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Abstract 
In this paper, we introduce a class of Lindley and Weibull distributions (LW) that are useful for 
modeling lifetime data with a comprehensive mathematical treatment. The new class of generated 
distributions includes some well-known distributions, such as exponential, gamma, Weibull, Lindley, 
inverse gamma, inverse Weibull, inverse Lindley, and others. We provide closed-form expressions 
for the density, cumulative distribution, survival function, hazard rate function, moments, mo-
ments generating function, quantile, and stochastic orderings. Moreover, we discuss maximum li-
kelihood estimation and the algorithm for computing the parameters estimates. Some sub models 
are discussed as an illustration with real data sets to show the flexibility of this class. 
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1. Introduction 
The survival analysis is imperative aspect for statisticians, engineers, and personnel in other scientific fields, 
such as public health, actuarial science, biomedical studies, demography, and industrial reliability. Several life-
time distributions have been suggested in statistics literature for modeling survival data. Of these distributions 
two types grabbed the attention of the researchers for fitting lifetime data: Weibull distributions and Lindley dis-
tributions. The choice between the two types is due to the nature of hazard rate. Extensive research, Bagheri et 
al. [1], exists on Weibull and its modifications. On the other hand, many types of Lindley distributions and 
modifications have been developed as alternatives to Weibull distributions. For references, see Ghitany et al. [2] 
and Alkarni [3]. 

The remainder of this paper is organized as follows: In Section 2, we define the class of Lindley and Weibull 
(LW) distributions and show that many existing distributions belong to this class. The LW properties, such as 
survival function, hazard rate function, moments, moment generating function, quantile, and stochastic orderings, 
are discussed in Section 3. In Section 4, some special cases of the LW class are introduced to show the flexibili-
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ty of this class in generating existing distributions. Section 5 contains the maximum likelihood estimates of the 
LW class and the relevant asymptotic confidence interval. Two real data sets are introduced in Section 6 to show 
the applicability of the LW class. In Section 7, we introduce a conclusion to summarize the contribution of this 
paper. 

2. The Class of Lindley and Weibull Distributions 
In this section, we introduce simple forms of cumulative distribution function (cdf) and probability distribution 
function (pdf) for the LW class. 

Definition. Let ( );H x η  be a non-negative monotonically increasing function that depends on a 
nonnegative parameter vector 0η > , we define the cdf for any random variable of the LW class to be  

( ) ( ) ( );; , , 1 1 ; e ; , , 0, 0.H x
XF x H x xθ ηβθθ β η η θ η β

θ β
− 

= − + > ≥ + 
                 (1) 

The corresponding pdf becomes 

( ) ( )( ) ( ) ( )
2

;; , , 1 ; ; e ; , , 0, 0.H x
Xf x H x h x xθ ηθθ β η β η η θ η β

θ β
−= +  > ≥

+
              (2) 

And for ( )1 ; ,Y H x η−=  the cdf and pdf of LW become 

( ) ( )( ) ( ) ( )1 ;1 11 1 ; e ; , , 0, 0,H y
Y XF y F H y H y yθ ηβθ η θ η β

θ β
−−− − 

= − = + > ≥   + 
            (3) 

( ) ( )( ) ( ) ( )( ) ( ) ( )12
1 1 1 1, 1 e ; , , 0, 0.H y

Y Xf y f H y h y H y h y yθθ β θ η β
θ β

−−− − − − 
= − = − + > ≥ + 

     (4) 

Many Lindley types and Weibull types of distributions are members of the LW class, depending on the choice 
of the function ( ); ,H x η θ  and β . Some examples are listed in Table 1. 

The pdf(2) can be shown as a mixture of two distributions, as follows: 

( ) ( ) ( ) ( )1 2; , 1f x pf x p f xβ η = + −  

where  

( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 2, e  and  eH x H xp f x h x f x h x H xθ θθ θ θ

θ β
− −=  =  =

+
. The shape and the mode location of ( )f x   

depend on the type of ( )H x . 

3. General Properties 
3.1. Survival and Hazard Functions 
For any non-decreasing function ( )H x , the survival function (sf) is given by 

( ) ( ) ( ) ( );1 1 ; e ; 0,H x
X Xs x F x H x xθ ηβθ η

θ β
− 

= − = + > + 
                       (5) 

and the associate hazard rate function is given by 

( ) ( )
( )

( ) ( )( )
( )

2 1
; 0.X

X
X

h x H xf x
x x

s x H x
θ β

τ
θ β βθ

+
= = >

+ +
                          (6) 

For ( )1 ,Y H x−=  the survival and hazard rate functions are given, respectively, by 

( ) ( ) ( )1 ;11 1 ; e ; 0,H y
Ys y H y yθ ηβθ η

θ β
−−− 

= − + > +                           (7) 

and  
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Table 1. Some existing distributions as examples of the LW class.                                                                 

Distribution ( )H x  β  
θ  

η  References 
Exponential x  0  θ  - Johnson et al. [4] 

Rayleigh ( )0x ≥  2x  0  θ  - Rayleigh [5] 

Weibull ( )0x ≥  xα  0  θ  α  Johnson et al. [4] 

Modified Weibull ( )0x ≥  ( )expx xα λ  0  θ  [ ],α λ  Lai et al. [6] 

Weibull extension ( )0x ≥  ( )exp 1x αλ λ −   0  θ  [ ],λ α  Xie et al. [7] 

Gompertz ( )0x ≥  ( )1 exp 1xα α− −    0  θ  α  Gompertz [8] 

Exponential power ( )0x ≥  ( )exp 1x αλ  −   0  1  [ ],λ α  Smith & Bain [9] 

Chen ( )0x ≥  ( )exp 1bx −  0  θ  b Chen [10] 

Pham ( )0x ≥  ( ) 1xa
α

−  0  1  [ ],a α  Pham [11] 

Lindley ( )0x >  x  1  θ  - Lindley [12] 

Inverse Lindley 1
x

 1  θ  - Sharma et al. [13] 

Power Lindley xα  1  θ  α  Ghitany et al. [14] 

Generalized inverse Lindley 1
xα

 1  θ  α  Sharma et al. [15] 

Two parameters Lindley x  β  θ  - Shanker et al. [16] 

Extended power Lindley xα  β  θ  α  Alkarni [3] 

Extended inverse Lindley 1
xα

 β  θ  α  Alkarni [17] 

 

( )
( )( ) ( )

( ) ( )
1

1 12

1

1
; 0.

e 1
Y

H y

H y h y
y y

H yθ

βθτ βθθ β
θ β

−

− −

−

+−
= >

+ − −
+

                        (8) 

3.2. Moments and Moment Generating Function  
The thr  moments and the moments generating function (mgf) for an LW class can be obtained by direct inte-
gration as follows: 

( ) ( ) 1 1

0 0 0

d e d e d ,
rr

r r u uu uE X x f x x H u H u uθ β
θ β θ θ β θ

∞ ∞ ∞
− − − −      = = +      + +      

∫ ∫ ∫  

( ) ( ) ( )
0

e e dtX tx
XM t E f x x

∞

= = ∫ . 

Using the series expansion 
0

e ,
!

n n
tx

n

t x
n

∞

=

= ∑  the above expression is reduced to  

( ) 1 1

0 0 0

e d e d .
!

nnn
u u

X
n

t u uM t H u H u u
n

θ β
θ β θ θ β θ

∞ ∞∞
− − − −

=

       = +       + +        
∑ ∫ ∫  

As a special case, if we let ( ); , 1,H x xαη α= ≥  then  
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( )( ) ( )( )
( )

,r r

r r
α

α α α θ β
µ

α θ β θ
Γ + + +

′ =
+

                              (9) 

( ) ( )
( )

( )1 2

,
1 !

n

X n
n

nt nM t
n

α

α θ β β
α

α θ θ β

∞

=

+ +  = Γ
−

+
∑                           (10) 

and, hence, the mean and the variance are  

( )

( )
1

2

1 ,
α

α θ β β
µ

α
α θ θ β

+ +  = Γ
+

                                 (11) 

( )
( ) ( ) ( ) 22 2 2

2
24

1 2 12 2 .
α

σ α θ β α θ β β α θ β β
α α

α θ θ β

 = + + + Γ − + + Γ        
+

          (12) 

For ( ); ,Y H x x αη −= =  then 

( )( ) ( )( )
( )

, ,r r

r r
rα

α α α θ β
µ α

α θ β θ −

Γ − + −
′ =   >

+
                          (13) 

( ) ( )
( )0

, .
!

nn
r

Y
n

nt nM t n
n

α θ β β αθ α
α θ β α

∞

=

+ − −
= Γ >

+∑                         (14) 

The mean and the variance, then, are 

( )( )
( )

1 1 , ,
αθ α θ β β αµ α

α θ β α
+ − − = Γ   > 1 +  

                           (15) 

( )
( ) ( )( )

( )( )

2
2

22

2 2

22

1 ,

αθ ασ α β θ α β θ β
αα β θ

αα β θ β α
α

   − = + + − Γ     +   
−  − + − Γ > 2  

.                    (16) 

3.3. Quantile and Stochastic Orderings  
Theorem 1. Let X be a random variable with pdf as in (2), the quantile function, say ( )Q p  is  

( ) ( ) ( )
( )

1
1

11 1 1 ,
eX

p
Q p H W β θ

β θ
β θ βθ

−
− +

 + − 
= − − − −    

     
where ( ), 0, 0,1pθ β >  ∈ , and ( )1 .W−  is the negative Lambert W function. 

Proof: We have ( ) ( ) ( )1 , 0,1Q p F p p−=  ∈ , which implies ( )( )F Q p p= , so, by substitution, we get 

( )( ) ( )( ) ( ) ( )e 1H Q pH Q p pθθ β βθ θ β− + + = + −  , raising both sides to β  and multiplying by  
( )e θ β− + , we have the negative Lambert equation, 

( )( ) ( )( ) ( ) ( )e 1 eH Q pH Q p p
β β ββθ θ β θ βθ β βθ θ β− − − − − + + = + −  . Solving this equation for ( )Q P , the proof  

is complete.  
Note that one can use the same proof above to obtain  

( ) ( )
( )

1
1

1 1 1 .
eY

p
Q p H W β θ

β θ
β θ βθ

−
− +

 + 
= − − − −  

   
 

Stochastic ordering of positive continuous random variables is an important tool for judging the comparative 
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behavior. A random variable X is said to be smaller than a random variable Y in the following contests:  
1) Stochastic order ( ) ( ) ( ) if ;st X YX Y F x F x x≤ ≤ ∀  
2) Hazard rate order ( ) ( ) ( ) if ;hr X YX Y h x h x x≤ ≥ ∀  
3) Mean residual life order ( ) ( ) ( ) if ;mrl X YX Y m x m x x≤ ≤ ∀  
4) Likelihood ratio order ( ) ( ) ( ) if decreases in .lr X YX Y f x f x x≤  
The following implications (Shaked & Shanthikumar, [18]) are well known in that 

.

lr hr mrl

st

X Y X Y X Y

X Y

≤ ⇒ ≤ ⇒ ≤

                          ⇓
                     ≤

 

The following theorem shows that all members of the LW class are ordered with respect to “likelihood ratio” 
ordering. 

Theorem 2. Suppose ( ) ( )1 1 2 2LW ,  and LW , ,X Yθ β θ β   then 
1) If ( ) ( )1 2 1 2 1 2 1 2; 0,  and  or if  and , then lrH x X Yη β β θ θ θ θ β β≥ = ≥ = ≥ ≤  and, hence,  

,  and .hr mrl stX Y X Y X Y≤ ≤ ≤  
2) If ( ) ( )1 2 2 1 1 2 2 1; 0,  and  or if  and , then lrH x X Yη β β θ θ θ θ β β< = ≥ = ≥ ≥  and, hence,  

,  and .hr mrl stX Y X Y X Y≥ ≥ ≥  
Proof. We have 

( )
( )

( )
( )

( ) ( ) ( )1 2

2
11 2 2

2 1 1 2

1
e ; 0

1
H xX

Y

f x H x
H x

f x H x
θ θβθ θ β

θ θ β β
− − +   +

= ≥     + +    
, 

and 

( )
( ) ( )( )

( )( ) ( ) ( )

1 2 2
1

2 1 1

2 1 2

log 2 log log log 1

log 1 .

X

Y

f x
H x

f x

H x H x

θ θ β β
θ θ β

β θ θ

   +
= + + +   +   

                  − + − −

 

Thus, 

( )
( )

( )
( )

( )
( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

1 2
1 2

1 2

2 1
2 1

1 2

d log
d 1 1

.
1 1

X

Y

f x h x h x
h x

x f x H x H x

h x
H x H x

β β
θ θ

β β

β β θ θ
β β

= − − −
+ +

 −
= + −  + + 

 

Case 1) If ( ) ( )1 2 1 2 1 2 1 2; 0,  and  or if  and ,H x η β β θ θ θ θ β β≥ = ≥ = ≥  

then ( )
( )

d log 0.
d

X

Y

f x
x f x

<  This means that lrX Y≤  and, hence, ,  and .hr mrl stX Y X Y X Y≤ ≤ ≤  

Case 2) If ( ) ( )1 2 2 1 1 2 2 1; 0,  and  or if  and ,H x η β β θ θ θ θ β β< = ≥ = ≥ , then 
( )
( )

d log 0.
d

X

Y

f x
x f x

>  This means that lrX Y≥  and, hence, 

,  and .hr mrl stX Y X Y X Y≥ ≥ ≥  

4. Special Cases  
4.1. Lindley Distribution 
The original Lindley distribution (L), proposed by Lindley [12], is a special case of LW class, with ( );H x xη =  
and 1β = . Using (1), the cdf of the Lindley distribution is given by 
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( ); 1 1 e ; , 0.
1

x
LF x x xθθθ θ

θ
− = − + > + 

 

The associated pdf using (2) is given by 

( ) ( )
2

; 1 e ; , 0.
1

x
Lf x x xθθθ θ

θ
−= + >

+
 

It can be seen that this distribution is a mixture of exponential ( )θ  and gamma ( )2,θ  distributions. Ac-
cording to forms (5) and (6), the corresponding sf and hrf are given respectively by 

( ); 1 e ; , 0,
1

x
Ls x x xθθθ θ

θ
− = + > + 

 

and 

( ) ( )2 1
; ; , 0.

1L
x

x x
x

θ
τ θ θ

θ θ
+

= >
+ +

 

A direct substitution in (9) and (10), with 1, 1α β= = , gives us the thr  moments and mgf for the Lindley 
distribution: 

( ) ( )
( )

1 1
,

1r r

r rθ
µ

θ θ
Γ + + +

′ =
+

 

( ) ( ) ( )1

1 .
1 ! 1

n

X n
n

t nM t n
n

θ
θ θ

∞

=

+ +
= Γ

− +∑  

The mean and the variance from (11) and (12) are 

( ) ( )
( ) ( ) ( )22

22

2 1, 2 1 3 2 .
1 1

θµ σ θ θ θ
θ θ θ θ

+  =  = + + − + + +
 

Figure 1 displays the plots of density and hazard rate function of the Lindley distribution. 

4.2. Power Lindley Distribution 
Power Lindley distribution (PL), introduced by Ghitany et al. [14], is a special case of LW class with  

 

 
Figure 1. Plots of the pdf and hrf of the Lindley distribution for different values of θ .                                 
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( );H x xαη =  and 1β = . Using the cdf form in (1), the cdf of PL distribution is given by 

( ); , 1 1 e ; , , 0.
1

x
PLF x x x

αα θθθ α θ α
θ

− = − + > + 
 

The associated pdf using (2) is given by 

( ) ( )
2

1; , 1 e ; , , 0.
1

x
PLf x x x x

αα α θαθθ α θ α
θ

− −= + >
+

 

The PL distribution is a mixture distribution of the Weibull distribution (with shape parameters α  and scale 
θ ) and a generalized gamma distribution (with shape parameters 2α  and scale θ ), with mixing proportion 

( )1 .p θ θ= +  
The sf and hrf of the PL distribution are obtained from (5) and (6), 

( ); , 1 e ; , , 0,
1

x
PLs x x x

αα θθθ α θ α
θ

− = + > + 
 

( )
( )2 1 1

; , ; , , 0.
1PL

x x
x x

x

α α

α

αθ
τ θ α θ α

θ θ

− +
= >

+ +
 

Figure 2 shows the pdf and hrf of the PL distribution of some selected choices of α  and θ . 
The thr  row moment and the mgf of the PL distribution, using (9) and (10), are given, respectively, by 

( )( ) ( )( )
( )

1
,

1r r

r r
α

α α α θ
µ

α θ θ
Γ + + +

′ =
+

 

( ) ( )
( )

( )1 2

1
.

1 !
1

n

X n
n

nt nM t
n

α

α θ
α

α θ θ

∞

=

+ +  = Γ
−

+
∑  

Therefore, the mean and the variance of PL distribution are obtained by direct substitution in (11) and (12), 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

22 2
2

2 1 24 2

1 1 1 2 2 1 2 1 1 1 1
, .

1 1α α

α α θ α α θ α θ α α θ
µ σ

α θ θ α θ θ

Γ + + Γ + + + − Γ + +          =   =
+ +

 

 

 
Figure 2. The pdf and hrf of the PL distribution for some selected choices of α  
and θ .                                                                 



S. H. Alkarni   
 

 
692 

4.3. Extended Power Lindley Distribution 
Extended power Lindley distribution (EPL), introduced by Alkarni [3], is a special case of LW class with

( );H x xαη = . Using the cdf form in (1), the cdf of the EPL distribution is given by 

( ); , , 1 1 e ; , , , 0.x
EPLF x x x

αα θβθθ β α θ β α
θ β

− 
= − + > + 

 

The associated pdf using (2) is given by 

( ) ( )
2

1; , , 1 e ; , , , 0.x
EPLf x x x x

αα α θαθθ β α β θ β α
θ β

− −= + >
+

 

We see that the EPL is a two-component mixture of the Weibull distribution (with shape α  and scale θ ) and 
a generalized gamma distribution (with shape parameters 2,α  and scale θ ), with mixing proportion 

( )p θ θ β= + . 
The sf and hrf of the EPL distribution are obtained as a direct substitution in (5) and (6), 

( ) 1 e ; 0,x
EPLs x x x

αα θβθ
θ β

− 
= + > + 

 

( )
( )2 1 1

; , , , 0.EPL

x x
x x

x

α α

α

αθ β
τ θ β α

θ β βθ

− +
= >

+ +
 

Figure 3 shows the pdf and hrf of the EPL distribution for some choices of ,θ β , and α . 
The thr  row moment and the mgf of the EPL distribution, using (9) and (10), are given, respectively, by 

( )

( )2

,r r

r rr
α

α θ β β
µ

α
α θ θ β

+ +
′ = Γ

+

 

( ) ( )
( )

( )1 2

.
1

n

X n
n

nt nM t
n

α

α θ β β
α

α θ θ β

∞

=

+ +  = Γ
− !

+
∑  

Using (11) and (12), the mean and the variance of the EPL distribution are given, respectively, by 
 

 
Figure 3. The pdf and hrf of the EPL distribution for some choices of ,θ β , and α .                                 
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( )

( ) ( )
( ) ( ) ( ) 22 2 2

1 2
22 4

1 1 2 1, 2 2 .
α α

α θ β β
µ σ α θ β α θ β β α θ β β

α α α
α θ θ β α θ θ β

+ +    = Γ   = + + + Γ − + + Γ        
+ +

 

4.4. Inverse Lindley Distribution 
Inverse Lindley (IL) distribution, proposed by Sharma et al. [13], is a special case of the LW class with

( ) ( )1; ; ; ,H x x Y H xη η−= =  and 1β = . Using the cdf form in (3), the cdf of the IL distribution is given by 

( ) 1; 1 e ; , 0.
1

y
ILF y y

y

θ
θθ θ

θ

− 
= + > + 

 

The associated pdf using (4) is given by 

( )
2

3
1; e ; , 0.

1
y

IL
yf y y

y

θ
θθ θ

θ

− +
= > +  

 

We see that the IL is a two-component mixture of the Weibull distribution (with shape α  and scale θ ) and a gen- 
eralized gamma distribution (with shape parameters 2,α  and scale θ ), with mixing proportion ( )p θ θ β= + . 

The sf and hrf of the IL distribution are obtained as a direct substitution in (7) and (8), 

( ) 11 1 e ; 0,
1

y
ILs y y

y

θ
θ

θ

− 
= − + > + 

 

( ) ( )

( )

2

2

1
; , 0.

1 e 1
IL

y

y
y y

y y
θ

θ
τ θ

θ θ

+
= >

  
  + − −

    

 

Figure 4 shows the pdf and hrf of the IL distribution for some choices of .θ  

4.5. The Generalized Inverse Lindley Distribution 
The generalized inverse Lindley (GIL) distribution, proposed by Sharma et al. [15], is a special case of LW class 
with ( ) ( )1; , ;H x x Y H xαη η− −= =  and 1β = . Using the cdf form in (3), the cdf of the GIL is given by 

( ) 1; , 1 e ; , , 0.
1

y
GILF y y

y
αθ

α
θθ α θ α

θ
−− 

= + > + 
 

 

 
Figure 4. The pdf and hrf of the IL distribution for some selected choices 
of θ .                                                                 
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The associate pdf, using (4), is given by 

( ) ( )
2

1; , 1 e ; , , 0.
1

x
GILf x x x x

αα α θαθθ α θ α
θ

−− − − −= + >
+

 

The associate hrf, using (8), is given by 

( )
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  + − −

    

 

Figure 5 shows the pdf and hrf of the GIL distribution of some selected choices of α  and θ . 
The thr  row moment of the generalized inverse Lindley distribution, using (10), is given by 

( ) ( )( )
( )

1
, .

1

r

r

r r
r

αθ α θ α α
µ α

α θ
+ − Γ −  ′ = >
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The mean and the variance of the generalized inverse Lindley distribution are given, respectively, by 
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   + + − −  = − Γ >     +   − −       Γ − Γ          

 

4.6. Extended Inverse Lindley Distribution 
The extended inverse Lindley (EIL) distribution, proposed by Alkarni [17], is a special case of the LW class with

( );H x xαη = . Using the cdf form in (3), the cdf of the EIL distribution is given by 

( ) 1; , , 1 e ; , , , 0.xF x x
x

α
θ

α
θβθ β α θ β α

θ β
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Figure 5. The pdf and hrf of the GIL distribution for some selected choices of 
α  and θ .                                                                 
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The associated pdf, using (4), is given by 

( )
2

2 1; , , e ; , , , 0.xxf x x
x

α
θα

α
αθ βθ β α θ β α

θ β

−

+

 +
= > +  

 

We see that the EIL is a two-component mixture of the inverse Weibull distribution (with shape α  and scale 
θ ) and a generalized inverse gamma distribution (with shape parameters 2,α  and scale θ ), with the mixing 
proportion ( )p θ θ β= + . 

The hrf of the EIL distribution is given by 

( )
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Figure 6 shows the pdf and hrf of the EIL distribution for some choices of ,θ β , andα . 
The thr  row moment of the EIL distribution, using (9), is given by 

( )
( )

, ,

r

r

r n r
αθ α θ β β αµ α

α θ β α
+ −  − ′ = Γ   >
+

 

Therefore, the mean and the variance of the EIL distribution are given, respectively, by 
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5. Estimation and Inference 
Let 1, , nX X  be a random sample, with observed values 1, , nx x  from the LW class with parameters

,  and θ β η . Let ( ), ,θ β ηΘ =  be the 1p ×  parameter vector. The log likelihood function is given by 
 

 
Figure 6. The pdf and hrf of the EIL distribution for some choices of ,θ β , and α .                                 
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( )( ) ( ) ( )
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∑ ∑ ∑ , 

then the score function is given by 
( ) ( )T, , ,nU ln ln lnθ β ηΘ = ∂ ∂ ∂ ∂ ∂ ∂  where 
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The maximum likelihood estimation (MLE) of Θ  says Θ̂  is obtained by solving the nonlinear system
( ); 0nU x Θ = . This nonlinear system of equations does not have a closed form. For interval estimation and hy-

pothesis tests on the model parameters, we require the observed information matrix  

( )

T

T

n

I I I
I I I

I

I I I

θθ θβ θη

βθ ββ βη

θη βη ηη

 
 
 Θ = −  
 
  





   



, 

where the elements of ( )nI Θ  are the second partial derivatives of ( )nU Θ . Under standard regular conditions 
for large sample approximation (Cox and Hinkley, [19]) that fulfilled for the proposed model, the distribution of
Θ̂  approximately ( )( )1, ,p nN J −Θ Θ  with ( ) ( ) .n nJ E IΘ = Θ    Whenever the parameters are in the interior  

of the parameter space but not on the boundary, the asymptotic distribution of ( )ˆn Θ − Θ  is ( )( )10, ,pN J −Θ  

where ( ) ( )1 1lim nn
J n I− −

→∞
Θ = Θ  is the unit information matrix and p is the number of parameters of the distribu-

tion. The asymptotic multivariate normal ( )( )1ˆ,p nN I
−

Θ Θ  distribution of Θ̂  can be used to approximate con-  

fidence interval for the parameters and for the hazard rate and survival functions. An ( )100 1 γ−  asymptotic-
confidence interval for parameter iΘ  is given by 

 

2 2

ˆ ˆ, ,ii ii
i iZ I Z Iγ γ

 
Θ − Θ +  

 
 

where iiI  is the ( ),i i  diagonal element of ( ) 1ˆ
nI

−
Θ  for 1, ,i p= 

 and 
2

Zγ  is the quantile 1 2γ−  of the  

standard normal distribution. 

6. Applications  
In this section, we introduce two data sets as applications of the LW class. For the first data set, we fit L, PL, and 
EPL models as well as the Two-parameter Lindley (TL) and the standard Weibull (W). 

The first data set was introduced by Bader and Priest [20] as the tensile strength measurements on 1000 carbon 
fiber-impregnated tows at four different gauge lengths. The data is listed in Table 2. 

The MLEs of the parameters were obtained using the expectation-maximization (EM) algorithm. The MLEs, 
Kolmogorov-Smirnov statistic (K-S) with its respective p-value, the maximized log likelihood for the above dis-
tributions are listed in Table 3. The distributions are ordered in the table according to their performance. The fitted 
densities and the empirical distribution versus the fitted cumulative distributions of all models for this data are 
shown in Figure 7 and Figure 8, respectively. 



S. H. Alkarni 
 

 
697 

Table 2. Carbon fiber tensile strength.                                                                                                 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 

1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 

2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 

2.435 2.478 2.490 2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 

2.633 2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809 2.818 

2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 

3.433 3.585 3.585         

 
Table 3. Parameter estimates, K-S statistic, p-value, and logL of carbon fiber tensile strength.                                 

Distribution θ̂  β̂  α̂  K-S p-value log L  

EPL 0.0584 98.9 3.7313 0.0429 0.9996 −48.9 

PL 0.0450 - 3.8678 0.0442 0.9993 −49.06 

W 0.0100 - 4.8175 0.1021 0.4685 −50.65 

TL 0.8158 4504.4 - 0.3614 0.000 −105.7 

L 0.6545 - - 0.4011 0.000 −119.2 

 

 
Figure 7. Plot showing the fitted densities of the models listed in Table 3.                                                                 

 
For the second data set, we demonstrate the applicability of the IL, GIL, and EIL, as well as the inverse Weibull 

(IW) and the generalized inverse Weibull (GIW) models. Table 4 represents the flood levels for the Susquehanna 
River at Harrisburg, Pennsylvania, over 20 four-year periods from 1890 to 1969. This data has been used by 
several authors and was initially reported by Dumonceaux & Antle [21]. 

The MLEs of the parameters, the Kolmogorov-Smirnov statistic (K-S) with its respective p-value, and the 
maximized log likelihood (logL) for the above distributions are given in Table 5 according to their performance. 
The fitted densities and the empirical distribution versus the fitted cumulative distributions of all models for this 
data are shown in Figure 9 and Figure 10, respectively.  

7. Concluding Remarks 
We define a new family of lifetime distributions, called the LW family of distributions, that generates Lindley 
and Weibull distributions. The LW class contains many lifetime subclasses and distributions. Various standard 
mathematical properties were derived, such as density and survival hazard functions, moments, moment gene-
rating function, and quantile function, and were introduced in flexible and useful forms. The maximum likelihood  
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Figure 8. Plot showing the fitted cdfs of the models listed in Table 3.                                 

 

 
Figure 9. Plot showing the fitted densities of the models listed in Table 5.                                 

 

 
Figure 10. Plot showing the fitted cdfs of the models listed in Table 5.                                 
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Table 4. Flood level data for the Susquehanna River.                                                                 

0.654 0.613 0.315 0.449 0.297 

0.402 0.379 0.423 0.379 0.324 

0.269 0.740 0.418 0.412 0.494 

0.416 0.338 0.392 0.484 0.265 

 
Table 5. Parameter estimates, KS statistic, P-Value, and logL of flood level data.                                                  

Distribution θ̂  β̂  α̂  K-S p-value log L  

EIL 0.1052 4.0439 2.9573 0.1395 0.8311 16.1475 

GIL 0.0899 - 3.0763 0.1445 0.7977 16.1475 

IW 0.0123 - 4.2873 0.1545 0.7263 16.096 

GIW 0.0302 4.3127 0.8071 0.1560 0.7150 16.097 

IL 0.6345 - - 0.3556 0.0127 −0.5854 

 
method was used for parameter estimation using the EM algorithm. Finally, some special models were intro-
duced and fitted to real datasets to show the flexibility and the benefits of the proposed class. 

Acknowledgements 
The author is highly grateful to the Deanship of Scientific Research at King Saud University, represented by the 
Research Center at the College of Business Administration, for supporting this research financially. 

Competing Interests 
The author declares that there were no competing interests. 

References 
[1] Bagheri, S., Bahrami, E. and Ganjali, M. (2016) The Generalized Modified Weibull Power Series Distribution: Theory 

and Applications. Computational Statistics and Data Analysis, 94, 136-160.  
http://dx.doi.org/10.1016/j.csda.2015.08.008 

[2] Ghitany, M., Atieh, B. and Nadadrajah, S. (2008) Lindley Distribution and Its Applications. Mathematics and Com-
puters in Simulation, 78, 493-506. http://dx.doi.org/10.1016/j.matcom.2007.06.007 

[3] Alkarni, S. (2015) Extended Power Lindley Distribution: A New Statistical Model for Non-Monotone Survival Data. 
European Journal of Statistics and Probability, 3, 19-34. 

[4] Johnson, N., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distribution, Volume 1. Wiley, New York.  
[5] Rayleigh, J. (1880) On the Result of a Large Number of Vibrations of the Same Pitch and of Arbitrary Phase. Philo-

sophical Magazine, 10, 73-78. http://dx.doi.org/10.1080/14786448008626893 
[6] Lai, C., Xie, M. and Murthy, D. (2003) A Modified Weibull Distribution. IEEE Transactions on Reliability, 52, 7-33.  

http://dx.doi.org/10.1109/TR.2002.805788 
[7] Xie, M., Tang, Y. and Goh, T. (2002) A Modified Weibull Extension with Bathtub-Shaped Failure Rate Function. Re-

liability Engineering and System Safety, 76, 279-285. http://dx.doi.org/10.1016/S0951-8320(02)00022-4 
[8] Gompertz, B. (1825) On the Nature of the Function Expressive of the Law of Human Mortality and on a New Mode of 

Determining Life Contingencies. Philosophical Transactions of the Royal Society, 115, 513-585.  
http://dx.doi.org/10.1098/rstl.1825.0026 

[9] Smith, R. and Bain, L. (1975) An Exponential Power Life-Testing Distribution. Communications in Statistics-Theory 
and Methods, 4, 469-481. http://dx.doi.org/10.1080/03610927508827263 

[10] Chen, Z. (2000) A New Two-Parameter Lifetime Distribution with Bathtub Shape or Increasing Failure Rate Function. 
Statistics and Probability Letters, 49, 155-161. http://dx.doi.org/10.1016/S0167-7152(00)00044-4 

[11] Pham, H. (2002) A Vtub-Shape Hazard Rate Function with Applications to System Safety. International Journal of 

http://dx.doi.org/10.1016/j.csda.2015.08.008
http://dx.doi.org/10.1016/j.matcom.2007.06.007
http://dx.doi.org/10.1080/14786448008626893
http://dx.doi.org/10.1109/TR.2002.805788
http://dx.doi.org/10.1016/S0951-8320(02)00022-4
http://dx.doi.org/10.1098/rstl.1825.0026
http://dx.doi.org/10.1080/03610927508827263
http://dx.doi.org/10.1016/S0167-7152(00)00044-4


S. H. Alkarni   
 

 
700 

Reliability and Applications, 3, 1-16. 
[12] Lindley, D. (1958) Fiducial Distributions and Bays Theorem. Journal of the Royal Statistical Society, 20, 102-107. 
[13] Sharma, V., Singh, S., Singh, U. and Agiwal, V. (2015) The Inverse Lindley Distribution: A Stress-Strength Reliability 

Model. Journal of Industrial and Production Engineering, 32, 162-173.  
http://dx.doi.org/10.1080/21681015.2015.1025901 

[14] Ghitany, M., Al-Mutairi, D., Balakrishnan, N. and Al-Enezi, I. (2013) Power Lindley Distribution and Associated In-
ference. Computational Statistics and Data Analysis, 64, 20-33. http://dx.doi.org/10.1016/j.csda.2013.02.026 

[15] Sharma, V., Singh, S., Singh, U. and Merovci, F. (2015) The Generalized Inverse Lindley Distribution: A New Inverse 
Statistical Model for the Study of Upside-Down Bathtub Survival Data. Communications in Statistics-Theory and Me-
thods, Preprint. 

[16] Shanker, R., Sharma, S. and Shanker, R. (2013) A Two-Parameter Lindley Distribution for Modeling WAITING and 
Survival Time Series Data. Applied Mathematics, 4, 363-368. http://dx.doi.org/10.4236/am.2013.42056 

[17] Alkarni, S. (2015) Extended Inverse Lindley Distribution: Properties and Application. SpringerPlus, 4, 1-17.  
http://dx.doi.org/10.1186/s40064-015-1489-2 

[18] Shaked, M. and Shanthikumar, J. (1994) Stochastic Orders and Their Applications. Academic Press, New York.  
[19] Cox, D. and Hinkley, D. (1974) Theoretical Statistics. Chapman and Hall, London.  

http://dx.doi.org/10.1007/978-1-4899-2887-0 
[20] Bader, M. and Priest, A. (1982) Statistical Aspects of Fiber and Bundle Strength in Hybrid Composites. In: Hayashi, T., 

Kawata, S. and Umekawa, S., Eds., Progress in Science and Engineering Composites, ICCM-IV, Tokyo, 1129-1136. 
[21] Dumonceaux, R. and Antle, C. (1973) Discrimination between the Lognormal and Weibull Distribution. Technometrics, 

15, 923-926. http://dx.doi.org/10.1080/00401706.1973.10489124 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service for you: 
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. 
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system 
Fair and swift peer-review system 
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles 
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 

http://dx.doi.org/10.1080/21681015.2015.1025901
http://dx.doi.org/10.1016/j.csda.2013.02.026
http://dx.doi.org/10.4236/am.2013.42056
http://dx.doi.org/10.1186/s40064-015-1489-2
http://dx.doi.org/10.1007/978-1-4899-2887-0
http://dx.doi.org/10.1080/00401706.1973.10489124
http://papersubmission.scirp.org/

	A Class of Lindley and Weibull Distributions
	Abstract
	Keywords
	1. Introduction
	2. The Class of Lindley and Weibull Distributions
	3. General Properties
	3.1. Survival and Hazard Functions
	3.2. Moments and Moment Generating Function 
	3.3. Quantile and Stochastic Orderings 

	4. Special Cases 
	4.1. Lindley Distribution
	4.2. Power Lindley Distribution
	4.3. Extended Power Lindley Distribution
	4.4. Inverse Lindley Distribution
	4.5. The Generalized Inverse Lindley Distribution
	4.6. Extended Inverse Lindley Distribution

	5. Estimation and Inference
	6. Applications 
	7. Concluding Remarks
	Acknowledgements
	Competing Interests
	References

