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Abstract 
Crossover designs are well-known to have major advantages when comparing 
the effects of various non-curative treatments. We compare efficiencies of 
several crossover designs along with the Balaam’s design with that of a parallel 
group design pertaining to longitudinal studies where event time can only be 
measured in discrete time intervals. With equally sized sequences, the parallel 
group design results in the greater efficiency if the number of time periods is 
small. However, the crossover and Balaam’s designs tend to be more efficient 
as the study duration increases. The degree to which these designs add effi-
ciency depends on the baseline hazard function and effect size. Additionally, 
we incorporate different cost considerations at the subject level when com-
paring the designs to determine the most cost-efficient design. Researchers 
might consider the crossover or Balaam’s design more efficient if the duration 
of the study is long enough, especially if the costs of applying the baseline 
treatment are higher. 
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1. Introduction 

A well-known type of outcome in longitudinal studies is the survival endpoint 
with the research interest focused on the occurrence and timing of some events. 
The timing of events can be measured continuously using thin precise time units 
(e.g. minutes or days). Under some circumstances, however, it is far less feasible 
to measure the timing of events this precisely. Instead, it is measured discretely 
using a set of discrete intervals like years, months or weeks. Here, an event might 

How to cite this paper: Safarkhani, M. and 
Moerbeek, M. (2017) A Comparison of Wi- 
thin-Subjects and Between-Subjects Designs 
in Studies with Discrete-Time Survival Out-
comes. Open Journal of Statistics, 7, 305- 
322. 
https://doi.org/10.4236/ojs.2017.72023 
 
Received: March 6, 2017 
Accepted: April 23, 2017 
Published: April 26, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2017.72023
http://www.scirp.org
https://doi.org/10.4236/ojs.2017.72023
http://creativecommons.org/licenses/by/4.0/


M. Safarkhani, M. Moerbeek 
 

306 

occur at any point in time during an interval but is only measured once at the 
end of each interval until event occurrence, drop-out or the end of the trial. 
Since the time of event occurrence is rounded upward to the nearest measure- 
ment time point, a loss of information will occur if the exact time is unknown. 
Data with this type of survival endpoints are called discrete-time survival data as 
opposed to data recorded on a continuous scale, i.e. continuous-time survival data. 

It is useful to measure time discretely in retrospective studies where subjects 
can only supply event times in ranges or round numbers due to memory failure. 
In a suicide ideation study, for instance, subjects may not remember the exact 
day of their first suicidal thought, but may remember how old they were at the 
time. Discrete-time survival data are also encountered in prospective studies 
where it may not be feasible or practical to follow subjects continuously. In a 
smoking initiation study, for example, researchers are not able to contact sub- 
jects every day to record the onset of smoking, but may do so on a regular basis, 
say once a month. Another reason for measuring event occurrence in discrete 
time is if events can only occur at a few points in time, e.g. a student can 
graduate from college on a few occasions in the academic year. 

Optimal designs and statistical power analysis have been important tools in 
designing longitudinal studies with a variety of types of outcomes. For trials with 
discrete-time survival outcomes, [1] [2] have recently studied the optimal com- 
bination of the number of subjects and measurements per subject to achieve a 
sufficient power at a minimal cost or to maximize the power level for a fixed 
budget. These papers solely focus on randomized controlled trials with a parallel 
group design with subjects receiving only a single treatment in the course of the 
trial. However, in studies evaluating a new and promising treatment, it may be 
considered unethical to not offer the treatment to some of the subjects as is done 
in parallel group trials. In addition, if subjects do not receive the treatment during 
the study, they are more likely to withdraw from the study [3]. Here, crossover 
designs are a more efficient option than parallel group designs for comparing the 
effect of treatments. 

Crossover designs are powerful designs in bioequivalence, clinical and pharma- 
ceutical trials if the disease is chronic and treatments have a reversible or non- 
curative effect. The major advantage of crossover over parallel group designs is 
that crossover designs eliminate part of the inter-subject variability from the 
treatment comparisons, and thus might require fewer subjects to provide the 
same level of power. For a discussion on the analysis of crossover designs with 
continuous and binary outcomes, see [4] [5] [6]. Moreover, the work of [7] dis- 
cusses sample size determinations in crossover designs with binary outcomes in 
subjects measured until the end of the study even if they experience the event in 
an earlier period. 

Crossover designs have rarely been applied with right-censored survival data 
[8]. Nevertheless, survival analysis can be used in crossover trials with survival 
outcomes. An example is a crossover study to compare disease-free survival 
among postmenopausal women with receptor-positive early breast cancer [9]. 
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Another example is a two-period crossover design comparing atenolol with a 
combination of atenolol and nifedipine to treat angina pectoris [10]. In these 
studies, the time-to-event endpoint was measured continuously and a continuous- 
time survival model was used to analyze the data [11]. On rare occasions, parallel 
group designs have been compared with crossover designs in studies with con- 
tinuous time-to-event outcomes [12]. However, to the authors’ knowledge, no 
longitudinal studies at all have been conducted on this subject with discrete-time 
survival data. 

The aim here is to determine whether and if so, to what extent, a crossover 
design is more efficient than a parallel group design with discrete-time survival 
outcomes if subjects are not further observed after experiencing the event. An 
example of a crossover design with discrete-time survival endpoints is a fertility 
study was conducted to study the effect of ovarian stimulation on increasing the 
chance of conception [13]. The outcome was timing of pregnancy that was 
recorded discretely after each treatment cycle. Here, a proportional odds model 
was used for analysis repeated crossover outcomes. We compare the designs’ 
efficiencies for different numbers of time periods, allocation proportions to treat- 
ment sequences, baseline hazard probabilities and treatment effect sizes. We 
assume the main objective of the trials is to compare the treatments, and the best 
design is the one that provides an efficient estimate of the treatment differences. 

We consider the most common AB/BA crossover design where subjects switch 
to the other treatment after one time period. For practical purposes, other 
variations of this design are also considered such as the AABB/BBAA design 
where subjects alternate the treatments after multiple time periods or appli- 
cations of a given treatment. The efficiency of these designs are also compared 
with that of the Balaam’s design [14], which is a combination of the crossover 
and parallel group designs. It is logical that these studies are affected by dropout 
if subjects leave the study permanently due to unforeseen reasons rather than 
event occurrence. We thus compare the designs with and without attrition. 

The organization of this paper is as follows. In the next section, an overview of 
the logistic regression model for analysing discrete-time survival data is pre- 
sented; see [15] for an extensive discussion of this model. This section is fo- 
llowed by an introduction of the various designs and the optimality criterion. 
Section 4 reports on the results. The comparison between different designs is 
illustrated with an example in Section 5. The final section presents the conclu- 
sions and discussion and gives suggestions for future work. 

2. The Statistical Model  

We consider designs with two treatments A and B, and s  sequences of treat-  

ments. Let 
1

s

k
k

N n
=

= ∑  be the total number of subjects in the design, with kn   

the number of subjects randomly assigned to sequence k  at baseline. The 
underlying continuous event times are recorded in discrete time intervals 
indexed by 1,2, ,j p=  . These intervals represent a series of consecutive 
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periods in continuous time with equidistant cut points 0 10,  1, , pt t t p= = =
. 

The baseline measure is taken at time 0 0t = , just before randomization, and the 
total duration of the follow-up of a study with p  periods ends at time pt p= . 
Note that 0 0t =  is the “beginning of time” when no one has experienced the 
event yet but everyone is eligible to do so. The first measurement of event 
occurrence is taken at time point 1t , and any event occurring after 0t  and 
before 1t  is classified as happening during the first time interval [ )0 1,t t . The 
j th time interval ) ( )1, 2,3, ,j jt t j p− =   begins immediately at time point 

1jt −  and ends just before time jt . 
The binary response ijkY  for subject ( )1, 2, , ki i n=   in period  
( )1, 2, ,j j p=   receiving sequence ( )1, 2, ,k k s=   is measured once at the 

end of each time interval and defined according to whether the subject ex- 
periences the event of interest ( )1ijkY =  or not ( )0ijkY = . The expected value 
and variance of ijkY  are ( ) [ ] ( ),ijk jd j kE Y h t=  and  

( ) [ ] ( ) [ ] ( ), ,var 1ijk j jd j k d j kY h t h t = −   where [ ] ( ), jd j kh t  is the discrete-time ha- 
zard probability that the subject experiences the event in period j  under 
treatment [ ],d j k . It is given by [ ] ( ) ( ), Pr 1 0 for j ijk ij kd j kh t Y Y j j′ ′= = = < . It is 
the conditional probability that an event occurs in interval j  under sequence 
k  for subject i  given that the event has not yet occurred before period j . 
Note that [ ],  or d j k A B=  denotes the treatment used for subject i  in period 
j  under sequence k . Note that repeated measurements per subject are con- 

sidered to be conditionally independent. 
The discrete-time hazard probability [ ] ( ), jd j kh t  for subject i  assigned to se- 

quence k  in period j  is modeled as:  

[ ] ( ) [ ] ( )
[ ] ( )
,

,
1,

logit log ,
1

pjd j k
j j ijk ijkd j k

jjd j k

h t
h t D Z

h t
α β

=

= = +
−

∑           (1) 

with the time-dependent explanatory variable ijkZ  denoting the treatment con- 
dition and 1ijkZ =  if the subject receives treatment B, and 0=  otherwise. For 
a given time period, the parameter β  denotes the effect of treatment B relative 
to treatment A on the probability of event occurrence on the logit scale,  

so 
( ) ( )
( ) ( )

1
log

1
B j B j

A j A j

h t h t

h t h t
β

 − =
 − 

. As can be seen, the parameter β  is constant  

across time. We assume that model (1) is a proportional odds model. The 
dummy variable ijkD  is set to 1 in time interval j  and 0 elsewhere. The 
corresponding intercept parameter jα  is the value of the logit hazard pro- 
bability corresponding to treatment A in that particular time period so  

( )
( )

log
1

A j
j

A j

h t

h t
α =

 − 
 for 1,2, ,j p=  . 

Model (1) can be formulated in matrix form as:  

( )logit ,=h t Xθ  

where the vector ( )h t  contains discrete-time hazard probabilities of event 
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occurrence for all p  time periods and all N  subjects until they experience the 
event or leave the study before event occurrence or the study concludes (i.e., if 
j p= ). The parameter vector ( )1 2, , , ,pα α α β ′=θ   is a column vector of 
( )1p +  unknown parameters. The design matrix X  is of order  

( )
1 1

1
ps

jk
k j

n p
= =

× +∑∑ , with jkn  representing the number of subjects in the k th  

sequence entering the j th period and leave the study neither due to event 
occurrence nor unforeseen reasons prior to time period j . The total number of 
subjects at the beginning of the study in sequence k  is 1k kn n= , and the total 
number of subjects entering period 2j ≥  is  

( ) [ ] ( ) ( ) [ ] ( ) ( )1
1 1 11 1, 1, 1

ˆ ˆ1 1 1 .j
jk j k j k j k hj k d j k d j k hn n h t r t n S t r t−

− − −− − − =
     = − − = −    ∏  

Here, [ ] ( ),
ˆ

jd j kh t  is the estimate of the discrete-time hazard probability, and 

[ ] ( ),
ˆ

jd j kS t  is the estimate of the probability of the subject will experience the 
event after time jt . The notation [ ]1,d j k−  refers to the treatment in the pre- 
ceding period, i.e. the ( )1j − th time period. It can be concluded that the risk of 
event occurrence in period j  depends on the survival probability then and in 
the previous period using [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )1 1, , , ,j j j jd j k d j k d j k d j kh t S t S t S t− −

 = −  . 
What is more, the attrition rate ( )k hr t  denotes the proportion of subjects in 
sequence k  who leaves the study during time period h  due to reasons other 
than event occurrence. In this study, we assume a constant attrition rate across all 
the time periods and treatment sequences, i.e. ( )k hr t r=  for any { }1, 2, ,h p∈   
and { }1, 2, ,k s∈  . We assume non-informative attrition (i.e. missing at ran- 
dom), that is the non-censored subjects do not differ systematically from the 
censored subjects. This means those who remain in the study are representative 
of everyone who would have remained in the study had there been no censoring. 

The common method for estimating the vector of unknown parameters θ  is 
iteratively re-weighted least squares [16]. The asymptotic variance-covariance 
matrix of the estimator θ̂  has the form:  

( )

[ ] ( )
1

,
1 1

ˆ ˆCov .
ps

jk j jk jkd j k
k j

w t n
−

= =

 
′=  

 
∑∑θ X X              (2) 

The vector jkX  corresponds to subjects in the j th time interval in the k th 
sequence, and has ( )1p +  elements with value 1 on the j th element, value 0 
or 1 on the ( )1p + th element, and 0 elsewhere. So the first p  elements re- 
present the values on the dummies 1 2, , , pD D D

, and the ( )1p + th element re- 
presents the value of jkZ . The scalar [ ] ( ),ˆ jd j kw t  is the least squares weight for 
subjects in period j  under sequence k . For a logit link function, it is given as 

[ ] ( ) [ ] ( ) [ ] ( ), , ,
ˆ ˆˆ 1j j jd j k d j k d j kw t h t h t = −  . It should be noted that the ( )1, 1p p+ +

th entry of ( )ˆCov θ  is proportional to the variance of the estimator of the 
treatment difference (i.e., β ) and it will be used for the definition of the 
optimal designs. 

3. Crossover Designs and Efficiencies  

We consider trials with a maximum duration of max 12p =  time periods where 
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subjects may be observed over 1, 2, ,p =   or maxp  time periods. So maxp  is 
the maximum number of time periods a trial can be conducted in and p  is the 
number of time periods at hand. Note that the larger p  is, the longer the 
duration of the follow-up. For easy comparison of the hazard probabilities in 
each period, we assume the time points are equally spaced and the distance be- 
tween any pair of adjacent time points is fixed in advance. Under this assumption, 
the duration of a trial with max 12p =  time periods is twice as long as the du- 
ration of a trial with 6p =  time periods. Table 1 presents designs for studies 
with max 12p =  time periods. 

The first design is the parallel group (PG) design where subjects are randomly 
assigned to sequences with a single treatment A or B. The other three designs are 
crossover (CO) designs where subjects receive treatments A and B according to a 
pre-established order during the study, but switch to a different treatment after 
one or more multiple periods of using a given treatment. In the CO1 design, 
subjects use the two treatments sequentially for fixed periods of time, and switch 
to treatment A or B after one time period. In the CO3 design, subjects alternate 
the use of the two treatments after three applications of a given treatment so the 
switching time point is three. The PG and CO designs are based on two treat- 
ment sequences in which some part of the subjects are randomly assigned to the 
first sequence and the remaining subjects to the second sequence. The last design 
is the Balaam’s (BM) design, a four-treatment-sequences design that assigns 
some parts of the subjects to the (AB/BA) sequence and the remainder to the 
(AA/BB) sequence. This design may be considered a combination of the PG and 
CO1 designs. It should be noted that we compare the designs of equal total 
duration or follow-up time ( )p  and sample size at baseline ( )N . 

We study the efficiency of the PG design compared with that of an alternative 
design to determine which design estimates the parameter β  more efficiently.  
 
Table 1. 2-treatment and 12-period designs. 

Design Sequence Period 

  1 2 3 4 5 6 7 8 9 10 11 12 

PG 1 A A A A A A A A A A A A 

 2 B B B B B B B B B B B B 

CO1 1 A B A B A B A B A B A B 

 2 B A B A B A B A B A B A 

CO3 1 A A A B B B A A A B B B 

 2 B B B A A A B B B A A A 

CO6 1 A A A A A A B B B B B B 

 2 B B B B B B A A A A A A 

BM 1 A B A B A B A B A B A B 

 2 B A B A B A B A B A B A 

 3 A A A A A A A A A A A A 

 4 B B B B B B B B B B B B 
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To do so, we consider the PG design as the reference design and compare the 
performance of the other designs using the relative efficiency (RE):  

( )
( )

( )
( )

PG PG

CO PG BM PG
CO BM

ˆ ˆvar var
RE ,      RE .

ˆ ˆvar var

β β

β β
= =  

If CO PGRE 1= , the CO design is as efficient as the PG design. If CO PGRE 1< , 
the PG design is more efficient, and if CO PGRE 1> , the PG design is less efficient 
than the CO design. In addition, the 1

CO PGRE−  indicates how many subjects 
should be taken under the CO design to be as efficient as the PG design [6] [17]. 
For example, if CO PGRE 0.8= , then ( )10.8 1 100% 25%− − × =  more subjects are 
required under the CO design to have the same efficiency as under the PG 
design. The interpretation of BM PGRE  is similar.  

4. Results  

We assume the probability of event occurrence for treatment A does not vary 
across the time intervals, so ( )A j Ah t h=  for 1, 2, ,j p=  . Since finding a 
closed-form formula for the variance-covariance matrix in (2) is complicated, 
the results are presented for selected choices of Ah  and the difference between 
the probabilities of treatments A and B ( )B Ah hδ = − . We study the efficiency 
and cost efficiency of a PG design in comparison to three alternative CO designs, 
namely CO1, CO3, and CO6, along with the BM design. 

Figure 1 presents the REs on the vertical axis as a function of the number of 
time periods p  on the horizontal axis for various values of Ah  (rows in 
matrix of graphs) and δ  (columns in matrix of graphs). These selected values 
of Ah  and δ  result in a maximum difference of 50%  in the survival 
probabilities between two treatment sequences by the end of a study with the 
maximum duration if a PG design is conducted. Here, the total number of sub- 
jects in each design ( )N  is equally divided over the treatment sequence  

groups. Each group in the PG and CO designs contains 
2
N  subjects and in the 

BM design, each group contains 
4
N  subjects. 

As can be seen in Figure 1, all the designs are equally efficient if 1p =  since 
all the designs are the same in this case (see Table 1). In addition, the CO3 
design is as efficient as the PG design if 3p ≤  and the CO6 design is as 
efficient as the PG design if 6p ≤ . We also observe that the REs of the CO and 
the BM designs generally decrease from unity as p  increases from 1 and the 
size of the decrease depends to some extent on the Ah  and δ  values. The 
decrease is smaller if Ah  is larger for a given δ , and for a given Ah , it is larger 
with a larger δ . However, at some value of p , the REs start to increase and 
approach unity if p  increases further. They may exceed unity if p  becomes 
even larger. The CO and BM designs are thus less efficient than the PG design if 
p  is small, though the designs may become more efficient than the PG design if 

the duration of the trial is large enough. Of all the designs, we observe that the BM  
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Figure 1. Efficiency of selected designs with two treatments A and B in comparison with the PG design as a function of the 
number of time periods p  for various Ah  and δ  given equal sample sizes when treatment sequences are equally sized. 

 
design more often tends to become more efficient than the PG design for a larger 
p  than the CO designs. Figure 1 also shows that a more extreme result is given 

if δ  becomes larger for a given Ah  or Ah  becomes smaller for a given δ . 
We observe almost similar results if a constant attrition rate r  is taken into 

account. The only difference is that the REs approach unity more gradually as 
p  increases if 5%  or 10%  of the subjects are lost to follow-up in each period 

within each sequence, implying that the CO and BM designs require more time 
periods to be equal or more efficient than the PG design (results not shown). 

We now look for the time point when the CO1 and BM designs are as efficient 
as the PG design. We have p  denote the smallest number of time points when 

CO1PGRE 1>  or BM PGRE 1> . For computational and practical reasons, we limit 
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our search to sixty periods. Table 2 presents the value of p  for various com- 
binations of Ah , δ  and r . For the BM design, we observe that for a given δ , 
p  decreases as Ah  increases, and similarly it decreases as δ  increases for a 

given Ah . In addition, the decrease in p  accompanying an increase in Ah  is 
larger with a smaller δ . Likewise, the decrease in p  with an increase in δ  is 
larger if Ah  is smaller. We note that the same effect of δ  on p  is not ob- 
served for the CO1 design if 0.1Ah = . For each combination of Ah  and δ , 
the CO1 design requires a longer study duration than the BM design to become 
more efficient than the PG design. The table also shows that if 5%  of the 
subjects drop out of the study in each period, only a few if any more periods are 
required for the CO1 and BM designs in comparison with the case of no attrition, 
and if r  increases further, the designs need to be expanded to include even 
more periods (results not shown). Lastly, we emphasize that the value of p  for 
the CO3 design is almost similar to that of the CO1 design, but the study 
duration for the CO6 design needs to be extended for one to three more time 
periods (results not shown). 

A Cost-Efficiency Comparison between Designs  

Previous section shows a pair-wise comparison of efficiency of the designs for 
studies with 1 to 12 time periods. In such a comparison, we did not make a 
distinction between the costs of sampling subjects and the costs of treating and 
measuring them. However, if recruiting a subject costs differently than taking 
measurements from that subject and the cost of treating this subject with 
treatment A is different than that with treatment B, we should account for the 
cost differential when we compare the five types of the designs. To this end, we 
take two cost functions as a function of the number of time periods for each type 
of the designs into account. Let 0c  represent the initial cost for setting up a 
study. If 1c  denotes the cost to include a subject in the study, let the cost of 
taking one measurement be denoted by 2c . If Ac  denotes the cost to treat a 
subject with treatment A, Bc  denotes the cost to treat a subject with treatment 
B. Cost function I is then computed for a study with p  time periods, s   
 
Table 2. The number of time periods { }2,3, ,59,60p∈   at which a BM or CO1 design 

is equally efficient as a PG design with several Ah , δ  and r values when treatment 
sequences are equally sized. 

Study 
designs 

 r = 0.00 r = 0.05 

 0.05δ =  0.1δ =  0.2δ =  0.05δ =  0.1δ =  0.2δ =  

BM 0.05Ah =  22 17 11 28 20 12 

BM 0.1Ah =  12 10 7 13 10 7 

BM 0.2Ah =  5 4 3 5 5 4 

CO1 0.05Ah =  >60 >60 >60 >60 >60 >60 

CO1 0.1Ah =  37 48 >60 >60 >60 >60 

CO1 0.2Ah =  13 11 9 17 14 10 
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treatment sequences, and N  subjects at baseline as follows:  

[ ] ( ) [ ] [ ] ( )
1

0 1 2 , , ,
1 0 1 0

.
2

p ps s

j jd j k d j k d j k
k j k j

NC c Nc Nc S t c S t
−

= = = =

− = + +∑∑ ∑∑        (3) 

With this cost function, we assume that subjects leave the study once they 
have experienced the event and measurements are not taken after event 
occurrence. [ ] ( ), jd j kS t  is the survival function for the treatment [ ],d j k  
under sequence k  by the end of time period j  and 0 0t =  is the baseline. 
Therefore, the number of measurements (including one baseline measurement) 
for each subject in sequence k  is given by [ ] ( ),11 p

jd j kj S t
=

+∑ . Note that 
subjects are treated by treatment [ ],  or d j k A B=  at the beginning of each time 
period, and so the number of treatment applications for a subject in sequence k  
is [ ] ( )1

,11 p
jd j kj S t−

=
+∑ . 

If it is assumed that subjects leave the study after experiencing the event or 
due to reasons other than event occurrence, the number of measures for each 
subject is given by [ ] ( ) ( ),11 1 jp

jd j kj S t r
=

+ −∑ . Cost function II can then be 
represented as follows:  

[ ] ( ) ( ) [ ] [ ] ( ) ( )
1

0 1 2 , , ,
1 0 1 0

1 1 .
2

p ps sj j
j jd j k d j k d j k

k j k j

NC c Nc Nc S t r c S t r
−

= = = =

− = + − + −∑∑ ∑∑  

To determine the most cost-efficient design for a given number of time 
periods, we normalize the optimality criterion (i.e. ( )ˆvar β ) by multiplying it by 
the cost 0C c− . In other words, we compare the designs based on:  

( )
( )

( )
( )

PG PGPG 0 PG 0
CO PG BM PG

CO 0 BM 0CO BM

ˆ ˆvar var
RE ,      RE .

ˆ ˆvar var
C c C c
C c C c

β β

β β
− −

= × = ×
− −

 

In this case, ( )ˆvar β  under each design is penalised by the amount of costs of 
that design which accounts for the number of time periods and for different 
costs of treatment A and B. We compare the designs for different combinations 
of the costs at the subject-level (i.e. 1c , Ac  and Bc ). The costs at the measure- 
ment level is fixed to 2 1c = . 

Figure 2 presents the REs plots as a function of p  for deigns with an equal 
allocation proportion for three combinations of Ah  and δ  (columns in 
matrix of graphs). We consider three different combinations for the costs 1c , 

Ac , and Bc  (rows in matrix of graphs). It should be mentioned that in all three 
cases the costs at the subject-level are higher than the cost at the measurement- 
level (i.e. 2 1c c< ). The first combination 1 A Bc c c< <  corresponds to studies 
where treating subjects is more expensive than sampling subjects and the costs 
to treat a subject with treatment B are high in relation to the costs to treat the 
subject with treatment A. The second combination 1 A Bc c c= =  represents stu- 
dies where all the three costs at the subject-level are equal. Finally, the last 
combination 1 B Ac c c< <  represents a reverse scenario compared to the first 
combination where application of treatment B is less expensive than treatment 
A. 

Figure 2 shows that when adjusting for design cost, the PG design is often a  
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Figure 2. Efficiency of selected designs with two treatments A and B in comparison with the PG design as a function of the design 
allocation proportion π  for various Ah  and δ  and the cost ratios 1c , Ac  and Bc  using cost function I in Equation (3) 

( )0r =  when treatment sequences are equally sized. 

 
more efficient choice when treating subjects costs more than recruiting the 
subjects and also when treatment A is less costly than treatment B (i.e. 

1 A Bc c c< < ). The efficiency of the other alternative designs, however, tend to 
increase as p  becomes larger so that the BM design becomes more efficient 
than the PG for { }5,6, ,12p∈   when 0.2Ah δ= = . The CO designs, on the 
other hand, need to be conducted for a longer time to become more efficient 
than the PG design; the CO1 and CO3 designs become more efficient for 9p ≥  
when 0.2Ah δ= = . When all the subject-level costs are equal (i.e. 1 A Bc c c= = ), 
the efficiencies of the CO designs and the BM design is very close to that of the 
PG design, and the efficiency of these designs tend more often to exceed unity as 
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Ah  and δ  become larger. In the last scenario, when sampling subjects is less 
costly than treating subjects and the cost of treatment B is lower relative to the 
cost of treatment A, the CO and BM designs are most often more efficient than 
the PG design. In this case, the CO and BM designs are always preferable. 
Overall, we observed very similar results to those of Figure 2 when comparing 
the design efficiencies using cost function II ( )0r > . However, the increase in 
the efficiencies with increasing p  becomes smaller in cases where 0r ≠  
(results not shown). 

Up until now we have focused on equal allocation proportions for each of the 
treatment sequences of the designs. From a clinical or ethical point of view, there 
might be reasons for an unequal assignment of subjects. For the BM design, for 
example, it might be considered unethical to give subjects the same treatment 
multiple times if its efficacy is unknown [18]. In this paper, we define [ ]0,1π ∈  
as the design allocation proportion and assume for a given π  that the CO and 
PG designs randomly allocate Nπ  subjects to the first treatment sequence and  

the BM design randomly allocates 
2
Nπ  to the (AB/BA) sequence. We now  

compare the designs efficiency as a function of π  for a given p . We limit our 
search to [ ]0.25,0.75π ∈  and assume that the treatment sequences contain at 
least a quarter of the subjects. Figure 3 depicts efficiency comparisons across the 
designs as a function of π  under the same condition as Figure 2 if 12p = . 

We first focus on the results for 1 A Bc c c< <  which implies treatment B is 
more costly than treatment A. When 0.05Ah δ= = , the REs of the CO designs 
are larger than unity if π  is small; the designs are almost equally efficient if 

[ ]0.40,0.45π ∈ , and the PG design is more efficient than the CO designs as π  
increases further. If Ah  and δ  increase to 0.2, the REs of the CO designs 
become closer to that of the PG design which implies the effect of π  becomes 
smaller and thus a negligible gain in efficiency from any CO or PG design is 
obtained. As can be seen, the RE line of the BM design has almost a similar ∪ - 
shape. This makes sense since the BM design is a compromised design between 
the CO1 and the PG designs when 0.5π = . For a smaller π , the BM design 
allocates more subjects to the sequences of the PG design and therefore its 
efficiency is in favor of the efficiency of the PG design for a small π . Similarly, 
the BM design allocates more subjects to the sequences of the CO1 design for a 
large π  and therefore its efficiency is in favor of the efficiency of the CO1 in 
this case. So the BM design tends to be more efficient than the PG design as the 
sequence sizes become more unequal.  

As treatment B becomes as expensive as or less expensive than treatment A 
(i.e. 1 A Bc c c= =  or 1 B Ac c c< < ), a higher efficiency is most often maintained 
by the CO designs compared to the PG design as π  becomes larger, especially 
if 0.2Ah δ= = . In this case, it is seen that the BM design becomes even more 
efficient among all the designs as π  increases.  

5. Example  

In the introduction, an example of a CO design with right-censored survival  
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Figure 3. Efficiency of selected designs with two treatments A and B in comparison with the PG design as a function of the design 
allocation proportion π  for various Ah  and δ  and the cost ratios 1c , Ac  and Bc  using cost function I in Equation (3) 

( )0r =  when p = 12. 
 
outcomes is given by a study investigating the effect of using controlled ovarian 
hyper-stimulation on the probability of conception via intrauterine insemination 
(IUI) [13]. A total of 74 couples with male sub-fertility are randomized to IUI in 
a natural cycle or to IUI in a cycle with ovarian stimulation. Each couple is given 
a total of six treatment cycles, three with IUI in natural cycles and three with IUI 
in cycles with ovarian stimulation. The couples alternate the treatments according 
to a CO1 design. The primary outcome measure is the pregnancy rate over the 
cycles. The study reports the pregnancy rates per completed cycle after IUI in 
either treatment. 

We use the rates in the ovarian stimulation cycles as the probability of con- 
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ception in each cycle for the current treatment. We presume there is a newly 
developed treatment expected to further improve the efficacy of IUI in in- 
creasing the probability of conception, and the difference between the two treat- 
ments on the logit scale is 0.5β = . Figure 4 presents the survival probabilities 
and hazard probabilities on the logit scale when a PG design is applied. A value 
of 0.5β =  results in a decrease of about 16%  in the survival after six cycles. A 
number of study designs might be suggested for this study including a PG design, 
a CO1 design (ABABAB/BABABA), a CO2 design (AABBAA/ BBAABB), a CO3 
design (AAABBB/BBBAAA), and a BM design (ABABAB/BABABA/AAAAAA/ 
BBBBBB). 

Table 3 reports the REs of the selected designs in comparison with the PG  
 

 
Figure 4. Fitted survivor function (left side) and logit (hazard) function (right side) for the first pregnancy example based on a PG 
design when 0.5β = , 0.5π = , and 0.00r = . 

 
Table 3. Cost efficiency of the CO and BM designs relative to the PG design in the first 
pregnancy example for different π  and 1c , Ac  and Bc  values when 0.5β =  and 

6p = . 

Allocation 
proportion 

Subject-level 
costs 

Study designs 

CO1 CO2 CO3 BM 

0.2π =  1 10, 10, 10A Bc c c= = =  1.02 1.01 1.04 1.58 

 1 10, 10, 20A Bc c c= = =  1.15 1.09 1.14 1.84 

 1 10, 20, 10A Bc c c= = =  0.89 0.92 0.94 1.33 

0.5π =  1 10, 10, 10A Bc c c= = =  0.99 0.99 0.99 1.00 

 1 10, 10, 20A Bc c c= = =  0.97 0.97 0.97 0.99 

 1 10, 20, 10A Bc c c= = =  1.02 1.02 1.02 1.01 

0.8π =  1 10, 10, 10A Bc c c= = =  0.98 0.98 0.96 1.53 

 1 10, 10, 20A Bc c c= = =  0.82 0.87 0.82 1.26 

 1 10, 20, 10A Bc c c= = =  1.15 1.11 1.08 1.81 
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design for different allocation proportions and three combinations of costs at the 
subject-level. In the first combination, we assume sampling couples to be as 
expensive as treating them with either treatment. For the other combinations, we 
assume that stimulated cycles cost differently than those in which IUI is applied 
with the new treatment. We observe that if 0.5π = , all the designs are almost 
equally efficient since the REs are either very close or equal to 1; researchers can 
then choose the design that best counters the practical objections, regardless of 
design cost. If 0.2π = , the CO designs are almost as efficient as the PG design 
when both treatments cost equally (i.e. A Bc c= ), or they become more efficient 
when offering IUI in a new treatment cycle is more expensive than in cycles with 
ovarian stimulation (i.e. A Bc c< ). The reverse happens if 0.8π = , meaning 
that the CO designs are less efficient when B Ac c≥ . With unequal treatment 
sequences, the BM design is always a more efficient choice among the designs. 
However, the RE of this design depends on design cost when 0.5π ≠ . 

6. Discussion  

The present study is designed to compare the efficiency and cost efficiency of the 
crossover (CO) design and Balaam’s (BM) design with that of a parallel group 
(PG) design in trials with discrete-time survival endpoints. We consider designs 
with two treatments A and B and focus on how efficient a design is for estimating 
differences between the treatment conditions. We consider CO designs that di- 
ffer in the number of time periods after which subjects switch to the other treat- 
ment. All the calculations are performed in R and our R syntax is available upon 
request from the first author. 

Using this efficiency comparison, our study shows that the efficiency of esti- 
mating treatment differences can be increased by a proper choice of the design. 
Deciding on whether the CO and BM designs are more efficient than the PG 
design depends on the size of true treatment differences ( )δ , the baseline 
hazard probability ( )Ah , and on the study duration ( )p . This depends also on 
whether or not the efficiency comparison is penalized by the amount of costs 
that a design has and whether or not attrition is taken into account. In general, 
we find that if the treatment sequences are equally sized, the CO and BM designs 
are less efficient than the PG design if p  is small, and a larger gain in efficiency 
may be obtained using the CO or BM designs instead of the PG design if p  is 
larger. The effect of a prolonged study duration on the efficiency of the CO and 
BM designs is larger if δ  and Ah  are larger. We also observe that the BM 
design requires fewer time periods than the CO designs to become as efficient as 
the PG design. The CO and BM designs are either as efficient as or more 
efficient than the PG design when treatment B costs less or the same as 
treatment A. In cases where the baseline treatment is more expensive, the PG 
design is most often more efficient. In addition, all the designs perform almost 
equally well if the treatment sequences are of almost equal sizes for a given 
number of time periods. In studies with unequal allocation proportions, the BM 
design is preferable. 
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A similar comparison between a CO design and a PG design can be seen in 
the work of [12], where the outcome is a continuous-time survival endpoint. In 
general, they conclude that using the CO design might result in an efficiency 
gain. They focus on designs with two treatments and only two periods with 
subjects switching from one treatment to the other halfway through the study. 
They also study the optimal switch point, which in their case is at one-fifth of the 
total study length. In our study, we assume the total study length is fixed 
beforehand and subjects switch from one treatment to the other at a change 
point of one, three or six periods. Our results seem to show that the total study 
length and total amount of design costs play an important role in determining 
when a CO or BM design is more effective. The BM design generally results in a 
smaller loss in efficiency or provides a greater efficiency if it is used instead of 
the PG design. The CO designs are more preferable as the study duration 
becomes longer, or the more effective treatment is as expensive as or less ex- 
pensive than the baseline treatment. 

In the current study, we confine our focus to a model where the subject effects 
are fixed. However, if a design is efficient under the fixed effect model, it will 
also perform well under the random subject model [6]. We also limit the use of 
the designs to situations where assumptions of no sequence, period or carryover 
effects are valid. Since we study a random assignment of subjects to the sequences, 
the assumption of no sequence effect is not unrealistic. Moreover, the plausi- 
bility of the assumption of no carryover effect can be heightened by including an 
effective washout period between any two consecutive time periods. Never- 
theless, the extent to which our findings are true if these assumptions are in 
doubt deserves to be explored further. What is more, our findings are based on a 
constant attrition rate across the time periods and treatment sequences. How- 
ever, our R syntax is also suitable for unequal attrition rates across time periods 
and sequences. Another subject of future research might be the effect of baseline 
covariates on the optimal designs of within subject designs, as was studied in [19] 
with a parallel group design. The degree to which their results apply to trials 
where subjects receive different treatments over time deserves further study. 

7. Conclusion 

In conclusion, the possible advantages of a CO design compared to those of a PG 
design have been previously addressed in longitudinal studies with a variety of 
outcomes including the survival outcome. A similar investigation of the discrete- 
time survival data where the event time can only be measured on a discrete scale 
instead of a continuous scale has yet to be conducted. Our study provides addi- 
tional findings on the usefulness of the CO and BM designs over the PG design if 
the treatment effect, baseline hazard function and number of time periods are 
varied. 
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