sampled 
areas with little information (it is above 100 just for non-na areas with the lowest  
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Figure 2. Design-based and HB model-based estimators at comparison (simulated data on unemployment, Table 2). Areas are 
ordered by increasing sample size; non sampled areas are placed at the extreme left. 

 
sample size). The adoption of a linear form for the linking model is likely in-
adequate, but, in this study, where the regression model is merely a null model 
(with the synthetic estimate offset consisting in the sole input of auxiliary infor-
mation), we may try to handle its elementary components in an effective way 
before definitely dropping the linear link. In Section 3.3 we will see what are the 
refinements suited to improve NN performance. 

FH and PlN exhibit a similar performance, though defects are exacerbated for 
FH. They tend to overestimate the iθ ’s (positive bias, Table 2; see also Figure 2, 
second row, third and fourth panels) and their accuracy is low in terms of ex-
pectation (high are  and rE ) again depending on the biased estimation for 
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some areas (Figure 2, third and fouth rows), though improve in accuracy with 
respect to NN and both the design-based estimators. Estimated cv is scarcely re-
liable for both of them, yet more markedly for FH and for non-sampled areas. 
This is likely due to a noticeable shrinkage of the estimates toward the mean (yet 
a biased mean), as it results also from a low DIC (in particular, a small effective 
number of parameters, pD ; see Table 3, Table 4 which will be discussed later). 

Right now, it is worth comparing the three aforementioned FH estimators: 
FH(2) and FH(3) are practically indistinguishable; FH is less biased than FH(2) 
(on the other hand, this is well expected since ( ){ } ( ){ }exp expi iE Eη η≥  by 
Jensen inequality) yet its cv is totally unreliable. Therefore, without loss of in-
formation, only FH(2) and FH(3) will be reported from now on. Since now, a 
minor difference is detectable between these two just as to reliability (this keeps 
through all the simulation experiments). 

The unmatched models, YR and NPlN, and the non-normal sampling model 
GPlN show to have the best performance in terms of (absolute) bias, accuracy 
and reliability (see the highlighted values and regions of light or no shading in 
Table 2). The unmatched models show to be the most accurate while GPlN 
seems to be the most “well-centered” and to give the most “well-calibrated” effi-
ciency measure (the last two columns of Figure 2 seem almost indistinguishable; 
at a careful reading, difference between the unmatched models and GPlN relates  
 
Table 3. Model determination diagnostics (simulated data on employment). 

 D  ( )ˆD θ  Dp  DIC PPp 

NN 50.1 46.3 3.8 53.8 0.18 

FH 38.5 27.5 11.0 49.5 0.43a 

YR 36.8 23.8 13.0 49.8 0.51 

NPlN 35.8 21.9 13.9 49.7 0.54 

PlN 36.7 1.4 35.2 71.9 0.50 

GPlN 36.6 1.0 35.6 72.2 0.50 

aPPp = 0.43 results by imputing iσ  fixed at ( )2ˆˆ ˆi i icvσ θ=  in (19); otherwise, PPp = 0.47 by using 

( )2ˆ ˆi i icvσ θ=  as it is generated by the model. 

 
Table 4. Model determination diagnostics (simulated data on unemployment). 

 D  ( )ˆD θ  Dp  DIC PPp 

NN 56.6 42.5 14.1 70.6 0.11 

FH 38.6 23.9 14.6 53.2 0.07a 

YR 37.3 19.6 17.7 55.0 0.49 

NPlN 37.2 19.4 17.7 54.9 0.49 

PlN 41.5 6.1 35.4 76.9 0.43 

GPlN 37.0 0.5 36.4 73.4 0.49 

aPPp = 0.40 by using ( )2ˆ ˆi i icvσ θ=  in (19) (see Table 3 for explanation). 
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to non-na areas with lowest sample size: GPlN is somewhat less accurate though 
the estimated cv associated to such areas are fully reliable). However, a tendency 
to underestimation (negative bias) is a non negligible weak point: as we will see 
in the next section, such a deficiency can be promptly remedied by a (obvious) 
model refinement. 

Finally, a poor estimation for non sampled areas (placed at the far left of 
x-axis in Figure 2) is detectable across all models. A reason for it is definitely the 
lack of direct information. Thereby, any improvement of model-based estima-
tors over the synthetic ones crucially depends on the model ability of borrowing 
strength from all of the available information (thus producing a consistent esti-
mate of the functional form ixα β+  which solely constitutes non sampled 
areas estimates). In the experiments under study which consider a null model 
(no ix ) the borrowing is clearly not sufficient. 

Table 3 and Table 4 show D , ( )ˆD θ , Dp , DIC and PPp values averaged 
over the R replications, for employment and unemployment simulation data re-
spectively. We are essentially interested to detect whether commonly used model 
selection and validation criteria serve their purpose. 

We start with the predictive criterion, the PPp, since it seems to pass the ex-
amination. We know “lights and shades” of the models under comparison from 
the foregoing external validation (i.e. by knowing the true values of the para- 
meter of interest): PPp effectively chooses the unmatched models and GPlN 
while rejects NN and FH. (PlN is clearly picked out only for the employment 
application, yet we stress that focus is on the unemployment study where models’ 
performance differs significantly.) However, PPp is based on a particular meas-
ure of discrepancy (the “event” under probability in (19)/(20)), which carries out 
a model validation relatively to a single aspect of (global) model performance. In 
particular, it answers the question whether the sampling stage of the examined 
model might be an adequate mechanism for generating our data. It is imme-
diately evident that either NN or FH sampling model are quite unsuited (the as-
sociated PPp’s are far below 0.50), and this supports the thesis against either li-
near models for non-normal variables (NN) or questionable sampling models 
(the dubious hypotheses under the first stage of FH specification). Nevertheless, 
this particular PPp measure cannot inform us on many other possible model 
failures [19] [20] [21]. 

On the other side, comparison between likelihoods is even more delicate [22], 
especially with hierarchical models which allow the possibility of marginaliza-
tion across levels in different ways. FH model that is the second-worst model in 
terms of performance (Table 1, Table 2) should be chosen according to the 
principle “lower the DIC better the model”. Is the DIC misleading? 

First, the DIC calculated from (NN, FH, YR, NPlN) group cannot be com-
pared to the one from the (PlN, GPlN) pair: the deviance in models with normal 
sampling stage is focused on θ’s whereas is on μ’s for poisson sampling stage 
specifications. In fact, the DIC has been calculated—as routinely is—relatively to 
the first stage unobservable variables (or parameters, in classical terminology) of 
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the HB models. Instead, comparison would be made more consistent by margi-
nalizing the likelihood of all the candidate HB models to the same parameters of 
interest (in SAE studies, the θ’s or small area quantities for they are the primary 
object). Even doing so, care must be taken in making comparisons of DIC’s, 
since, for instance, normalizing constants vary with the parametric family of 
distribution (thus all constants must be retained when making comparisons), or, 
the support for a model can vary with the possible (marginal) likelihoods [23]. 

Second, the comparison of FH versus all the remaining normal sampling stage 
models is questionable as well, since data are the log-transformed direct esti-
mates for FH while are the untransformed direct estimates for the other specifi-
cations. As we have already noted in Section 2.2, all the null direct estimates are 
excluded from the usable data for FH, hence the posterior expected deviance, 
D , is accordingly decreased [18]. 

However, despite the critical comments above, can we draw any information 
from the DIC output for our study? Posterior expected deviance ( )D θ  has 
been standardized by the maximized log-likelihood, then, if the model is “true”, 
its expectation is approximately the number of the free parameters in θ, that is 
the total size of unit sample: in our case, it is the number of sampled areas (51 − 
14 = 37, see Table 7). Thereby, computation of the standardized posterior de-
viance might be appropriate for checking the overall goodness-of-fit of the mod-
el. With this respect, NN clearly does not fit the data, FH and PlN show to be 
somewhat inconsistent with the data, whereas GPlN, NPlN and YR show, in or-
der, to have the best fit. Such conclusion matches the one derived on the basis of 
PPp values. As for pD/DIC, they tell of the model complexity. In our study 
(where a null model is considered) the number of effective parameters actually 
lacks in interest (neither mentioning Poisson sampling stage models for which 

Dp  is practically pointless). 
A further discussion on model selection and checking is beyond the scope of 

the paper. Yet, the problem of small area model diagnostics constitutes an im-
portant, and still largely unexplored, direction of SAE research. 

3.3. Some Refinements 

In this section we consider some refinements of the HB models previously in-
troduced, which involve relevant improvements of their performance. The major 
development consists in letting sampling variances ( iσ  or iσ  when a logari- 
thmic transformation occurs or ia  in GPlN) be stochastic, whereas, so far, they 
have been assumed as known and fixed to off-set estimates of sampling design 
variance ( )ˆ

p iv θ . 
This extension—that we refer to as model-based sampling variance function 

—arises naturally from a model-based approach to SAE problems. If we assume 
that a certain model is valid for a certain phenomenon θ, then all the unknown 
quantities that depend on θ should be made model-generated instead of being 
imputed as fixed to the model. In our context, the design variance is assumed to 
be a function of the unknown quantity of interest, i.e. ( ) ( )ˆ

p i iv fθ θ= , with f 
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known from sampling design characteristics. Then, according to the outlined 
strategy, sampling variances will be obtained as model-based estimates, ( )if θ , 
through iθ . 

By the way, this general consideration allows us to explain a specific fault oc-
curring with the customary FH model. Recall that for a FH model with link 
function g, it is assumed that (according to the Taylor approximation) 

( ){ }2
i i igσ θ σ′= , and, in the standard version of the model, sampling error va-

riance iσ  is fixed at the design variance ( )ˆ
p iv θ  value. In particular, if g is the 

log  function then 2 2
i i i icvσ θ σ−= = , and i i icv σ θ=  is likewise fixed at 

( ) ( )1 2ˆ ˆ
p i p i icv vθ θ θ= . But, the design quantity to be imputed (whatever is: 

( )ˆ
p iv θ , ( )ˆ

p icv θ , etc.) is usually function of the unknown iθ , e.g. ( )ˆ
p icv θ ≈   

( ) ( ) ( ) ( )1 i i i i i i ip p n N nθ θ− = −  under the SRSWR hypothesis as for our 
simulation. Common practice essentially consists in replacing îθ  to iθ  in the 
design quantity function, e.g., in our example, ( ) ( ) ( )( )ˆˆ ˆ ˆ1 1p i i i icv p p nθ ≈ − −  
with ˆˆ i i ip Nθ= . 

It is now easy to detect why the standard FH estimator ˆHB
iθ  is so much posi-

tively biased. If, indeed, ˆ
i iθ θ<  then ( )ˆˆ p icv θ  is smaller than ( )ˆ

p icv θ  (recall 
Figure 1), hence model estimator ˆHB

iθ  ( îθ<  if the model is well posited), in 

order to adequately fit îθ , is pushed upward i.e. tends to overestimate iθ  
( ˆHB

i iθ θ> ). Vice versa, if ˆ
i iθ θ> , the greater ( )ˆˆ p icv θ  (than ( )ˆ

p icv θ ) com-  
bined with ˆ ˆHB

i iθ θ>  (if the model is well posited) does not pull ˆHB
iθ  down  

(rather, ˆHB
iθ  is let to rise, in any case does not underestimate iθ ). To prove 

such an insight we include in the following tables the results obtained from fit-
ting a standard FH model yet with ( )ˆ

p icv θ  fixed to its true value (rows named 
as ‘true cv’). 

According to the foregoing comments, in all of the HB models so far consi-
dered, we “plug-in” the unobservable iθ  into the sampling design variance 
function ( ) ( )ˆ

p i iv fθ θ=  by which sampling variance ( iσ  or iσ  or ia ) is 
modelled. Incidentally, we note that the implementation of such a strategy is rel-
atively straightforward within the Bayesian approach (not as such in the fre-
quentist one). 

Before going through simulation results, we also mention some ameliorations 
to NN model. The linearity assumed for the linking model is likely inadequate. 
Yet, since here the linear predictor ( ˆ

i S i iθ θ α ν= + + ) is quite nave (a null one), 
we may try to adjust it somehow before dropping the linear link definitely. In 
fact, the bad performance is probably due to mis-calibrated random effects iν ’s: 
in log-normal linking models, iθ  depends in a multiplicative way on iν  
( ˆ e i ix

i S i
α β νθ θ + += ), whence iν  effect is weighted by ˆ

S iθ  (i.e. by population Ni). 
Thereby, a simple remedy to NN model deficiency might consist in weighting iν  
by population Ni. By doing that, indeed, a surprising improvement of model per- 
formance is immediately obtained (see row NN ( i iNν ⋅ ) in Table 5 and Table 6). 

Model performance greatly improves for all of the models thanks to the 
aforementioned stochastic extension. Table 5 and Tables 8-10 show how all of  
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Table 5. Comparison between design-based and HB model-based estimators (simulated data on unemployment). 

 bias accuracy efficiency reliability 

estimator rb  Mrb  arb  Marb  are  Mare  rE  MrE  eff  Meff  rel  Mrel  

NN( i iNν ⋅ ) −5 −4 13 10 19 18 22 21 21 23 104 106 

non-na −5 −4 12 8 19 18 23 22 25 25 116 114 

NN( i iNν ⋅ ) sv  4 5 15 14 19 16 22 19 20 22 102 104 

non-na 4 5 13 12 18 16 22 20 24 24 117 114 

FH(2) true cv 3 4 15 13 19 16 22 19 19 21 98 98 

non-na 4 4 13 13 19 16 22 20 23 24 111 104 

FH(3) true cv 3 4 15 13 19 16 22 19 19 21 99 98 

non-na 4 4 13 13 19 16 22 20 23 25 112 105 

FH(2) sv −2 0 14 12 18 16 21 19 18 21 99 96 

non-na −1 0 13 13 18 17 21 20 22 22 112 107 

FH(3) sv −2 0 14 12 18 16 21 19 19 22 102 100 

non-na −1 0 13 13 18 17 21 20 23 23 117 112 

YR sv 3 4 15 14 18 16 21 19 18 20 98 99 

non-na 4 4 14 13 18 17 22 21 22 23 110 104 

NPLN sv 3 4 15 14 18 16 21 19 19 21 101 97 

non-na 4 4 14 14 18 17 22 20 22 23 111 102 

GPlN sv 2 3 14 13 19 16 22 20 19 22 93 97 

non-na 3 3 12 12 19 17 23 22 23 23 105 99 

 
Table 6. Model selection diagnostics (simulated data on unemployment). 

 D  ( )ˆD θ  Dp  DIC PPp 

NN ( i iNν ⋅ ) 35.8 16.2 19.6 55.4 0.56 

( i iNν ⋅ )sv 34.9 17.1 17.8 52.7 0.58 

FH true cv 38.2 19.4 18.8 57.1 0.17a 

FH sv 37.9 20.8 17.1 55.0 0.26(0.36)b 

YR sv 36.6 19.7 16.9 53.6 0.51 

NPlN sv 36.2 19.7 16.5 52.7 0.53 

GPlN sv 37.5 1.0 36.4 73.9 0.49 

aPPp = 0.44 by using ( )2ˆ ˆi i icvσ θ=  in (19) (see Table 3). bPPp = 0.26/0.36 results from including/excluding { ˆ 0iθ =  with 0in > } cases from the compu-

tation. 

 
them—denoted by sv  i.e. stochastic variance—reach comparable good scores 
(while maintaining performance characteristics detected in Section 3.2). 

Results shown in Table 5 and Table 8 were obtained using, respectively, the 
simulated data from census and from a synthetic positively skewed population 
(thus maintaining the same type of asymmetry of the original unemployment 
dataset; see details in Section 3.1), hence both comparable to results in Table 2. 
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The most noticeable change in Table 5 concerns bias. FH sv estimator is now 
almost unbiased, moreover, YR, NPlN and GPlN are no more negatively biased: 
a stochastic variance helps model centering (the explanation for that has been 
given above). Such an improvement affects the rest of performance measures 
making all the sv models almost competitive. 

In Table 6 results on D , DIC and PPp show to be concordant in choosing 
the YR, NPlN and GPlN as the best tern of models. Further, note that the DIC is 
relatively larger for FH-true cv and sv models, thus the partial explanation given 
in Section 3.2 for the tendency of customary FH models to have lower DIC’s (the 
exclusion of ˆ 0iθ =  values from the DIC computation) turns out not to be a 
sufficient reason by alone. Another reason why the DIC tends to be lower for 
fixed variance FH model is probably the over-shrinkage (thus a lower Dp ) of 
ˆHB
iθ  estimators. Finally, note that PPp gets farer from the ideal 0.5 value both 

for FH and NN sv specifications. Although we might have thought to remedy the 
marked deficiencies of these two models by merely making the sampling va-
riance stochastic, other faults show to be still alive (at least, sampling model is 
not fully adequate to reproduce survey data). One more time, the YR, NPlN and 
GPlN tern proves to be the most natural response to model-based SAE of count 
variables. 

Two further synthetic populations were considered: one with an essentially 
symmetric distribution (Table 9) and the other with negative skewness (Table 
10), in order to explore (the expected worsening of) performance (with negative 
asymmetry) of standard FH models, and, at the same time, detect the parallel 
reaction of the models that have so far shown to perform better. We show the 
results only for canonical and extended FH, YR, NPlN models as well as for 
GPlN, this last just in the sv version (being the most naturally conceivable for it), 
to enlighten the difference in performance of the first one (that worsens with 
negative asymmetry, mostly in terms of expectation) compared to the competi-
tive outcomes of the stochastic variance models. (Results on “true cv” FH have 
also been reported and written in italic to stress they are only theoretically con-
ceivable.) Commenting on Tables from 8 onward would give rise to observations 
analogous to the ones already given above. We merely note that the advantage in 
using stochastic variance models diminishes with increasing sample size (letting 
fixed variance models regain ground in the rankings), up to the situation where 
direct estimators result better than model-based ones (see are and rE in the bot-
tom panel of Table 9 and middle panel of Table 10). 

4. Concluding Remarks 

The benefits of using HB models for SAE problems have been largely recognized. 
They include the availability of a wider set of tools to handle complex and more 
realistic models and to get reliable measures of variability. When estimating 
counts it might not be clear which specification is more appropriate but relevant 
quantities should be properly modeled. Object of the study was to show that dif-
ferent model specifications are possible from the ones customarily used in non- 
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normal/non-linear cases. The purpose was definitely not to show the general 
superiority of one framework over the others, being the range of situations one 
has to face with in real analyses practically unlimited. Moreover, there are (at 
least) two kinds of reasons why the generalization of our results is rather re-
stricted. First, the type of simulation study we have performed is not the one or-
dinarily carried out in statistical studies of model comparison. In fact, we have 
not simulated from a posited model, rather we have considered design-based 
simulations. That is, given a real phenomenon (in our case, LLMs unemploy-
ment in a given region and year either known from census data or simulated), a 
sample survey has been (repeatedly) simulated according to a fixed sampling de-
sign. The idea we follow is “all models are wrong but some are useful” [24], and, 
this concept goes quite naturally with the demand to a SAE analyst for providing 
estimates of “real world” quantities. A design-based simulation, then, meets the 
requirement of positing a “true” population instead of a “true” model. Unfortu-
nately, this concept of simulation makes us totally ignorant about the possible 
presence of any useful/good model among the ones at comparison. It can be the 
case that all of them are inadequate to fit the phenomenon under study. Then, 
any comparison quite unlikely would lead to clear-cut results (or select the 
not-present “best” candidate). Second, in our application the model structure is 
kept as simple as possible to ease comparison. On the other hand, a null model, 
i.e. with only synthetic estimates entering the model and no additional auxiliary 
information, can be compared to traditional estimators and are free from further 
complications derived from specific characteristics of auxiliary information (like 
as variables measured with errors; type of relationship existing with small areas 
quantities of interest: e.g. multiplicative or additive effect? on which scale? etc.). 
On this regard, it is worth noting that, in presence of other sources of informa-
tion to account for, comparison would have become even more complicated if 
the data are not simulated on the ground of a posited model, but are considered 
as real world observations and so generated by a “black box” mechanism. 

However, the results from simulation study show persistent model failures for 
some standard Fay-Herriot specifications and for generalized linear Poisson 
models with (log-)normal sampling stage in SAE problems with count data, and 
how even minor model modifications can noticeably improve on their perfor-
mance. In particular, we advocate the extension of model specification from as-
suming sampling variances fixed to some off-set estimates (typically design sam-
pling variance estimates) to letting them be (stochastically) generated by the 
model (at least in their components depending from latent variables estimated 
within the model itself). On the other hand, unmatched and non-normal sam-
pling stage models show definitely a better performance in terms of bias, accu-
racy and reliability even in the fixed sampling variance version. Notice that the 
extension to stochastic sampling variances is straightforward and relatively easy 
to implement within a Bayesian framework as well as the non-standard specifi-
cations are practically feasible only by means of HB models. 

Moreover, the study brings out some limits and possible deceptions of com-
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monly used criteria for model determination in the context of SAE problems, 
namely DIC and PPp. The version of PPp here addressed is the one commonly 
used in Bayesian analyses—within SAE context yet also statistic-worldwide— 
which tests the (global) validity of model first stage, i.e., in our case, the sam-
pling model. Nevertheless, this particular PPp measure cannot inform us on 
many other possible model failures. On the other hand, the DIC is not compara-
ble across the models, the main reason being that it is calculated—as routinely 
is—relatively to the first stage unobservable variables which vary in essence and 
number across the HB specifications. 

In conclusion, future research should definitely focus on defining proper de-
vices for model determination in the field of SAE. Besides, in order to magnify 
differences between models at comparison in simulation studies, model struc-
ture has to be complicated for considering more realistic situations (adding aux-
iliary information, taking spatial structure into account, etc.), more complex 
sampling designs are to be experienced, as well as different real population phe-
nomena are to be explored (small areas at different level of territorial aggrega-
tion, small area population with different distributional characteristics, etc.). 
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Appendix 

Some tables and figures referred to in the text are below listed. 
 
Table 7. Census and one sample of simulated data reported for each LLM: (census data) employment and unemployment rates (% 
over population), e

ip  and u
ip ; (sampling design data) sampling fraction (over population), ir , sample size, in ; (simulated data) 

direct and synthetic estimates of employment and unemployment rates (%), ˆ e
ip , ˆ ep , ˆ u

ip  and ˆ up , as well as the associated cv  

(%) estimates, ˆ e
icv , ˆ e

S icv , ˆ u
icv  and ˆ u

S icv . LLMs have been ordered according to increasing population count. 

 census data sampling design data one sample of simulated data 

LLM e
ip  u

ip  ir  in  ˆ e
ip  ˆ e

icv  ˆ ep  ˆ e
S icv  ˆ u

ip  ˆ u
icv  ˆ u

ip  ˆ u
S icv  

1 39.9 2.7 0.0 0  5.7 40.4 5.7  29.7 3.5 29.7 

2 40.1 2.7 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

3 40.0 3.4 11.6 113 43.4 10.7 40.4 5.7 2.6 57.0 3.5 29.9 

4 38.2 3.1 9.7 99 34.3 13.9 40.4 5.7 2.0 70.0 3.5 29.9 

5 40.9 2.8 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

6 42.3 3.2 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

7 34.7 8.4 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

8 37.7 4.0 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

9 41.8 2.1 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

10 39.4 3.4 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

11 40.0 3.7 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

12 42.4 4.0 17.6 308 37.3 7.3 40.4 5.7 4.2 26.9 3.5 29.9 

13 43.3 2.1 6.4 127 29.9 13.6 40.4 5.7 2.4 57.1 3.5 29.9 

14 38.9 3.3 4.7 105 37.1 12.7 40.4 5.7 3.8 49.1 3.5 29.9 

15 40.9 3.8 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

16 41.4 4.0 3.8 98 46.9 10.8 40.4 5.7 3.1 57.1 3.5 29.9 

17 39.6 4.0 4.5 139 37.4 11.0 40.4 5.7 1.4 70.3 3.5 29.9 

18 36.3 5.7 3.8 118 29.7 14.2 40.4 5.7 4.2 43.9 3.5 29.9 

19 44.2 2.6 8.3 272 43.4 6.9 40.4 5.7 1.1 57.3 3.5 29.9 

20 42.1 3.0 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

21 41.2 4.0 7.3 288 37.5 7.6 40.4 5.7 4.9 26.0 3.5 29.9 

22 40.2 3.5 2.7 107 43.0 11.2 40.4 5.7 2.8 57.1 3.5 29.9 
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23 40.9 5.3 6.3 274 43.4 6.9 40.4 5.7 6.9 22.1 3.5 29.9 

24 42.6 3.0 3.1 134 44.0 9.8 40.4 5.7 2.2 57.2 3.5 29.9 

25 40.0 3.9 5.7 256 43.0 7.2 40.4 5.7 2.7 37.2 3.5 29.9 

26 38.7 2.9 6.5 337 35.9 7.3 40.4 5.7 3.0 31.1 3.5 29.9 

27 39.5 2.9 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

28 41.9 2.4 4.0 230 42.2 7.7 40.4 5.7 1.3 57.3 3.5 29.9 

29 44.5 3.2 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

30 41.9 2.4 1.4 88 43.2 12.3 40.4 5.7 0.0 56.1 3.5 29.9 

31 40.6 2.6 4.6 298 40.9 7.0 40.4 5.7 2.4 37.3 3.5 29.9 

32 41.9 2.5 0.0 0  5.7 40.4 5.7  29.9 3.5 29.9 

33 43.4 2.6 1.4 93 43.0 12.0 40.4 5.7 3.2 57.0 3.5 29.9 

34 45.0 2.3 4.3 320 44.1 6.3 40.4 5.7 2.2 37.4 3.5 29.9 

35 37.7 5.0 3.2 251 38.6 8.0 40.4 5.7 5.6 26.0 3.5 29.9 

36 40.2 3.2 7.1 581 41.3 4.9 40.4 5.7 4.0 20.4 3.5 29.9 

37 41.9 2.9 5.2 445 39.1 5.9 40.4 5.7 2.7 28.4 3.5 29.9 

38 40.1 3.7 2.8 247 38.9 8.0 40.4 5.7 5.3 27.0 3.5 29.9 

39 39.2 5.0 4.9 437 35.2 6.5 40.4 5.7 6.9 17.6 3.5 29.9 

40 43.1 2.7 2.4 234 43.2 7.5 40.4 5.7 1.7 49.6 3.5 29.9 

41 43.7 2.1 3.2 324 39.5 6.9 40.4 5.7 2.5 34.9 3.5 29.9 

42 42.5 2.4 5.7 588 45.2 4.5 40.4 5.7 2.5 25.4 3.5 29.9 

43 38.7 5.0 5.1 542 40.2 5.2 40.4 5.7 5.7 17.4 3.5 29.9 

44 42.5 2.4 2.2 242 42.1 7.5 40.4 5.7 2.5 40.4 3.5 29.9 

45 42.4 2.3 3.3 372 49.2 5.3 40.4 5.7 1.9 37.4 3.5 29.9 

46 41.6 2.5 2.3 298 38.9 7.3 40.4 5.7 2.7 34.9 3.5 29.9 

47 43.0 2.6 2.0 472 39.6 5.7 40.4 5.7 3.6 23.8 3.5 29.9 

48 42.5 2.4 2.7 661 42.2 4.5 40.4 5.7 1.7 29.9 3.5 29.9 

49 40.8 3.0 2.3 1099 40.3 3.7 40.4 5.7 3.5 15.9 3.5 29.9 

50 42.0 3.5 2.2 1100 42.2 3.5 40.4 5.7 3.1 16.9 3.5 29.9 

51 38.4 4.7 2.7 1653 37.7 3.2 40.4 5.7 5.1 10.6 3.5 29.9 
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Table 8. Simulated data on unemployment: 3.35p =  and positive asymmetry (real data); from top to bottom: n = 100/N = 25000, 
n = 300/N = 75000, n = 500/N = 100000 (hence r = 4, 4, 5‰). 

 bias accuracy efficiency reliability 

estimator rb  Mrb  arb  Marb  are  Mare  rE  MrE  eff  Meff  rel  Mrel  

Synthetic 9 12 25 22 26 23 28 25 27 27 153 124 

Direct 0 0 7 7 45 45 56 56 60 61 113 112 

FH(2) true cv 7 10 21 18 24 21 28 24 21 21 96 97 

non-na 8 9 20 19 24 22 28 26 25 25 109 106 

FH(3) true cv 7 10 22 18 24 21 28 24 21 21 96 97 

non-na 8 9 20 19 24 22 28 26 25 25 108 107 

FH(2) 32 35 38 37 39 37 41 39 16 16 60 47 

non-na 32 35 38 36 39 36 41 39 18 18 66 53 

FH(3) 32 35 38 37 39 37 42 39 16 16 62 49 

non-na 32 35 38 36 39 36 41 39 19 19 67 53 

YR −20 −18 22 18 25 19 27 22 22 21 101 95 

non-na −20 −18 22 18 25 19 27 24 25 25 113 116 

NPlN −20 −18 23 18 25 19 27 22 22 21 102 98 

non-na −20 −18 22 18 24 19 27 23 25 25 114 114 

FH(2) sv −2 1 20 18 22 19 25 21 17 17 85 80 

non-na −2 0 19 17 22 18 25 21 20 19 96 93 

FH(3) sv −2 1 20 18 22 19 25 21 17 17 84 81 

non-na −2 0 19 17 22 18 25 21 19 19 95 90 

YR sv 5 7 19 16 24 21 28 27 23 24 100 103 

non-na 6 6 17 15 24 22 28 27 28 28 112 116 

NPlN sv 4 7 18 16 24 21 28 26 24 25 104 106 

non-na 5 6 17 15 23 21 28 26 29 29 116 121 

GPlN sv −1 3 13 13 29 27 36 36 31 31 97 100 

non-na 2 5 12 11 30 29 38 36 38 38 106 108 

Synthetic 11 14 25 24 26 24 27 25 33 33 203 136 

Direct 1 1 4 3 25 25 32 31 34 34 108 108 

FH(2) true cv 5 5 15 14 21 20 24 23 20 20 94 92 

non-na 5 5 12 11 19 18 23 22 24 24 109 107 

FH(3) true cv 5 5 15 14 21 20 24 23 20 20 95 93 

non-na 5 5 12 11 19 18 23 22 24 24 110 108 

FH(2) 13 14 20 18 23 21 26 23 17 18 88 76 

non-na 13 13 18 17 21 19 25 23 21 21 100 99 
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FH(3) 13 14 20 18 23 21 26 23 18 18 89 77 

non-na 13 13 18 17 21 19 25 23 22 22 102 99 

YR −5 −4 14 13 19 17 22 21 19 19 101 97 

non-na −5 −4 11 9 18 17 21 20 19 19 101 104 

NPlN −5 −4 14 13 19 17 22 21 19 19 100 96 

non-na −5 −4 11 10 18 17 21 20 19 19 101 100 

FH(2) sv 0 0 15 13 19 17 22 20 18 18 96 93 

non-na 0 0 12 10 18 17 21 21 22 22 112 107 

FH(3) sv 0 0 15 13 19 17 22 20 19 19 101 97 

non-na 0 0 12 10 18 17 21 21 23 23 117 111 

YR sv 5 5 16 13 20 19 23 22 19 19 95 92 

non-na 5 5 13 12 18 17 22 21 23 23 110 108 

NPlN sv 5 5 16 13 20 19 23 22 19 19 95 91 

non-na 5 5 13 12 18 17 22 21 23 23 110 107 

GPlN sv 5 6 16 13 20 20 24 23 18 18 91 89 

non-na 5 7 13 11 19 18 22 23 22 22 106 96 

Synthetic 10 13 25 23 25 23 26 24 32 32 205 136 

Direct 0 0 4 3 20 20 25 24 25 26 105 104 

FH(2)/(3) true cv 5 5 13 11 18 16 21 19 16 16 91 92 

non-na (2) 4 3 9 8 16 14 19 18 20 20 108 108 

non-na (3) 4 3 9 8 16 14 19 18 20 20 108 107 

FH(2)/(3) 8 9 15 15 19 17 22 20 16 16 89 87 

non-na (2) 8 7 12 11 16 14 20 18 19 19 106 105 

non-na (3) 8 7 12 11 16 14 20 18 19 19 107 106 

YR −2 −2 11 10 17 15 20 18 16 16 97 101 

non-na −2 −3 8 7 15 13 18 17 20 20 114 115 

NPlN −2 −2 12 10 17 15 20 18 16 16 97 99 

non-na −2 −3 8 7 15 13 18 17 19 19 114 117 

FH(2) sv 1 1 12 10 17 15 20 18 16 16 94 94 

non-na 1 0 9 7 15 14 18 17 19 19 110 108 

FH(3) sv 1 1 12 10 17 15 20 18 16 16 97 98 

non-na 1 0 9 7 15 14 18 17 20 20 115 112 

YR sv 4 4 13 10 17 15 21 19 16 16 93 92 

non-na 4 2 9 7 15 14 18 18 19 19 112 110 

NPlN sv 4 4 13 10 17 15 21 18 16 16 93 93 

non-na 4 2 9 7 15 14 18 18 19 19 112 111 

GPlN sv 4 4 13 11 17 16 21 17 16 16 89 89 

non-na 4 3 9 8 16 14 19 18 20 19 105 102 
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Table 9. Simulated data on unemployment: 3.35p =  and symmetric data; from top to bottom: n = 100/N = 25000, n = 300/N = 
75000, n = 500/N = 100000 (hence r = 4, 4, 5‰). 

 bias accuracy efficiency reliability 

estimator rb  Mrb  arb  Marb  are  Mare  rE  MrE  eff  Meff  rel  Mrel  

Synthetic 15 −2 34 23 35 23 36 24 25 25 162 116 

Direct 1 2 7 5 44 41 55 51 58 56 114 114 

FH(2) true cv 14 −3 32 20 33 21 36 23 18 18 95 83 

non-na 15 −3 31 20 33 21 35 23 21 21 108 95 

FH(3) true cv 14 −3 32 20 33 21 36 23 18 18 94 82 

non-na 15 −3 31 20 33 21 35 23 21 21 107 96 

FH(2) 40 19 45 20 46 20 47 23 14 14 78 67 

non-na 40 19 45 19 46 19 47 22 16 16 85 74 

FH(3) 40 19 45 20 46 20 47 23 14 14 79 70 

non-na 41 19 45 19 46 19 48 22 16 16 86 76 

YR −16 −27 32 31 33 31 34 32 22 22 94 76 

non-na −15 −26 31 31 32 31 34 32 26 26 106 88 

NPlN −16 −27 33 32 33 32 35 32 22 22 93 76 

non-na −16 −27 32 32 33 32 34 32 26 26 105 89 

FH(2) sv 4 −11 30 22 31 22 33 23 18 17 88 82 

non-na 4 −11 30 20 31 21 33 23 20 21 100 100 

FH(3) sv 4 −11 30 22 31 22 33 23 17 17 86 80 

non-na 4 −11 30 20 31 21 33 23 20 20 98 96 

YR sv 11 −4 28 18 31 20 34 24 23 23 104 100 

non-na 12 −3 26 17 31 19 34 24 27 27 116 115 

NPlN sv 12 −4 28 19 31 20 34 23 22 22 104 100 

non-na 12 −3 27 17 31 20 34 24 27 26 115 113 

GPlN sv 3 −5 19 15 31 25 37 30 31 31 102 105 

non-na 6 −1 15 9 31 26 39 31 38 37 115 117 

Synthetic 15 −3 34 23 35 23 35 24 30 30 190 130 

Direct 0 1 4 4 26 25 32 32 34 32 106 106 

FH(2) true cv 9 −3 23 13 28 18 31 21 18 18 87 89 

non-na 9 −3 19 11 25 17 29 20 22 22 101 108 

FH(3) true cv 9 −3 23 13 28 18 31 21 19 18 87 88 

non-na 9 −3 19 11 25 17 29 20 23 22 101 107 

FH(2) 20 4 30 16 32 18 34 20 15 15 82 80 

non-na 19 4 27 13 30 16 33 18 18 18 94 95 
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FH(3) 20 4 30 16 32 18 34 20 15 15 84 81 

non-na 19 4 27 13 30 16 33 18 19 18 95 94 

YR −4 −13 19 16 25 21 29 24 21 20 91 92 

non-na −4 −12 15 13 21 19 26 23 25 25 107 110 

NPlN −4 −13 20 16 25 21 29 24 20 20 90 91 

non-na −4 −12 15 14 21 20 26 23 25 25 106 109 

FH(2) sv 1 −9 20 15 25 19 29 22 19 19 90 92 

non-na 1 −7 15 11 21 18 26 21 24 24 106 112 

FH(3) sv 1 −9 20 15 25 19 29 22 21 20 96 98 

non-na 1 −7 15 11 21 18 26 21 25 25 113 120 

YR sv 10 −3 23 15 27 18 31 21 18 17 87 88 

NPlN sv 10 −3 23 15 27 18 31 21 18 17 87 87 

non-na YR/NPlN sv 9 −3 20 12 25 17 28 20 22 21 101 104 

GPlN sv 7 −4 21 14 26 18 30 22 18 18 87 88 

non-na 6 −3 16 11 23 17 27 20 22 22 102 109 

Synthetic 14 −3 34 23 34 23 35 24 29 29 206 126 

Direct 0 −1 3 3 20 19 25 23 26 24 105 104 

FH(2)/(3) true cv 8 −3 20 12 25 17 28 20 16 15 83 81 

non-na (2) 8 −1 15 8 21 14 25 17 19 18 100 105 

non-na (3) 8 −1 15 8 21 14 25 17 19 18 100 104 

FH(2) 13 0 24 14 27 17 29 19 15 14 83 77 

non-na 13 1 20 10 24 14 27 17 18 17 98 102 

FH(3) 13 0 24 14 27 17 29 19 15 14 84 80 

non-na 13 1 20 10 24 14 27 17 18 17 99 105 

YR −1 −8 17 14 22 18 26 20 17 17 87 88 

non-na −2 −7 11 9 18 16 22 19 21 21 106 110 

NPlN −1 −9 17 14 22 18 26 20 17 17 87 88 

non-na −2 −7 12 10 18 16 22 19 20 20 106 110 

FH(2) sv 2 −6 17 12 22 17 26 20 17 17 87 86 

non-na 1 −5 11 7 18 15 22 18 20 20 106 110 

FH(3) sv 2 −6 17 12 22 17 26 20 17 17 91 90 

non-na 1 −5 11 7 18 15 22 18 21 21 111 116 

YR/NPlN sv 7 −3 20 12 24 18 27 20 16 15 84 81 

non-na (YR) 7 −2 16 9 21 14 24 18 19 18 101 106 

non-na (NPlN) 7 −2 16 9 21 14 24 18 19 18 101 103 

GPlN sv 5 −3 19 11 23 18 27 20 16 16 83 80 

non-na 5 −1 13 9 19 13 23 18 19 19 97 108 
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Table 10. Simulated data on unemployment: 3.35p =  and negative asymmetry; from top to bottom: n = 100/N = 25000, n = 
300/N = 75000, n = 500/N = 100000 (hence r = 4, 4, 5‰). 

 bias accuracy efficiency reliability 

estimator rb  Mrb  arb  Marb  are  Mare  rE  MrE  eff  Meff  rel  Mrel  

Synthetic 25 −10 48 25 49 25 51 27 26 26 115 105 

Direct −1 −1 8 7 46 41 56 50 60 57 115 115 

FH(2) true cv 26 −7 46 23 48 24 50 26 17 17 77 76 

non-na 26 −8 46 22 47 22 50 25 20 20 89 86 

FH(3) true cv 26 −7 46 23 48 24 50 26 17 17 75 72 

non-na 27 −8 46 22 47 22 50 25 20 20 87 83 

FH(2) 55 13 60 13 62 14 64 19 14 14 71 80 

non-na 56 11 59 11 62 13 64 19 16 16 78 80 

FH(3) 56 13 60 13 62 14 64 19 14 14 72 79 

non-na 56 11 59 11 62 13 64 19 16 16 81 79 

YR −10 −32 41 36 43 36 45 37 23 23 78 66 

non-na −10 −32 40 33 42 35 44 36 27 27 88 75 

FH(2) sv 14 −15 43 27 44 27 47 29 18 18 73 68 

non-na 14 −16 42 26 43 26 46 27 20 21 83 81 

FH(3) sv 14 −15 43 27 44 27 47 29 17 17 72 67 

non-na 14 −16 42 26 43 26 46 27 20 20 81 78 

YR/NPlN sv 20 −8 39 21 43 23 47 27 24 24 92 93 

non-na YR 20 −5 36 19 41 23 46 27 28 24 106 106 

non-na NPlN 20 −6 36 19 41 22 46 26 28 28 105 106 

GPlN sv 11 −6 28 19 39 25 46 31 30 30 97 98 

non-na 11 0 21 15 35 24 44 30 35 35 111 115 

Synthetic 27 −9 48 25 49 25 49 25 32 32 163 129 

Direct 1 1 4 3 26 24 33 30 35 30 109 109 

true cv (2) 22 −6 36 15 40 18 44 21 18 17 82 86 

non-na 22 −3 32 12 37 15 41 19 22 21 99 111 

true cv (3) 22 −6 37 15 40 18 44 21 18 17 82 85 

non-na 22 −3 32 12 37 15 41 19 22 21 99 109 

FH(2) 34 1 45 15 46 17 49 19 15 14 78 80 

non-na 34 3 42 12 44 16 47 18 17 17 90 100 

FH(3) 34 1 45 15 46 17 49 19 15 14 79 80 

non-na 34 3 42 12 45 16 47 18 18 17 91 97 

YR 0 −15 25 20 30 23 36 27 22 22 90 89 
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non-na −1 −10 18 14 25 20 30 24 27 27 111 116 

NPlN 0 −15 25 20 30 23 36 27 22 22 89 87 

non-na −1 −10 18 14 25 20 30 24 27 27 109 115 

FH sv (2) 7 −10 26 17 32 21 37 25 21 21 89 93 

non-na 6 −5 20 12 26 18 32 21 25 25 110 121 

FH sv (3) 7 −10 26 17 32 21 37 25 22 22 96 100 

non-na 6 −5 20 12 26 18 32 21 27 27 119 132 

YR sv 18 −6 33 16 37 20 40 22 19 18 83 82 

non-na 17 −3 28 12 33 17 37 20 23 21 99 107 

NPlN sv 18 −6 33 16 37 20 40 22 18 18 83 82 

non-na 17 −3 28 12 33 17 37 20 22 21 99 105 

GPlN sv 10 −7 25 14 31 20 37 23 21 21 86 90 

non-na 9 −2 17 9 26 17 31 21 25 24 105 116 

Synthetic 27 −9 49 25 49 25 50 25 31 31 157 126 

Direct 0 0 4 3 20 19 25 23 27 23 109 106 

true cv (2) 20 −6 32 14 36 17 40 19 16 15 77 81 

non-na 17 −3 26 9 31 14 35 17 19 18 96 105 

true cv (3) 20 −6 32 14 36 17 40 19 16 15 78 81 

non-na 18 −3 26 9 31 14 35 17 20 18 96 104 

FH(2) 26 −4 37 13 40 16 43 18 15 14 75 80 

non-na 24 −1 32 10 35 14 39 17 18 17 91 101 

FH(3) 26 −4 37 13 40 16 43 18 15 14 76 79 

non-na 24 −1 32 10 35 14 39 17 18 17 92 101 

YR 3 −11 22 16 27 20 34 24 18 18 82 81 

non-na 0 −8 13 10 20 16 24 20 22 22 106 109 

NPlN 4 −11 23 16 28 20 34 24 18 18 82 81 

non-na 0 −8 13 10 20 17 24 20 22 22 106 108 

FH(2) sv 7 −9 23 14 28 19 35 22 18 18 82 85 

non-na 4 −5 14 9 20 15 25 19 21 21 105 113 

FH(3) sv 7 −9 23 14 28 19 35 22 19 18 87 90 

non-na 4 −5 14 9 20 15 25 18 22 22 112 120 

YR/NPlN sv 16 −8 30 14 33 18 38 20 16 15 78 79 

non-na (YR) 13 −4 22 9 27 15 31 18 20 18 97 104 

non-na (NPlN) 13 −4 22 9 27 15 31 17 20 19 97 104 

GPlN sv 10 −6 23 13 29 19 35 22 17 16 78 85 
non-na 7 −4 16 9 23 15 28 18 21 21 101 103 

 



 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojs@scirp.org 

http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	A Comparison of Hierarchical Bayesian Models for Small Area Estimation of Counts
	Abstract
	Keywords
	1. Introduction
	2. HB Models for Small Area Estimation with Count Data
	2.1. General Framework
	2.2. Alternative HB Models

	3. A Simulation Study
	3.1. Simulation Plan and Performance Measures
	3.2. First Findings
	3.3. Some Refinements

	4. Concluding Remarks
	References
	Appendix

