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Abstract 
In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochas-
tically weighted convex combination of a fully correlated parameter model estimator and uncor-
related parameter model estimator in the Random Parameters Logit (RPL) model. The results of 
our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller 
MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the 
fully correlated RPL model estimator and provide more accurate information on the share of pop-
ulation putting a positive or negative value on the alternative attributes than the fully correlated 
RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and posi-
tive-part Stein-like estimators are closer to the true value and have smaller standard errors than 
those with fully correlated RPL model estimator. 
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1. Introduction 
The random parameters logit (RPL) model is a generalization of the conditional logit model for multinomial 
choices. The conditional logit model is derived from an assumption that the errors in the underlying random 
utility functions for each choice alternative are statistically independent and identically distributed (iid) extreme 
value type I. This leads to the property known as the Independence of Irrelevant Alternatives (IIA): The ratio of 
the probability of two alternatives remains constant no matter how many choices there are. This is widely 
regarded to be a very restrictive assumption. 
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The key feature of the RPL model is that response parameters can vary randomly, following a chosen 
distribution, across the population from which samples are drawn. The random coefficients capture individual 
heterogeneity and the model does not suffer from the independence of irrelevant alternatives assumption. The 
random coefficients can be correlated in the RPL model as generally expected in reality, because the 
unobservable preference of each individual is used to evaluate the attributes of all alternatives in each choice 
situation. Estimation is by maximum simulated likelihood (MSL), which is described by [1]. 

In this paper we explore a problem that can exist in any correlated random parameters model. Let ny , 
1, ,n N=   be an observable outcome variable from a density ( )| ,n n nf y x β , where nx  is a vector of K 

explanatory variables and nβ  are random parameters with mean β  and covariance matrix Σ . Using MSL 
we estimate the population parameters β  and Σ . Allowing the random parameters to be correlated introduces 
potentially many new parameters, ( )1 2K K −  covariance terms, that are difficult to estimate. 

Most applied researchers will test the significance of the covariance parameters before deciding to rely on the 
fully correlated random parameter model instead the model in which the parameters are random but uncorrelated, 
so that Σ  is diagonal. We explore whether a pretesting strategy improves postestimation inference. We also 
explore the use of a Stein-like shrinkage estimator as an alternative to pretesting. This estimator shrinks the 
estimates from the fully correlated parameter model towards the estimates of the uncorrelated random parameter 
model. In numerical experiments using the RPL model we find that both the pretest estimator and shrinkage 
estimators have improved mean squared error (MSE) relative to the MSL estimator of the fully correlated 
parameter model. Last, we analyze the share of the population putting a positive or negative value on the 
alternative attributes, and the Monte Carlo mean estimates of direct elasticity with fully correlated RPL model 
estimates and pretest and shrinkage estimates. Based on our Monte Carlo experiment results, pretest and 
shrinkage estimates provide more accurate estimates on both of them than the fully correlated RPL model 
estimates. 

2. The Random Parameters Logit Model 
The RPL model is described in [2]. Consider individual n facing M alternatives. The random utility associated 
with alternative i is ni n ni niU xβ ε′= + , where nix  are K observed explanatory variables for alternative i, niε  is 
an iid type I extreme value error which is independent of nβ  and nix . The random coefficients nβ  can be 
regarded as being composed of a mean β  and deviations nβ . The RPL model decomposes the unobserved 
part of the utility into the extreme value term niε  and the random part n nixβ ′ . Conditional on nβ  the pro-  
bability that individual n chooses alternative i is of the usual logistic form, ( ) e en ni n nix x

ni n iL β ββ ′ ′= ∑ . Assume  
that nβ  is multivariate normal1 with mean vector ( )1, , kβ β β′ =   and covariance matrix Σ  with elements 

jkσ . Denoting the MVN density ( )|f β θ , where θ  contains the unknown mean and covariance parameters, 
the probability that individual n chooses alternative i is  

( ) ( )| dni niP L fβ β θ β= ∫                                    (1) 

For estimation purposes we use Cholesky’s decomposition and write AA′Σ = , where A is lower triangular. 
The parameter means kβ  and elements of A are the objects of estimation. The parameters of the fully cor- 
related RPL model (FCRPLM), are  

( )1 11 21 , 1, , , , , , , ,f k kk k ka a a aθ β β −=                                  (2) 

where kka  are diagonal elements of A and jka , j k< , are below the diagonal. If the random coefficients in 
the RPL model are uncorrelated, denoted UCRPLM, then θ  is  

( )1 11, , , , ,u k kka aθ β β=                                     (3) 

where 2 2
k kkaσ = . 

3. Stein-Like Shrinkage Estimation 
Stein-rule estimators follow the work of [3] and [4] and combine sample information with non-sample infor- 

 

 

1Other choices are possible. See Train (2009, 136). 
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mation in a way that improve the precision of the estimation process and the quality of subsequent predictions. 
The Stein-rule estimator is a weighted average of the restricted and unrestricted estimators, the weight being a 
function of the magnitude of the test statistic used to test the restrictions. 

Following is the Stein-rule estimator which dominates the maximum likelihood estimator (MLE) in linear 
regression under weighted quadratic loss with weight matrix W, y X eβ= + , where y is a ( )1T ×  random 
vector, X is a ( )T K×  matrix of rank K T≤  and e is a ( )1T ×  vector of random disturbances distributed as 

( )20,N Iσ . If R rβ =  represent a set of G K≤  independent linear restrictions on β , the Stein-rule 
estimator that combines sample and non-sample information is:  

( )
( ) ( ) ( )

( )* * *
11

ˆ ˆ, 1
ˆ ˆ

ass
r R R X X R r R

δ β β β β
β β

−−

 
 

= − − + ′   ′ ′− −  

                  (4) 

where *β  is the restricted estimator, obtained by minimizing the sum of squared errors subject to the set of re-  

strictions, ( ) ( ) ( )11 1* ˆ ˆX X R R X X R r Rβ β β
−− − ′ ′ ′ ′= + −  . Here ( ) ( )s y xb y xb′= − −  with ( ) 1b X X X Y−′ ′= .  

Sufficient conditions for minimaxity, meaning that the estimator minimizes the maximum risk over the entire 
parameter space, are 2G >  restrictions and the scalar a chosen to lie within the interval ( )max0, a :  

( ) ( ) ( ){ }11 1 1

20 2
2 L

tr R X X R R X X W X X R
a

T K η

−− − −  ′ ′ ′ ′ ′  
< < − 

− +  
  

                 (5) 

where Lη  is the largest characteristic root of the matrix in braces. The estimator ( )* ˆ, sδ β  can be written as  

( ) ( )
* * *

* * * *ˆ ˆ ˆ, 1 1c c cs
u u u

δ β β β β β β
     

= − − + = − +     
     

                      (6) 

where u is the test statistic for the hypothesis R rβ = , and ( )*c a T K G= − . If the data support the non- 
sample information then u will be small and a relatively large weight is placed on the restricted estimator *β . 
Conversely, if the data do not support the imposed restrictions, u will be large and the unrestricted estimator β̂  
is more heavily weighted. When *u c< , the Stein estimator reverses the sign of the estimator β̂ , or the latter is 
shrunk beyond the hypothesis vector. The problem is resolved by the use of “positive rule” estimator, which 
preserves the sign of the estimates and dominates the Stein-rule estimator over the entire parameter space. 

The positive-part Stein-like estimator ( )θ +  is a stochastically weighted convex combination of the MLE 
from an unrestricted model and a restricted MLE subject to J constraints. In our case the unrestricted MLE 
( )ˆ

fθ  comes from the FCRPLM estimates and the restricted MLE from the UCRPLM estimates ( )ûθ   

( )ˆ ˆ1u fc cθ θ θ+ = + −                                      (7) 

where ( ) ( ) ( ),1 1ac I u a u∞= − −  and ( ) ( ),aI u∞  is the indicator function of a test statistic u for the null hy-  

pothesis that the coefficient covariance matrix is diagonal, or equivalently that the Cholesky elements in A 
below the diagonal are zero. The scalar a controls the amount of shrinkage towards the UCRPLM estimates. The 
shrinkage estimator θ +  becomes the UCRPLM estimator uθ  when the test statistic u is less than the value of 
a. The larger the value of a, the more weight that is given to the UCRPLM estimates. [5] show that if the 
number of constraints 2J > , then under information weighted quadratic loss the risk of the shrinkage estimator 
is smaller than the risk of the unrestricted maximum likelihood estimator for any 0c > . Common choices for 
the shrinkage constant are ( )2 2a J= −  and 2a J= − . In our case ( )1 2J K K= −  is the number of cova- 
riance terms constrained to zero when obtaining the UCRPLM estimates. 

With test statistic u, the pretest estimator *θ  is:  

* if
if

u

f

u c
u c

α

α

θ
θ

θ
≤=  >

                                     (8) 
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where cα  is the critical value of chi-square distribution with J degrees of freedom and significance level α . 
With the given of degrees of freedom, the critical value cα  is determined by the level of test significance α , 
which is between 0 and 1. When 0α = , pretest estimator *θ  becomes UCRPLM estimator uθ . When 1α = , 
pretest estimator *θ  is FCRPLM estimator fθ . 

4. Monte Carlo Experiments 
4.1. Design 
In our experiments the number of choice alternatives is 4M =  and the number of individuals is 200N = . 
Each individual is assumed to be observed once. The four explanatory variables for each individual and each 
alternative nix  are generated from independent log-normal distributions ( )ln 1,0.25N . The coefficients for 
each individual nβ  are generated from multivariate normal distribution ( ),N β Σ , with 1kβ = , 1, , 4k =  . 
The variance of each random coefficient is 2 1kσ = , 1, , 4k =  . The covariance elements jkσ ρ= , 

, 1, , 4j k =  . The correlation ρ  takes the values 0, 0.2, 0.4, 0.6, 0.8. The values of nix  and nβ  are held 
fixed over the 1000NSAM =  Monte Carlo samples in each experiment. The choice probability for each 
individual is generated with the logit-smoothed accept-reject simulator suggested by [6]. 

Our simulation and RPL model estimation were carried out in NLOGIT 5.0. Based on our Monte Carlo 
experiment results, [7] and [8], we use 100 Halton draws to simulate choice probabilities during MSL estimation. 
The positive-part Stein-like and pretest estimators were calculated based on the likelihood ratio (LR), Lagrange 
multiplier (LM) and Wald test statistics with 25%, 5% and 1% significance level. Because the empirical 
percentile values of LR test are closer to the related critical values than those of LM and Wald tests, we only 
provide the results based on the LR test statistic. Using Monte Carlo experiments to study the RPL model, 
especially with correlated parameters, is numerically challenging. Key elements that are worth mentioning are 1) 
for the uncorrelated parameter model conditional logit estimates were used as starting values; 2) for the 
correlated parameter model the estimates from 1) were used as starting values; 3) samples for which con- 
vergence was not achieved were discarded, only 0.3% of the results are unconverged in our Monte Carlo 
experiments. 

4.2. Results 
To study how the pretest and shrinkage estimators reduce the estimation risk of the FCRPLM estimators, we 
calculate the MSEs of the estimated parameters mean, variance, covariance with the pretest, shrinkage and 
FCRPLM estimators respectively. First, we compare the MSE of the fully correlated estimators and those of  

UCRPLM estimators, where MSE is the Monte Carlo average of the squared error loss ( )24
1

ˆ
k kk β β

=
−∑ . In  

Table 1, the MSEs of UCRPLM estimators are all smaller than those of FCRPLM estimators. The risk of the 
estimated parameters mean with the FCRPLM is more than twice that of the UCRPLM. The MSEs of the 
estimated variance with the UCRPLM are about 25% of those with the FCRPLM. With nonzero correlation ρ , 
the MSEs of estimated covariance parameters based on the FCRPLM are much bigger than those based on the 
UCRPLM. When the correlation 0.2ρ =  and 0.4, the ratios of MSEs of estimated covariance elements are 
relatively smaller compared to the results for higher correlations. This implies that when the specification error 
is small, the FCRPLM, which is the correct model, has a much larger relative MSE for parameter covariance 
elements than the UCRPLM. 
 
Table 1. The ratios of uncorrelated RPL model estimator MSE to the FCRPLM estimator MSE.                                      

ρ  β̂  ˆkkσ  ˆ jkσ  

0.0 0.454 0.217 0.000 

0.2 0.450 0.251 0.010 

0.4 0.385 0.221 0.025 

0.6 0.327 0.141 0.044 

0.8 0.329 0.231 0.091 
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In Table 2, we compare the MSEs of LR based pretest and shrinkage estimators to those of FCRPLM 
estimators. All Table 2 ratios are less than one. The pretest and shrinkage estimators all perform better than the 
FCRPLM estimators. With a smaller level of test significance α , the UCRPLM estimator uθ  is more fre- 
quently chosen as the pretest estimator and the pretest estimator has smaller MSE. However, compared to the 
shrinkage estimators, the LR based pretest estimators with 0.01α =  have larger MSEs than the shrinkage 
estimators with the shrinkage constant ( )2 2a J= − , especially for the estimated covariance elements, which 
have the smallest ratio values. 

The covariance elements reveal important information about the joint effect of alternative attributes on people' 
decisions. If two random coefficients are highly positively correlated with each other, it means people are 
attracted and motivated by both of the related attributes. In our Monte Carlo experiments, the shrinkage 
estimators with higher shrinkage constant a outperform estimators with less shrinkage and most of the pretest 
estimators. 

Since one of the advantages of RPL model is providing the information on the share of population that places 
a positive or negative value on the alternative attributes, we also calculate the joint probability of the first two 
estimated parameters are less than zero. Table 3 shows the share of population putting a negative value on the 
attributes. Compared to the results with UCRPLM and FCRPLM estimates, the joint probability with FCRPLM 
estimates are closer to the true value with larger MSEs, except for the 0ρ = . From Table 3, the pretest and 
shrinkage estimates reduce the MSE of the joint probability estimator compared to the FCRPL model estimates. 
Even though the bias of the joint probability with pretest and shrinkage estimates are higher than UCRPLM and 
FCRPLM estimates, the difference is small in magnitude. 

To analyze the sensitivity of the RPL model in response to a change in the level of alternative attribute, we 
calculate the mean estimates of direct elasticity with the true parameters ( ), ββ Σ , Table 4, and the Monte Carlo 
mean estimates of direct elasticity based on pretest, positive-part Stein-like estimates and FCRPLM estimates,  

 
Table 2. The ratios of LR Based pretest, shrinkage estimator MSE to the FCRPLM estimator MSE.                                

 Pretest Estimator ( )β̂  Shrinkage Estimator ( )β̂  

ρ  LR_25% LR_5% LR_1% 2a J= −  ( )2 2a J= −  

0.0 0.80 0.55 0.47 0.66 0.45 

0.2 0.70 0.51 0.45 0.60 0.42 

0.4 0.74 0.48 0.43 0.58 0.44 

0.6 0.80 0.52 0.41 0.58 0.41 

0.8 0.91 0.73 0.52 0.60 0.43 

 Pretest Estimator ( )ˆkkσ  Shrinkage Estimator ( )ˆkkσ  

ρ  LR_25% LR_5% LR_1% 2a J= −  ( )2 2a J= −  

0.0 0.76 0.43 0.26 0.52 0.25 

0.2 0.60 0.34 0.25 0.45 0.23 

0.4 0.77 0.45 0.35 0.52 0.30 

0.6 0.81 0.49 0.26 0.52 0.24 

0.8 0.81 0.63 0.40 0.59 0.37 

 Pretest Estimator ( )ˆ jkσ  Shrinkage Estimator ( )ˆ jkσ  

ρ  LR_25% LR_5% LR_1% 2a J= −  ( )2 2a J= −  

0.0 0.71 0.32 0.17 0.36 0.10 

0.2 0.56 0.19 0.08 0.27 0.06 

0.4 0.75 0.39 0.30 0.39 0.15 

0.6 0.83 0.49 0.23 0.44 0.18 

0.8 0.87 0.68 0.37 0.45 0.22 
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Table 3. The Share of population putting negative value on the first two attributes of each alternative, ( )1 20, 0P β β< < .                    

ρ  True Prob. UCRPLM FCRPLM Pretest Shrinkage Shrinkage 

     2a J= −  ( )2 2a J= −  

0.0 0.025 0.047 0.120 0.014 0.027 0.015 

  [0.003] [0.049] [0.000] [0.008] [0.001] 

  {0.022} {0.095} {−0.011} {0.002} {−0.010} 

0.2 0.100 0.060 0.110 0.021 0.037 0.024 

  [0.006] [0.077] [0.007] [0.016] [0.009] 

  {−0.040} {0.010} {−0.079} {−0.063} {−0.076} 

0.4 0.213 0.071 0.137 0.034 0.062 0.038 

  [0.026] [0.094] [0.033] [0.042] [0.034] 

  {−0.142} {−0.076} {−0.179} {−0.151} {−0.175} 

0.6 0.334 0.084 0.210 0.052 0.123 0.066 

  [0.069] [0.133] [0.082] [0.087] [0.080] 

  {−0.250} {−0.124} {−0.282} {−0.211} {−0.268} 

0.8 0.406 0.115 0.292 0.090 0.259 0.171 

  [0.094] [0.153] [0.117] [0.113] [0.104] 

  {−0.291} {−0.114} {−0.316} {−0.147} {−0.235} 

Note: [ ] provides the MSE results, {} provides bias results. 
 
Table 4. The mean estimates of direct elasticity with true parameters ( ), ββ Σ .                                                  

 True RPL Model Parameters 

ρ  ( )1 11,P x  ( )2 21,P x  ( )3 31,P x  ( )4 41,P x  

0.0 2.009 1.960 2.053 2.042 

0.2 2.014 1.957 2.052 2.049 

0.4 2.020 1.954 2.051 2.057 

0.6 2.025 1.951 2.051 2.065 

0.8 2.031 1.947 2.051 2.075 

 
Table 5. Since the pretest estimator with smaller level of test significance has smaller MSE, we use the pretest 
estimator with 1% significance level. The first explanatory variable in each alternative , ,1i jx  is chosen to 
calculate the related mean estimates of direct elasticity. 

Comparing the results in Table 4 to Table 5, we find that the results with FCRPLM estimates are all higher 
than the true value. When the 0.2ρ > , the results with pretest and shrinkage estimators are closer to the true 
value than those based on the FCRPLM estimators. The shrinkage estimators with the larger shrinkage constant 
have smaller bias of the Monte Carlo mean direct elasticity estimates than the pretest estimates and shrinkage 
estimates with smaller shrinkage constant. At the same time, the shrinkage and pretest estimators have smaller 
standard error of the Monte Carlo mean direct elasticity estimates than the FCRPLM estimates. Based on our 
Monte Carlo experiment results, the shrinkage and pretest estimates will give more reliable mean direct 
elasticity estimates than the FCRPLM estimates, especially with a larger shrinkage constant. 

5. Conclusion 
According to our Monte Carlo experiment results, the UCRPLM estimators have smaller estimation risk than the  
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Table 5. The Monte Carlo mean estimates of direct elasticity based on pretest, shrinkage and FCRPLM estimates.                       

 FCRPLM Estimator Pretest Estimator (with 0.01α = ) 

ρ  ( )1 11,P x  ( )2 21,P x  ( )3 31,P x  ( )4 41,P x  ( )1 11,P x  ( )2 21,P x  ( )3 31,P x  ( )4 41,P x  

0.0 2.058 1.995 2.108 2.108 1.779 1.720 1.805 1.799 

 (0.026) (0.026) (0.028) (0.028) (0.019) (0.019) (0.020) (0.020) 

0.2 2.169 2.097 2.216 2.219 1.842 1.785 1.872 1.864 

 (0.027) (0.026) (0.028) (0.028) (0.019) (0.019) (0.020) (0.021) 

0.4 2.297 2.219 2.347 2.356 1.885 1.828 1.915 1.907 

 (0.031) (0.030) (0.032) (0.033) (0.021) (0.021) (0.022) (0.022) 

0.6 2.408 2.324 2.463 2.486 1.873 1.819 1.904 1.896 

 (0.031) (0.030) (0.032) (0.033) (0.021) (0.021) (0.022) (0.022) 

0.8 2.568 2.475 2.629 2.673 1.879 1.828 1.914 1.911 

 (0.031) (0.030) (0.032) (0.033) (0.026) (0.025) (0.027) (0.028) 

 Shrinkage Estimator (with 2a J= − ) Shrinkage Estimator (with ( )2 2a J= − ) 

ρ  ( )1 11,P x  ( )2 21,P x  ( )3 31,P x  ( )4 41,P x  ( )1 11,P x  ( )2 21,P x  ( )3 31,P x  ( )4 41,P x  

0.0 1.882 1.823 1.918 1.915 1.801 1.742 1.829 1.824 

 (0.022) (0.021) (0.023) (0.023) (0.019) (0.019) (0.021) (0.021) 

0.2 1.956 1.894 1.992 1.989 1.866 1.807 1.896 1.890 

 (0.021) (0.021) (0.023) (0.023) (0.020) (0.019) (0.021) (0.021) 

0.4 2.032 1.969 2.070 2.068 1.914 1.856 1.946 1.939 

 (0.025) (0.024) (0.026) (0.026) (0.021) (0.021) (0.022) (0.022) 

0.6 2.082 2.018 2.122 2.127 1.922 1.866 1.956 1.950 

 (0.025) (0.025) (0.027) (0.027) (0.021) (0.021) (0.022) (0.022) 

0.8 2.206 2.137 2.254 2.273 1.961 1.906 1.999 2.001 

 (0.027) (0.026) (0.028) (0.029) (0.024) (0.023) (0.025) (0.025) 

Note: ( ) provides the standard error results. 
 
FCRPLM estimators. The pretest and positive-part Stein-like estimators both perform better than the FCRPLM 
estimators. The positive-part Stein-like estimators with higher shrinkage constant a outperform those with a 
smaller one and the pretest estimators. Shrinkage estimation reduces the risk of the FCRPLM estimators by 
shrinking the FCRPLM estimates towards the UCRPLM estimates. Providing the information on the share of 
population putting a negative or positive value on the alternative attributes is one of the advantages of the RPL 
model. When the random coefficients are correlated to each other, the FCRPLM estimator of this quantity has a 
smaller bias and slightly larger MSE than the UCRPLM estimator. Based on our Monte Carlo experiments, the 
pretest and shrinkage estimates can reduce the MSEs of the estimated results of share of the population putting a 
positive or negative value on alternative attributes as well. The Monte Carlo mean estimates of direct elasticity 
based on the pretest and shrinkage estimators with a larger shrinkage constant are closer to the true value with 
smaller standard errors than those based on the FCRPLM estimators. 
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