
Open Journal of Statistics, 2016, 6, 451-468 
Published Online June 2016 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2016.63041   

How to cite this paper: Marano, G., Boracchi, P. and Biganzoli, E.M. (2016) Estimation of the Piecewise Exponential Model 
by Bayesian P-Splines via Gibbs Sampling: Robustness and Reliability of Posterior Estimates. Open Journal of Statistics, 6, 
451-468. http://dx.doi.org/10.4236/ojs.2016.63041  

 
 

Estimation of the Piecewise Exponential 
Model by Bayesian P-Splines via Gibbs 
Sampling: Robustness and Reliability of  
Posterior Estimates 
Giuseppe Marano1, Patrizia Boracchi2, Elia M. Biganzoli1,2* 
1Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori di 
Milano, Milan, Italy 
2Laboratory of Medical Statistics, Biometry and Epidemiology “G. A. Maccacaro”, Department of Clinical  
Sciences and Community Health, University of Milan, Milan, Italy 

    
 
Received 1 April 2016; accepted 19 June 2016; published 22 June 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In the investigation of disease dynamics, the effect of covariates on the hazard function is a major 
topic. Some recent smoothed estimation methods have been proposed, both frequentist and Baye-
sian, based on the relationship between penalized splines and mixed models theory. These ap-
proaches are also motivated by the possibility of using automatic procedures for determining the 
optimal amount of smoothing. However, estimation algorithms involve an analytically intractable 
hazard function, and thus require ad-hoc software routines. We propose a more user-friendly al-
ternative, consisting in regularized estimation of piecewise exponential models by Bayesian 
P-splines. A further facilitation is that widespread Bayesian software, such as WinBUGS, can be 
used. The aim is assessing the robustness of this approach with respect to different prior functions 
and penalties. A large dataset from breast cancer patients, where results from validated clinical 
studies are available, is used as a benchmark to evaluate the reliability of the estimates. A second 
dataset from a small case series of sarcoma patients is used for evaluating the performances of the 
PE model as a tool for exploratory analysis. Concerning breast cancer data, the estimates are ro-
bust with respect to priors and penalties, and consistent with clinical knowledge. Concerning soft 
tissue sarcoma data, the estimates of the hazard function are sensitive with respect to the prior for 
the smoothing parameter, whereas the estimates of regression coefficients are robust. In conclu-
sion, Gibbs sampling results an efficient computational strategy. The issue of the sensitivity with 
respect to the priors concerns only the estimates of the hazard function, and seems more likely to 
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occur when non-large case series are investigated, calling for tailored solutions. 
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1. Introduction 
In several bio-statistical applications on censored follow-up time data, the interest lies mainly on the prognostic 
role of clinical/biological covariates. To such end, non-parametric and semi-parametric methods have been pre-
ferred over parametric ones. The most widely adopted tool is the Cox model, which avoids any assumption of 
the functional form of the hazard function on time. However, such feature is not useful if the interest lies on in-
vestigating the shape of the hazard or in predictive modeling. A solution was to include a flexible expression of 
the hazard function directly in the likelihood function for survival models (e.g. [1]-[3]): this was considered 
since 1995 by Herndon and Harrell, who used restricted cubic splines ([4]).  

Spline functions require the definition of the number of basis and position of spline knots. This can be diffi-
cult when the phenomenon under investigation presents complex features, such as a non-monotonic shape of the 
hazard with multiple peaks, or time dependent covariate effects. Penalized splines (P-splines) may be of advan-
tage, since they avoid an arbitrary definition of spline bases, by using a high number of bases and eventually 
knots placed on a grid of equally spaced points. Furthermore, the degree of smoothing is controlled by regula-
rized estimation, thus reducing the effective number of model degrees of freedom, and, therefore, giving a sys-
tematic method for the bias variance trade-off. Different kinds of penalization can be applied, potentially giving 
different results. The most common method has been proposed by Eilers and Marx ([5]), based on B-splines re-
gularized with finite difference penalty functions (also called “roughness penalties”).  

Penalized methods for estimating survival models have been described in the frequentist framework by 
Kauermann ([6]), amongst others. The proposal is based on specifying the hazard function through flexible po-
lynomials, including directly such function in the likelihood function for survival data, and treating the coeffi-
cients of the polynomials as random effects. This approach allows resorting to the relationship between 
P-splines and mixed model theory (cfr: [7]). However, the implementation of the above method can be cumber-
some, because it requires the maximization of a likelihood function that includes a complex integral without a 
closed-form solution.  

For what concerns penalized estimation methods in general, the confidence intervals based on the multivariate 
normal distribution of the estimates have unsatisfactory performances, because of penalty-induced biases (cfr: 
[8]). Imposing a determined penalty is equivalent to specify some prior belief about the characteristics of the 
best model. In fact, the penalty makes explicit the fact that smooth models are believed to be more likely than 
“wiggly” ones. This has been a motivating rationale to use Bayesian methods ([9] [10]).  

Bayesian P-splines have been introduced by Lang and Brezger ([11]). Fahrmeir and Hennerfiend ([12]) dis-
cuss their implementation in survival analysis. Dedicated routines are available, for example, in the software 
package BayesX ([13]). In such a context, point and interval estimates of model parameters and survival func-
tions may be obtained in a straightforward way from posterior density samples. To this aim, Markov Chain 
Monte Carlo (MCMC) methods are needed, but they require efficient sampling algorithms in order to guarantee 
convergence of the Markov chains, and may be computationally intensive. The estimation method in [12] also 
deals with the survival likelihood, and, thus, shares the problem of the intractability of the cumulated hazard 
with the previously cited frequentist methods. In order to solve this problem, specific sampling schemes have 
been adopted for computation. Therefore, a dedicated software must be used to fit models in practice.  

In order to make available a more user-friendly approach to researchers, we considered estimation of Piece-
wise Exponential (PE) models by Bayesian P-splines methods. Spline functions can be used in PE, which offer a 
compromise between a semi-parametric and a full parametric model based on weak distributional assumptions. 
That is, an exponential distribution within fixed time intervals for the time to event. The method of Eilers and 
Marx was developed in the context of generalized linear models (GLM): thus, it is suitable for PE models, be-
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cause of their link with the Poisson distribution (GLM family of distributions). The PE family of models has 
been a basic block in past works ([14] [15]) for developing useful strategies of model building and assessment in 
the competing risks setting. Recognizing the advantage of penalized splines, recently ([16]) we described in de-
tail the specification of a Bayesian PE model with a hazard function modeled by penalized splines for the 
analysis of univariate survival times. The model is analogous to the general model in [12], but it is provided of a 
tractable likelihood function. In contrast with earlier approaches, the model can be fitted through general rou-
tines for estimating GLM hierarchical models: therefore, general Bayesian software can be used for computa-
tion.  

In [16], we described the implementation of Bayesian P-splines method for obtaining estimates of the hazard, 
of regression coefficients and survival probabilities. Examples have been given of estimation of models with a 
second order difference penalty and two distinct priors for the smoothing parameter. In this work we considered 
an extended expression of the model above, allowing regularized estimation of non-linear and time-varying ef-
fects of prognostic factors. Furthermore, we extended the evaluation of the robustness of the Gibbs sampling es-
timation method. To such end, we fitted several competing models, with different combinations of penalties and 
a more extensive set of prior densities, to two datasets, from breast cancer and soft tissue sarcoma patients, re-
spectively. The adequacy of the competing models was assessed through the deviance information criterion 
(DIC) ([17]) using the standard expression for Poisson regression models. Furthermore, the reliability of the 
method was preliminarily evaluated by comparing the estimates of the hazard function on a large case series 
(breast cancer dataset) against benchmark clinical situations derived from literature: i.e. papers on tumor dor-
mancy in breast cancer (cfr: [18] [19]).  

The remainder of this paper is organized as follows. In the method section we illustrate the construction of a 
general PE model with smooth components for the baseline hazard function, non-linear and/or time-varying ef-
fects of covariates. The smooth components above were specified following Eilers and Marx’s approach ([5]). In 
the subsequent section, results are presented concerning the evaluation of the robustness and the reliability of the 
estimates. Finally, conclusions and open issues are discussed.  

2. Methods 
In this section, a brief illustration of the characteristics of the standard PE model, with particular attention to the 
link with Poisson regression models, is firstly provided. Subsequently, methods for penalized estimation are re-
viewed. After this, the Bayesian P-splines estimation method is illustrated, and the general expression of the 
Bayesian PE models is illustrated. The section ends with two sub-sections concerning, respectively, the practical 
implementation of Bayesian P-splines and the definition of the DIC.  

2.1. Simple PE Model 
For univariate, possibly right-censored, survival data, let (Ui, Ci) be the random variables indicating, respective-
ly, failure time and censoring time of the i-th subject. The observed data is represented by: ti = min(ui, ci) and by 
the status: vi:vi = 0 if ti = ci and 1 if ti = ui. Let Xi (p × 1 vector) indicate the set of covariates of subject i recorded 
at the beginning of the study. In the standard PE model the follow-up time is partitioned into a fixed set of H in-
tervals: {Th = [τh−1, τh); τ0 = 0, 1, ,h H=  } and it is assumed that the time to failure U has an exponential dis-
tribution within each interval, whose parameters depend on the time intervals and the covariates. In the simplest 
case of proportional hazards, the relationship between the hazard function of the PE model and the covariates: 

( )|PE it Xλ ; is expressed as follows: 

( ) ( )( ) ( )T

1
| exp ,  1, , ;

H

PE i h h i
h

t X I t T X i nλ λ β
=

= ∈ =∑ 
                       (1) 

where: 1, , Hλ λ  are the unknown parameters of the baseline hazard function; β  is the p × 1 vector of re-
gression coefficients; and I(t∈Th) is an indicator function being equal to 1 if τh−1 ≤ t < τh and 0 otherwise.  

For right censored data the likelihood function has the general form: 

( ) ( )( ) ( )( )
1

, | , , | exp | ;i
n v

i i i i
i

L t v X t X t Xλ β λ
=

= −Λ∏                         (2) 

where t is a vector of n observed times, v a vector of the corresponding status, and the n × p matrix X represent  
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the covariates. The function ( ) ( )
0

| | d
t

i it X s X sλΛ = ∫  is the cumulative hazard. This likelihood resembles the  

likelihood of a Poisson random variable Vi, with mean parameter ( )|i i it Xµ = Λ . By substituting ( )|i it Xλ  in 
expression (2) with ( )|PE i it Xλ  (expression (1)), the likelihood becomes: 

( ) ( )( ) ( )( )
1 1

, ; , , exp exp exp ;
i ih

Hn vT T
PE h i h i ih

i h
L V X X Xλ β λ β λ β

= =

∆ = − ∆∏∏              (3) 

where for each subject i there is a product of Hi terms, Hi being the number of intervals in which the subject is 
followed. In the expression above, vih is the status of the i-th subject within the interval Th (0 = alive or censored, 
1 = failed); Δih is the time spent in Th by the subject.  

From expression (3) it may be seen that LPE is proportional to the product of Poisson likelihoods for Vih with 
mean parameters: ( )Texpih h i ihXµ λ β= ∆ . As a consequence, the expression of the Poisson regression model is:  

( ) ( ) ( )T;  log log ,   1, , ,  1, , ;ih ih ih h i ih iV POISSON X i n h Hµ µ α β∼ = + + ∆ = =           (4) 

where αh = log(λh) are log-hazard parameters, and the term log(Δih) is an offset. 
For fitting the PE model through model (4) as Poisson regression model, an augmented dataset must be de-

rived from the original one. To such end, the data of each subject needs to be replicated for each interval in 
which it is followed. For each replicate, a row data indicating subject covariates, time interval and the status of 
the subject within the interval must be created for 1, , ih H=  . Also, H dummy variables must be included for 
estimating the parameters αh. Time varying effects of, say, a variable Z1, may be easily included through a prod-
uct of the dummy variables above and Z1. For more details about the PE model we refer to Rodríguez-Girondo 
et al. ([20]) and to the textbooks of Lawless ([21]) and Congdon ([22]) for more methodologically oriented dis-
cussions.  

2.2. Hazard Smoothing 
To obtain an interpretable shape of the hazard, a method for smoothing the time terms of the piecewise linear 
predictors is needed. Spline functions are the widest applied approaches. A spline function is a flexible poly-
nomial constructed by joining ordinary polynomials within a set of intervals. For the time to event T, let’s con-
sider a generic partition of the range of possible values formed by a set of K adjacent intervals, say: 

( ) ; 1, ,j jI I T j K= =  ; the extremes of the intervals are called knots. A spline of degree p may then be written 
as:  

( ) ( ); ; for , 1, ,j jspf t p P t p t I j K= ∈ =   

where Pj(t;p) are polynomials of the same degree p. Usually, specific constraints are used for guaranteeing the 
continuity of spf(t;p) in the knots, so that to impose a smooth shape to the function.  

Several classes of splines have been proposed in literature. Basis splines (B-splines) are the most widely used 
by statisticians, because of their favorable properties ([23]). The general expression of a B-spline is:  

( ) ( )T

1
; ; ;

M

m m
m

Bspf t p B B t pγ γ
=

= = ∑                            (5) 

where: ( ) ( )( )T
1 ; , , ;MB B t p B t p=   is a M × 1 vector of spline bases, and ( )T

1, , Mγ γ γ=   is the vector of  

associated coefficients (M × 1). The expressions of the bases Bj(t; p) for differing values of p are derived by a 
recursive formula that is not of interest here. Usually, cubic splines are considered. 

In regression models, the amount of flexibility of the splines depends on their degree and on the number of 
knots. However, increasing the flexibility of the splines does not always guarantee a better fit of the “true” ha-
zard. The motivation, in brief, is that estimation of models that include too complex splines leads to a better in-
terpolation of data, but at the same time it could reduce the reliability of the estimates. In other words, a too 
complex spline function approximates “signal plus noise” while it should give a good estimate of the signal only. 
This issue is commonly known as overfitting (see: [24] [25]). On the other hand, a too simple spline leads to bi-
ased estimation: therefore, a method for choosing an optimal compromise between bias and overfitting is neces-
sary.  



G. Marano et al. 
 

 
455 

To such end, penalized splines (P-splines) have been proposed in the GLM regression context by Eilers and 
Marx ([5]). The method is based on penalized estimation of the coefficients of B-spline functions using finite 
difference penalties (or roughness penalties). It may be applied in a natural fashion for regularizing the estimates 
of the hazard function. In the PE model, the baseline hazard function is piecewise constant. Such a function is a 
particular case of B-splines, given for p = 0. Thus we can write for each h: T

0h Bα α= , and substituting this 
term in expression (4). Thus for applying Eilers and Marx’s method, a penalization term on the coefficients 

1, , Hα α  is needed. By referring to the GLM model (4), the estimates are determined by maximizing the pe-
nalized log-likelihood ( ), ; , ,l V Xα β′ ∆ :  

( ) ( )

( ) ( ) ( )

,

2
T

,

ˆˆ , arg max , ; , ,

arg max , ; , ,
2POISSON d d

l V X

l V X D D

α β

α β

α β α β

ϕα β α α

′= ∆

= ∆ −
               (6) 

where ( ), ; , ,POISSONl V Xα β ∆  is the log-likelihood for model (4), φ2 is a smoothing parameter, and Dd repre-  

sents the finite differences operator of order d: ( ){ }T

1, ,

d
d h h d H

D α α
= +

 = ∆  

. More specifically, Δd is defined as  

the functional that maps any variable into its finite differences: for d = 1: ( )1
1;h h hα α α −∆ = −  2, ,h H=  ; for 

d = 2: ( ) ( )( )2 1 1
1 22 ;h h h hηα α α α α− −∆ = ∆ ∆ = − +  3, ,h H=  ; for a generic value of d:  

( ) ( )( )1 1d d
h hα α−∆ = ∆ ∆ ; 1, ,h d H= +   Therefore, since stronger irregularities of the hazard correspond to  

higher finite differences of the parameters αh, the “effect” of the penalty term: ( ) ( )
2

T

2 d dD Dϕ α α− ; on the pe-  

nalized log-likelihood function consists in supporting models with more regular hazard shapes over models with 
more irregular ones (expression (6)). The smoothing parameter φ2 is an additional parameter required for “tuning” 
the trade-off between model fit and model smoothness. 

2.3. Bayesian P-Splines 
The Bayesian P-splines method ([11]) is based on a hierarchical model for expression (4) with non informative 
priors for the regression coefficients ( )β  and a Gaussian Random Walk (RW) prior of order d for the coeffi-
cients of the hazard function (B-spline), conditional to a smoothing parameter τ2. The general expression of the 
RW prior is the following:  

T2
2

1| exp ;
2 dPα τ α α
τ

 ∝ − 
 

                              (7) 

where: T
d d dP D D= . By assuming τ2 = 1/φ2, the argument of the exp() function above closely resembles the pe-

nalty term in expression (6).  
By indicating the RW prior with the term: RW(τ2, Pd), a general expression of the PE model with a regularized 

hazard function is:  

( ) ( ) ( )

( ) 2

T T
0

2 2 2

;  log log

| , ;   

ih ih ih i ih

d

V POISSON B X

RW P

β

τ

µ µ α β
β π

α τ τ τ π


∼ = + + ∆

 ∼


∼ ∼

                  (8) 

where: B0 is the vector form of a B-spline of degree 0 defined on the intervals: 1, , HT T  of the follow-up pe-
riod, and βπ  and 2τ

π  are generic prior densities for the regression coefficients and the smoothing parameter. 
Further details on these priors will be given in a following subsection. For the former prior, univariate diffuse 
Gaussian densities are typically used in literature. For 2τ

π , the most common choice is an inverse-gamma den-
sity with a high variance. However, in principle every prior for variance parameters in hierarchical models could 
be used ([26]). Furthermore, it has been pointed out (e.g.: [27]) that the choice of 2τ

π  may have an unwanted 
influence on the posterior estimates: thus a sensitivity analysis is recommended in effective applications.  

The expression above defines a hierarchical (mixed effect) Poisson model where the log-hazard parameters: 
1, , Hα α  are treated as random effects. The estimation of this model may be carried out by general MCMC 
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sampling algorithms for hierarchical GLM models. In particular, software based on Gibbs sampling (e.g. Win-
BUGS) are an adequate choice, which facilitates the application of a global strategy for building useful models. 
We provided elsewhere the code for the estimation of model (8) through WinBUGS; other examples have been 
given as accompanying material for the paper by Murray et al. ([28]).  

2.4. General PE Model with Smoothed Components 
Expression (8) may be easily extended for penalized estimation of possible non-linear and/or time-dependent 
effects of covariates, by including in the model expression, for each covariate, a basis spline function (B-spline 
polynomial) and an additional RW prior for each covariate. From now on, we will indicate with: 11 1, , pZ Z  
the covariates with time-dependent effects; by 21 2, , qZ Z  the covariates with non-linear effects, and with X 
the matrix including the values of covariates with unpenalized effects. The general expression of the PE model 
with regularized effects is the following: 

( )

( ) ( ) ( )

( )
( )( )

( )( )

2

2

2

TT T T
0 01 , 2 ,1 2

1 1

2 2 2

2 2 2
1

2 2 2
2

 

log log

| , ;  

| , ;  ;  1, ,

| , ;  ;  1, ,  

j

p j

ih ih
p q

ih j i j i i ihj j
j l

d

j
j j d jj

p l
p l p l d p ll

V POISSON

B z B B z X

RW P

RW P j p

RW P l q

β

τ

τ

τ

µ

µ α γ γ β

β π

α τ τ τ π

γ τ τ τ π

γ τ τ τ π
+

= =

+
+ + +

 ∼

 = + + + + ∆



∼
 ∼ ∼


∼ ∼ =

 ∼ ∼ =


∑ ∑





               (9) 

The time-dependent effects for each covariate are: T
01 , 1j i j

z B γ ; 1, ,j p=  . Thus, for each Z1j, its values  

multiplied for a piecewise constant function: T
0 1 jB γ ; in the parameters ( )T

1 1 ,1 1 ,, ,j j j Hγ γ γ=  . This enables the  
effect of each Z1j to vary in each interval Th of the original partition of the follow-up:  

T T
0 01 , 1 , 1 ,1j i h j i j hj

B z B zα γ α γ+ = +  for t∈Th. On the other hand, the effects of 21 2, , qZ Z  have been represented 
trough the general expression of B-splines (expression (5)), with the vector ( )T

2 ,l iB z  including the spline basis 
of Z2l calculated for the i-th individual. Thus, in this case the degree and the knots of each spline are fixed fol-
lowing conventional rules (cfr: [5]).  

2.5. Implementation Details  
A more detailed discussion is needed concerning the implementation of RW priors in software. From expression 
(7) it may be seen that RW priors are essentially multivariate Gaussian priors with mean vector 0 and covariance 
matrix ( ) 12

dPτ −Σ = . However, the matrix Pd is rank-deficient. To justify this statement, we recall that 
T

d d dP D D= , where Dd is the finite difference matrix of order d. The rank of Pd equals the rank of Dd (since 
rank(MTM) = rank(M) ; M being a generic n × k matrix), and Dd is generally not full-rank, due to the properties 
of the finite difference operators.  

For the reasons above, the standard densities available in software does not apply to the RW prior. In alterna-
tive one can use the CAR function, which is specifically designed for Gaussian autoregressive stochastic 
processes, and is available in WinBUGS (cfr: [29]). Another alternative that does not require specific software 
consists in a reparameterization of the hazard parameters 1, , Hα α  in two independent vectors with full-rank 
covariance matrices and regular prior densities (see: [30] for details). The reparameterization is based on the 
following expression: 

1 1 2 2α α α= Ψ + Ψ ; 

where 1α , 2α  are vectors of length d and H-d, and Ψ1, Ψ2 are matrices of dimensions H × d and ( )H H d× − , 
respectively. Thus, the dimensions of the terms above depends on the choice of the degree d of the penalty func-  

tion. In particular, ( ) 1T
2 d d dD D D

−
Ψ = , whereas the expression of Ψ1 is obtained as follows, by matrix algebra  

argumentations. A useful expression for deriving Ψ1 is: T
1 0dD Ψ =  (required for guaranteeing the orthogonality 
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of Ψ1 and Ψ2). This implies that the columns of Ψ1 form a basis for the null space of the finite difference operator 
Δd (section: hazard smoothing). In practice: for d = 1, the expression becomes: T

1 0D ψ = ; ( )T
2 , , Hψ ψ ψ=  . 

This implies: Δ1(Ψh) = 0; which is satisfied by: ( )1 1, ,1ψ =  . For d = 2, the condition: Δ2(ψ ) = 0 is satisfied 
by 1ψ  and by another vector that includes a linear succession: ( )2 1, 2, , Hψ =  . For higher values of d, the 
columns of Ψ1 will be obtained by including additional vectors, 2 , , dψ ψ  that will include successions of 
higher order.  

From the definitions above it follows that the parameters in 1α  have a flat prior density, whereas indepen-
dent conditional Gaussian priors (conditional to τ2) must be assumed for the parameters in 2α . For example, the 
following expression shows an equivalent reformulation of model (8) that can be readily implemented in Win-
BUGS as like as in any other dedicated software:  

( ) ( ) ( )

( )
2

T T T
0 01 21 2

1

2 2
2

2

;  log log

;  1, ,

| 0, ;  1, ,   

ih ih ih i ih

k

k

V POISSON B B X

const k d

N k H d

β

τ

µ µ α α β
β π
α

α τ τ

τ π

 ∼ = Ψ + Ψ + + ∆


∼
 ∝ =
 ∼ = −
 ∼





              (10) 

For more general models (expression (9)) the equivalent expressions are obtained straightforwardly.  

2.6. Deviance Information Criterion 
The DIC is a frequently used tool for comparing the adequacy of competing models (cfr: [17]). For GLM mod-
els, it can be considered as a generalization of the Akaike Information Criterion (AIC), and thus it yields a rank-
ing of competing models based on their predictive ability. The general expression is:  

( ) 2 ;DDIC D pθ= +  

where: ( )D θ  is the model deviance calculated in the posterior mean of the parameters: θ , ( )Dp D D θ= −  is 
a “measure” of the effective degrees of freedom. The DIC is a useful statistic for hierarchical models and, also, 
for penalized models, for which the traditional measures of model complexity does not apply. Furthermore, the 
DIC is calculated very easily from the output of Gibbs sampling software. For such reasons, we considered the 
DIC as an appealing tool for model comparison in this work.  

3. Results 
3.1. General Plan of Analysis 
The Bayesian P-splines method was applied to two datasets on breast cancer and soft tissue sarcoma patients (cfr: 
[31] [32]). The covariates included in the models were fixed a priori and corresponded to well-known prognostic 
factors for the investigated outcomes. The partition of the follow-up time was based on routine clinical fol-
low-up schedules. Moreover, previous experience on breast cancer patients analysis suggested us that narrower 
intervals do not improve the knowledge of disease dynamics. In the remainder application, there is a higher un-
certainty about this issue; however the assumption of a constant hazard between consecutive patient visits is 
reasonable on clinical grounds.  

For the breast cancer dataset only discrete covariates were included: age at diagnosis (≤35 years, 36 - 45 years, 
46 - 55 years, 56 - 65 years, >65 years), tumor size (≤0.5 cm, 0.6 - 1.0 cm, 1.1 - 1.5 cm, 1.6 - 2.0 cm, >2.0 cm), 
nodal status (N−, 1 N+, 2 - 3 N+, ≥4 N+), histologic type (infiltrating intraductal component or infiltrating lobu-
lar component: IDC + ILC; extensive intraductal component: EIC; other histology) and tumor site (external, in-
ternal or central); according to the original study ([31]). The hazard function was expressed through basis func-
tions (expression (10)). We considered both a model without time-varying covariate effects (that is, proportional 
hazards (PH) model), and a model with a time-varying effect of tumor size.  

For each of the models above, the robustness of the estimation method was assessed in the following way: ten 
competing model expressions have been specified, including distinct combinations of priors for smoothing pa-
rameters and penalty matrices. The resulting estimates: posterior means and respective 95% credible intervals 
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for the hazard and the regression coefficients have been compared by descriptive methods (tabulation, graphical 
representation). A more formal comparison was performed using the DIC.  

The priors used for defining the competing models were: four inverse-gamma priors for the smoothing coeffi-
cients (τ2): Γ−1(a,a) with a = 1, 10−2, 10−4, 10−6; and a uniform prior: U(0,100) for τ. The penalties were specified 
through finite difference penalties of order 2 and 3. Furthermore, the reliability of the estimation method has 
been assessed, by comparing the behavior of the estimated hazards against benchmark clinical situations derived 
from literature ([18] [19]). 

In the second application (soft tissue sarcoma), the covariates were: age (years) and tumor size (cm) (conti-
nuous variables), histologic subtype, grading and surgical margins (microscopic, macroscopic) (categorical va-
riables). The classes of categorical covariates corresponded to those used in the original study ([32]). Concern-
ing the shape of the hazard, there is no widely accepted knowledge: thus a PE model with a smoothed hazard 
function (without time-varying covariate effects) was used as a tool for exploratory analysis. The robustness of 
the estimation method has been assessed following the same strategy illustrated above.  

In each application, MCMC sampling was performed by executing WinBUGS under R ([33]), via the 
R2WinBUGS package ([34]). Subsequent calculations were done in R with the coda package ([35]) added. 
Posterior estimates were obtained from single chains of length 20,000, with burn-in of 2000 and thinning by 5. 
Thus, the effective size of the posterior sample was 3600. In each case, standard diagnostic techniques showed 
appreciable mixing properties of the Markov Chains, and autocorrelations rapidly approaching zero.  

3.2. Application 1: Breast Cancer Dataset 
3.2.1. PE Model with a Smoothed Hazard Function 
The sample included 2010 patients out of 2233 who underwent conservative surgery at Milan Cancer Institute 
between 1970 and 1987. The outcome considered here was event-free survival (which included: local recur-
rences, distant metastases, other primary tumor, death).  

Due to the large sample size, a procedure for avoiding an excessive computational burden was required: recall 
that for fitting the PE model the original dataset must be augmented (methods section). We resorted to a “bin-
ning” approach (as, for example, in [36]): the patients were grouped in K groups, identified by the K possible 
combinations of covariate values observed in the sample (bins). Then, a new dataset of K rows was constructed, 
including: the total number of subjects in the group; the number of observed events and the total follow-up times 
for the subjects above; and the set of covariate values corresponding to each bin. The PE models described in the 
following were then fitted to the binned datasets. The benefits of this procedure increase as the difference n 
(sample size) and K becomes higher.  

For specifying the PE model with a smooth hazard function, the follow-up period was divided in 18 consecu-
tive intervals of one year length. The covariates were all categorical. They were included in the expression of the 
model through dummy variables using the “reference category” coding. By indicating the dummy variables with 
the letter D, the linear predictor of the model: η = log(μ) was:  
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        (11) 

where: AGE, TSIZE, NSTATUS, HIST and TSITE indicate, respectively: age at diagnosis, tumor size, nodal 
status, histologic type, and tumor site. The intercept corresponds to the first element of the vector 1α  (because 
the first column of Ψ1 is always a constant vector of ones). The model includes 33 parameters: 32 in the linear 
predictor (18 hazard parameters for the baseline hazard function and 14 for the regression coefficients) plus 1 
smoothing parameter. 

Posterior means and 95% credible intervals of all the 33 parameters above were robust with respect to the 
priors and penalties used (Table A1). Since the PH parameterization of the model, for evaluating the shape of 
the hazard function any combination of the covariates included in the model can be considered. Thus, we re-
ported in Figure 1 the estimated hazards from all the ten competing models previously described for a  
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(a) 

 
(b) 

Figure 1. Estimated hazard functions for model (11). Panel (a): 5 models with distinct 
priors for the smoothing parameter and second order difference penalty; Panel (b): 5 models 
with the same priors and a third order difference penalty. Black solid lines: posterior means; 
dotted lines: 95% credibility intervals. Covariate values were: Age: ≤35 years, tumor size: 
0.5 cm, nodal status: 4 N+, quadrant: external, histology: IDC + ILC.                                 

 
fixed set of covariate values: age ≤ 35 years, tumor size ≤ 0.5 cm, nodal status = 4 N+, quadrant = external, his-
tology = IDC + ILC). As it may be seen, the estimates were practically undistinguishable.  

Concerning the clinical interpretation of the function, the shape resulting from Figure 1 showed a major peak 
within the third year of follow-up, followed by a non constant trend, in which two other peaks could be noticed. 
This behaviour is consistent with accepted clinical knowledge on breast cancer case series (e.g.: [18] [19]), al-
though the accuracy of estimates was rather low (especially in the later follow-up period).  

A more formal evaluation of the ten competing models was performed through the DIC. From the values re-
ported in Table 1, no relevant differences emerged in terms of model fit (deviance), effective degrees of free-
dom (pD) and therefore in terms of overall adequacy (DIC). Thus, in the present example the choice of different 
priors and/or penalties had a negligible influence on posterior sample estimates.  

3.2.2. PE Model with a Time-Varying Effect of Tumor Size 
The specification of the time-varying effect required to include extra basis functions (B-splines of degree 0) for 
the modalities of tumor size (expression 9). The expression of the linear predictor was specified as discussed in 
the following. In expression (9) the term: T

0B α  represents a piecewise constant hazard for patients with tumor  
size lower or equal 0.5 cm (the reference category), whereas smooth terms of the form: T

0TSIZE,k k
D B γ  would  

represent (smooth) differences between the hazard of the remainder categories of tumor size (k = 1 - 4) and the 
previously indicated hazard. We considered more appealing to obtain smooth estimates directly for each hazard 
function: therefore, we slightly modified the expression:  

( ] ( ] ( ]
T T T T T
0 0 0 0 0TSIZE 2.0TSIZE 0.5,1.0 TSIZE 1.0,1.5 TSIZE 1.5,2.01 2 3 4

B D B D B D B D Bα γ γ γ γ>∈ ∈ ∈+ + + +  

into the following one:  

( ] ( ] ( ]
T T T T T
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This was analogous to reparameterizing a two-way factorial ANOVA model with reference category coding  
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Table 1. Adequacy of the competing models for estimating model (11) Dbar = deviance; pD = effective degrees of freedom; 
DIC = Deviance Information Criterion.                                                                                                                   

Prior 

Second order 
difference penalty 

Third order 
difference penalty 

Dbar pD DIC Dbar pD DIC 

Uniform (0,100) 2844.3 23.6 2868.0 2845.2 22.0 2867.2 

Inverse-Gamma (1,1) 2842.9 25.5 2868.4 2844.0 24.7 2868.6 

Inverse-Gamma (10−2,10−2) 2844.2 23.4 2867.5 2844.9 22.1 2867.0 

Inverse-Gamma (10−4,10−4) 2844.7 23.3 2868.1 2845.2 21.8 2867.0 

Inverse-Gamma (10−6,10−6) 2844.9 23.3 2868.2 2845.4 21.9 2867.2 

 
for tumor size and cell means coding for follow-up time, into a model with cell means coding for both the “fac-
tors” above. The final expression of the linear predictor was made similar to expression (10):  
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           (12) 

Due to the very low frequency of events observed at later times, the follow up was truncated to 15 years (in-
stead of 18) for overcoming hard convergence problems of the Markov Chains. After this, a regular behaviour of 
the chains was shown in each case. Model (12) included a total of 90 parameters, divided in: 75 parameters for 
the time-varying effect of tumor size; 10 for other regression coefficients and 5 smoothing parameters.  

As in the previous section, the estimates of all model parameters were robust with respect to priors and penal-
ties. For sake of simplicity, results were reported for only one competing model (uniform prior for the smooth-
ing parameters, second order difference penalty). The most evident time-varying effects of tumor size were 
shown comparing the hazard shapes for tumors sized ≤1.0 cm with the shapes for tumor size: from 1.1 - 1.5 cm 
to >2.0 cm (Figure 2). A high peak after the second year of follow-up emerged clearly only for tumor size ≥1.1. 
cm; a second evident peak may be seen at the 10th year of follow-up, for tumor size between 1.6 cm. and 2.0 cm. 
These characteristics are, again, consistent with the clinical experience. Even though the estimates for tumor 
size >2.0 cm were inaccurate. This outcome was likely due to a low number of events occurred in the later fol-
low-up. 

3.3. Application 2: Soft Tissue Sarcoma Data 
Data were collected from a case series of 192 subjects affected by soft tissue sarcoma in care at Istituto Nazio-
nale dei Tumori di Milano who underwent surgical resection of primary localized disease. The end-point of in-
terest was time elapsed form surgery to death from any cause. Time was measured in months.  

For specifying the PE model with a smooth hazard function, the follow-up period was divided in 15 intervals 
according to the schedule of patients control visits. The covariates were: age (years) and tumor size (cm) (conti-
nuous variables), histologic subtype, grading and surgical margins (microscopic, macroscopic) (categorical va-
riables). Age was centered with respect to the mean (age), while a non linear effect of tumor size was modelled 
through a Restricted Cubic Spline with three knots. The expression of the smoothed PE model was then the fol-
lowing:  
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Figure 2. Estimated hazard functions for model (12). Reported in the figure is the hazard function for a patient with the same 
covariates as in Figure 1, except for tumor size. Black solid lines: posterior means; dotted lines: 95% credibility intervals.                                                          
 
where: RCS1(tsize) and RCS2(tsize) indicate the spline bases of the restricted cubic spline for tumor size, ortho-
gonalized for improving the efficiency of the MCMC sampling algorithm. The terms: HIST, GRADE, MARG, 
HIST; indicate, respectively, histologic subtype (Liposarcoma, Leyomiosarcoma: LEYO; MPNST, FST, Other), 
grading (1,2,3) and surgical margins (microscopic: MICRO; macroscopic: MACRO). The model included 26 
parameters: 15 hazard parameters, 10 regression coefficients, and 1 smoothing parameter.  

In Figure 3, we reported the estimated hazard function from the ten competing models. Given the PH struc-
ture of the model, the shape of the hazard was reported for a fixed set of covariate values: age = 55 years; tumor 
size = 20 cm; histology = liposarcoma; grading = 2; margin = microscopic. These functions showed distinct be-
haviors, thus evidencing the dependency of the results from the choice of the structural components of the model. 
For what concern the estimates of covariate effects, the values of posterior means and respective credible inter-
vals were robust.  

In the following table (Table 2), the competing models have been ranked according to the DIC. Little differ-
ences emerged among the models in terms of deviance (Dbar), while major ones were shown in terms of effective 
degrees of freedom (pD). More interestingly, it seems that the order of the penalty had not a relevant influence 
on model adequacy, and, thus, the priors had a leading role. Overall, the “best” models correspond to more dif-
fuse priors.  

4. Discussion 
Several clinical studies are focused on pathologies with long follow up times, and on the prognostic effect of a 
large set of variables. The aim is to investigate disease dynamics by maintaining the maximum possible amount 
of the information included in the variables. Thus, continuous variables are included in the model in their origi-
nal measurement scale. Biologically plausible interactions and time-varying effects also need to be considered. 
In such a way the model could be complex and penalized estimation methods could be useful tools. Our ap-
proach relies on the use of the Bayesian P-splines method for estimating of a PE model with a flexible specifica-
tion of the baseline hazard, non-linear and/or time-dependent covariate effects. In the context of penalized esti-
mation the Bayesian methodology provides a unified theoretical framework for all the inferential procedures.  
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Figure 3. Estimated hazard functions for model (13). Black solid lines: posterior means; dotted lines: 95% credibility inter-
vals. Covariate values were: Age: 55 years; tumor size: 20 cm; histology: liposarcoma; grading: 2; margin: microscopic. On 
the left (panels: a, c, e, g, i) estimates from competing models with a second order difference penalty; on the right (panels: b, 
d, f, h, j) estimates from models with a third order difference penalty.                                                          
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Table 2. Adequacy of the competing models for estimating model (13) Dbar = deviance; pD = effective degrees of freedom; 
DIC = Deviance Information Criterion.                                                                                  

enalty 
order Prior Dbar Pd DIC 

2 Inverse-Gamma (10−6,10−6) 649.8 12.9 662.8 

3 Inverse-Gamma (10−6,10−6) 649.5 13.8 663.3 

2 Inverse-Gamma (10−4,10−4) 649.7 13.6 663.4 

2 Uniform (0,100) 649.3 14.2 663.4 

3 Inverse-Gamma (10−4,10−4) 649.6 14.3 663.9 

2 Inverse-Gamma (10−2,10−2) 649.2 14.8 664.0 

3 Uniform (0,100) 649.6 15.4 665.0 

3 Inverse-Gamma (10−2,10−2) 649.5 15.6 665.1 

2 Inverse-Gamma (1,1) 648.6 18.4 667.0 

3 Inverse-Gamma (1,1) 649.6 18.1 667.8 

 
This is an advantage over frequentist methods, where in the presence of penalties the standard large sample 
theory does not provide useful results for interval estimation.  

Our approach has two main distinctive features with respect to the cited papers on the Bayesian P-splines 
method:  

1) We focused the attention upon on the PE family of models, which did not require specific sampling algo-
rithms or specific software for estimation. 

2) Due to the link between PE models and the GLM family of regression models, several already available 
methods, such as the DIC, could be used for developing an efficient strategy of model building. Again, the im-
plementation of such methods should not require, in principle, specific accommodations for computation.  

The approach has several points in common with Fahrmeir and Hennerfiend’s method ([12]), and, also, with 
the approach more recently discussed by Murray et al. ([28]). In particular, the family of models considered in 
our work is a subset of the general model in [12]; however, in our case the likelihood function is tractable, and, 
thus, specific solutions for approximating the integrated hazard are not needed. Also the model in [28] can be 
considered as a subset of the general model above, characterized by a piecewise linear hazard function and a 
tractable likelihood. In the cited paper, the estimates from this model slightly outperformed the PE model in si-
mulations, even though for the latter a major robustness of the estimates emerged with sparse data. The major 
focus of the paper was on the performances of estimates, whereas a formal method of model assessment was not 
covered.  

On the other hand, the major critics to the PE model are (e.g.: [28]): 1) a piecewise constant hazard function is 
generally not “realistic”; 2) estimates of the hazards are sensitive to the partition of the follow-up time (number 
and length of intervals). Without any doubt we agree with the first remark. Notwithstanding, we advocate our 
approach as a useful one for exploratory assessment of the hazard function. In particular, the presence of discon-
tinuities in the estimated hazard does not prevent from evidencing relevant features of the “true” hazard. Con-
cerning the second critic, this one could not be a real issue. We recall that Eiler’s and Marx’s approach provide a 
mean for overcoming problems concerning the choice of spline bases and knots, by partitioning the range of the 
variables in a high number of intervals. However, as far as we know an effective study concerning the issue 
above has not been carried out yet in our context.  

The results shown in this paper concern the estimation of “pre-specified” regression models (i.e.: models spe-
cified a priori according to validated clinical knowledge), in studies with long follow-up periods. In the first ap-
plication (breast cancer) the data has been collected from a large case series. The estimates from several com-
peting models, differing for the specification of their smoothing functions (using distinct combinations prior 
densities for the smoothing parameters and finite difference penalties), were practically undistinguishable. Also, 



G. Marano et al. 
 

 
464 

no sensible differences emerged in terms of model adequacy, as indicated by the DIC cri1terion. These results 
emerged in the estimation of both a “simple” PE model with a smooth hazard function, and in a more complex 
model including smoothed time-varying effects of a covariate.  

Since Bayesian P-splines require the specification of non-informative priors, the sensitivity of posterior esti-
mates is an essential task in effective applications. As stated in the method section, the influence of the specific 
prior for the smoothed parameter has been evidenced in literature, and thus it was one of the primary objects of 
investigation in our works. For the breast cancer dataset, no relevant influence has been found. We hypothesized 
that the posterior density “converged” to the (penalized) likelihood function. This was checked by comparing 
the posterior estimates of all the parameters of the models above with the corresponding estimates obtained by 
GAM regression (via the mgcv package of R ([37]). We found a good overall agreement between the two me-
thods; in particular, the GAM estimates of the hazard function closely overlapped the Bayesian ones.  

The low frequency of events occurring at later follow-up times had some influence on the efficiency of the 
sampling algorithm: in fact, for estimating the model with time-varying coefficients we were forced to truncate 
the follow-up period to 15 years. However, MCMC diagnostics evidenced no further problems after this. More-
over, it is likely that the above scarcity of events affected the accuracy of the estimates of the hazard in the upper 
tail of the follow-up. Higher or more specific case series are needed for improving the “information content” of 
such estimates, whatever the specific estimation method or family of regression models adopted in the analysis.  

Concerning the interpretation of the hazard function, the shape of the hazard resulting in the breast cancer da-
ta set was in agreement with clinical knowledge, thus suggesting that the estimation method has a good reliabil-
ity in our example.  

The application of the method on a relatively small case series (sarcoma dataset) yielded both positive and 
negative results. Concerning the former ones, the estimates of regression coefficients were robust with respect to 
the specification of the “structural components” of the regularized PE model (same as above). As emerged in 
previous work ([16]), this holds also for the estimates of the survival function. The “bad” result consists in the 
sensitivity of the posterior estimates of the hazard function with respect to the structural components of the 
model. In this application the prior density for the smoothing parameter was the major determinant of the dif-
ferences between the competing models. An interesting result was that the estimates from the “best” model, ac-
cording to the DIC criterion, were the most close to the corresponding estimates from GAM regression. This 
could be a good hint in favor of the utility of the DIC for picking up the best approximation of the underlying 
hazard; however, a more thorough investigation is needed concerning its effective performances.  

5. Conclusions 
Our approach provides a practical alternative for regularized estimation of survival regression models. The 
Gibbs sampling algorithm provides efficient computation of the posterior estimates in the examples reported 
here. General software routines may be used in real applications, thus facilitating the application of Bayesian 
P-splines to practitioners. Overall, the estimates are robust with respect to the choice of the components of the 
smoothing functions included in the model, and provide reliable results. The issue of the sensitivity with respect 
to the priors results to be limited to the estimates of the hazard function, and seems more only when a relatively 
small case series are under investigation.  

Overall, the proposed method could be a useful tool for the flexible modeling of disease dynamics in complex 
frameworks like cancer follow-up studies. 
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Appendix 1 
Table A1. Estimates for application 1: Posterior means and 95% credible intervals (a) hazard parameters, second order dif-
ference penalty. (b) Regression coefficients, second order difference penalty.                                                  

(a) 

 

prior: 
Uniform (0,100) 

Prior: 
−1 (1,1) 

Prior: 
−1 (10−2,10−2) 

Prior: 
−1 (10−4,10−4) 

Prior: 
−1 (10−6,10−6) 

post 
mean upper lower post 

mean upper lower post 
mean upper lower post 

mean upper lower post 
mean upper lower 

α11 −5.776 −6.377 −5.145 −5.797 −6.360 −5.174 −5.857 −6.447 −5.266 −5.844 −6.418 −5.226 −5.859 −6.462 −5.263 

α12 −0.026 −0.101 0.032 −0.029 −0.106 0.033 −0.019 −0.087 0.037 −0.019 −0.090 0.037 −0.018 −0.084 0.037 

α21 −0.629 −1.082 −0.223 −0.772 −1.218 −0.327 −0.616 −1.072 −0.211 −0.591 −1.042 −0.200 −0.592 −1.020 −0.197 

α22 −0.317 −0.647 0.006 −0.283 −0.663 0.109 −0.316 −0.630 0.026 −0.316 −0.617 0.000 −0.319 −0.630 0.003 

α23 −0.141 −0.488 0.218 −0.172 −0.586 0.242 −0.148 −0.495 0.193 −0.130 −0.462 0.187 −0.129 −0.458 0.190 

α24 0.191 −0.210 0.632 0.305 −0.176 0.779 0.208 −0.167 0.658 0.160 −0.152 0.553 0.159 −0.174 0.555 

α25 −0.112 −0.588 0.299 −0.291 −0.771 0.245 −0.146 −0.617 0.267 −0.104 −0.522 0.244 −0.087 −0.515 0.280 

α26 0.228 −0.161 0.717 0.410 −0.131 1.016 0.265 −0.163 0.744 0.250 −0.119 0.680 0.225 −0.163 0.702 

α27 −0.063 −0.540 0.340 −0.131 −0.693 0.414 −0.085 −0.545 0.334 −0.092 −0.490 0.264 −0.093 −0.583 0.298 

α28 −0.123 −0.641 0.363 −0.178 −0.847 0.466 −0.108 −0.591 0.343 −0.107 −0.605 0.307 −0.069 −0.538 0.390 

α29 −0.034 −0.550 0.435 −0.086 −0.877 0.670 −0.022 −0.507 0.484 −0.010 −0.500 0.415 −0.057 −0.558 0.434 

α210 0.205 −0.298 0.897 0.379 −0.442 1.448 0.142 −0.472 0.651 0.163 −0.256 0.805 0.168 −0.286 0.694 

α211 0.011 −0.561 0.566 −0.020 −0.952 0.844 0.069 −0.461 0.652 0.025 −0.531 0.536 0.058 −0.433 0.577 

α212 −0.025 −0.623 0.559 −0.088 −0.965 0.708 −0.030 −0.553 0.502 −0.030 −0.589 0.486 −0.033 −0.579 0.487 

α213 −0.019 −0.604 0.647 0.037 −0.836 1.018 −0.007 −0.562 0.575 0.006 −0.550 0.577 −0.004 −0.550 0.537 

α214 −0.106 −0.760 0.497 −0.169 −1.108 0.789 −0.088 −0.745 0.525 −0.088 −0.663 0.458 −0.090 −0.695 0.433 

α215 −0.094 −0.861 0.603 −0.190 −1.268 0.858 −0.082 −0.782 0.569 −0.075 −0.733 0.517 −0.063 −0.734 0.557 

α216 −0.054 −0.878 0.669 −0.111 −1.325 1.006 −0.045 −0.783 0.641 −0.040 −0.737 0.592 −0.040 −0.740 0.618 

1/τ2 0.358 0.175 0.678 0.578 0.378 0.900 0.400 0.172 0.605 0.315 −1.042 −0.200 0.316 0.158 0.562 
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(b) 

 

Prior: 
Uniform (0,100) 

Prior: 
Γ-1(1,1) 

Prior: 
Γ-1(10−2,10−2) 

Prior: 
Γ-1(10−4,10−4) 

Prior: 
Γ-1(10−6,10−6) 

post 
mean upper lower post 

mean upper lower post 
mean upper lower post 

mean upper lower post 
mean upper lower 

β1 −0.550 −0.829 −0.252 −0.533 −0.814 −0.242 −0.538 −0.816 −0.235 −0.541 −0.842 −0.233 −0.537 −0.827 −0.248 

β2 −0.671 −0.957 −0.379 −0.656 −0.931 −0.373 −0.660 −0.934 −0.355 −0.666 −0.956 −0.365 −0.660 −0.939 −0.369 

β3 −0.397 −0.704 −0.098 −0.384 −0.692 −0.080 −0.387 −0.678 −0.086 −0.390 −0.687 −0.080 −0.388 −0.669 −0.090 

β4 −0.363 −0.704 −0.001 −0.351 −0.703 0.003 −0.353 −0.691 −0.004 −0.355 −0.719 0.009 −0.353 −0.682 −0.011 

β5 0.530 0.126 0.975 0.551 0.162 0.960 0.562 0.172 1.005 0.556 0.166 0.954 0.556 0.166 0.986 

β6 0.637 0.242 1.064 0.654 0.259 1.064 0.665 0.273 1.095 0.659 0.262 1.062 0.660 0.265 1.085 

β7 0.845 0.431 1.280 0.862 0.458 1.275 0.878 0.488 1.306 0.870 0.486 1.281 0.871 0.470 1.300 

β8 1.167 0.731 1.619 1.185 0.761 1.625 1.197 0.767 1.677 1.190 0.785 1.627 1.193 0.764 1.650 

β9 −0.037 −0.256 0.183 −0.041 −0.265 0.179 −0.039 −0.259 0.175 −0.039 −0.260 0.185 −0.038 −0.265 0.180 

β10 0.208 −0.041 0.444 0.204 −0.052 0.442 0.210 −0.035 0.443 0.211 −0.051 0.459 0.208 −0.048 0.442 

β12 0.885 0.651 1.106 0.888 0.662 1.101 0.884 0.665 1.104 0.884 0.657 1.109 0.892 0.663 1.118 

β13 0.145 −0.015 0.301 0.148 −0.009 0.313 0.146 −0.019 0.305 0.144 −0.015 0.302 0.148 −0.014 0.309 

β14 0.194 −0.114 0.480 0.197 −0.109 0.491 0.196 −0.115 0.484 0.198 −0.117 0.499 0.197 −0.117 0.486 
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