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Abstract 
Generalized linear mixed models (GLMMs) are typically constructed by incorporating random ef-
fects into the linear predictor. The random effects are usually assumed to be normally distributed 
with mean zero and variance-covariance identity matrix. In this paper, we propose to release 
random effects to non-normal distributions and discuss how to model the mean and covariance 
structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo 
(QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy 
and stabilization, which is demonstrated by real binary salamander mating data analysis and si-
mulation studies. 
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1. Introduction 
Generalized linear mixed models (GLMMs) are very helpful and widely used for analyzing discrete data and 
data from exponential family distributions. Statistical inference of GLMMs is challenging due to the incorpora-
tion of random effects, especially for example, the marginal likelihood has the form of analytical intractable 
high dimensional integration. The existing and popular statistical methods include: 1) analytical Laplace ap-
proximation: the uncorrelated penalized quasi-likelihood (PQL) by Breslow and Clayton (1993) [1] and corre-
lated PQL by Lin and Breslow (1996) [2]; hierarchical generalized linear models (HGLM) procedure by Lee and 
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Nelder (2001) [3]; 2) numerical technique: Bayesian approach with sampling by Karim and Zeger (1992) [4]; 
MCEM algorithm by Booth and Hobert (1999) [5]; Gauss-Hermite quadrature (GHQ) by Pan and Thompson 
(2003) [6]; Quasi-Monte Carlo (QMC) and Randomized QMC method by Pan and Thompson (2007) [7] and 
Aleid (2007) [8]. 

One common idea in above literatures is random effects in GLMMs, which represent latent effects between 
individuals, follow normal distribution with mean zero and identity covariance matrix. However, these 
assumptions are not always valid in practice because individual has its own special natures and may not be 
normal distributed. To address this issue, multivariate t distribution and multivariate mixture normal distribution 
will be assumed for random effects in GLMMs. Quasi-Monte Carlo (QMC) method through iterative Newton- 
Raphson (NR) algorithm solves the high-dimensional integration problem in the marginal likelihood under the 
non-normal assumptions. 

Review of GLMMs and the marginal Quasi-likelihood will be proposed in Section 2. QMC approximation, 
the simplest Good Point set (square root sequence) and analytical form of maximum likelihood estimates (MLEs) 
in GLMMs will be discussed in Section 3. The idea of modified cholesky decomposition and joint modelling of 
mean and covariance structure will be explained in Section 4. In Section 5, the salamander data will be analyzed 
as an example under the assumption of multivariate t distribution of random effects, then simulation study with 
same design protocol as salamander data followed in Section 6. Discussions on the related issues and further 
studies are given in Section 7. 

2. Generalized Linear Mixed Models  
The generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into 
the linear predictor of a conditionally independent exponential family model (McCulloch, 2003, [9]).  
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where iY  denotes the observed response, 1, 2, ,i n=  , i′x  is the thi  row of design matrix; β  is 1p×  
fixed effect parameter; i′z  is the thi  row of the second design matrix; b  is 1q×  random effect.  

( ) ( )|b
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Y b b d v
a a
ϕ ϕϑ µ′′= = = , where ia  is a prior weight, ϕ  is a  

known overdispersion scalar, iϑ  is the natural parameter, and ( )v ⋅  is variance function (McCulloch and 
Nelder, 1989, [10]). 

In this definition we see the usual ingredients of a generalized linear model. First, the distribution of iY  from 
an exponential family (in this case the distribution is assumed to hold conditional on the random effect b ). 
Second, a link function, ( ).g  is applied to the conditional mean of iY  given b  to obtain the conditional 
linear predictor iη

b . When iη
b  is identical to the iϑ , GLMMs is said to have canonical to link function. 

Finally, the linear predictor is assumed to consist of two components, the fixed effects portion, described by 
iβ′x  and random effects portion, i′z b , for which a distribution is assigned to b . e.g. if b  is said to follow a 

q-dimensional t distribution, denote by ( ), ,qT µ ν∼ Σb , and its density function is given by  
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with the mean of b  is ( )1µ ν >  and the covariance matrix of b  is ( )2
2

ν ν
ν
Σ

>
−

 respectively, where µ   

is a 1q×  vector, Σ  is a q q×  symmetric positive definite matrix, ν  is the degree of freedom. If b  is said 
to follow a q-dimensional mixture normal distribution F  

( ) ( ) ( )1 1 , 1 1 ,q q q qF N Nπ π λ π πλ = − − Σ + − Σ                         (2) 

with mean 10q× , covariance matrix ( )1 1 1q qπ π ′Σ + −  where [ ]0,1π ∈ , ( )1 1, ,1q
′=   is 1q×  vector, Σ  is 

a q q×  symmetric positive definite matrix. 
In GLMMs, statistical inferences of β  and θ  are estimated in most literatures, β  is 1p×  fixed effect 

parameter, θ  is a vector parameter in covariance matrix of random effect, ( )b θΣ . Quasi-likelihood function 
of ( ),β θ  in GLMMs is also called the marginal quasi-likelihood function which expressed by  
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determinates the conditional log quasi-likelihood of β  and θ  given b  (Breslow and Clayton, 1993, [1]). 
( );F b θ  is cumulative distribution function (CDF) of random effect b. 
It is extremely challenging to obtain the maximum likelihood estimates (MLEs), ( )ˆ ˆ,β θ , which maximize (3) 

or (4). Although the integration involves an analytical expression, the computational problems are magnified 
when the specified model contains a large number of random effects and random effects have a crossed designed 
according to data description. 

3. Quasi-Monte Carlo Integration and Estimation 
3.1. Quasi-Monte Carlo Integration  
Quasi-Monte Carlo (QMC) sequences are a deterministic alternative to Monte Carlo (MC) sequences (Niederreiter, 
1992, [11]). For the q-dimensional unit cube domain [ )0,1 qqC = , the Quasi-Monte Carlo approximation is  

( ) ( )
1
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k
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≈ ∑∫ , 

where sample points 1 2, , , Kx x x  should be selected to minimize the error of the integral quadrature. 
If the integrand f has finite variation, then the error of the quasi-Monte Carlo quadrature can be bounded using 

the Koksma-Hlawka inequality  
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where ( )V f  is variation of ( )f x  in the sense of Hardy and Krause (Fang and Wang, 1994, [12]) and 
( )*

1 2, , , KD x x x  is the star discrepancy of sample points, which is a measure of uniformity of distribution of a 
finite point set { }:1kx k K≤ ≤ , defined by 

( ) ( ) ( )*
1 2, , , supK

A

m A
D x x x V A

K
= −

, 

where A is an arbitrary q-dimensional subcube parallel to the coordinate axes and originating at the centre, 
( )V A  is its volume, and ( )m A  is the number of sample points inside this subcube. 
For carefully selected sample points, the discrepancy and consequently the error of low-discrepancy sequ-  
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ences (Niederreiter, 1992, [11]) can be in the order of ( )( )1 1log qO K K− − , which is much better than ( )1 2O K −   

the probabilistic error bound of Monte Carlo methods (Fang and Wang, 1994, [12]). Moreover, quasi-Monte 
Carlo methods guarantee this accuracy in a deterministic way, unlike Monte Carlo methods where the error 
bound is also probabilistic. 

In the QMC approach, there exist precise construction algorithms for generating the required points. These 
algorithms can be divided into two families, the Lattice rule and Digital-net. Only the good point set, which is 
belong to lattice rule (Fang and Wang, 1994, [12]) will be used and discussed in following sections. 

3.2. The Good Point (GP) Set  
A good point ( )1 2, , , q

q Cν ν ν ν= ∈ , where [ )0,1 qqC =  is a hypercube. The set kP  consists of the first K  

points of the set { } { } { }( ){ }1 2, , , 1, 2, ,qk k k k Kν ν ν =  , where { }y  represents the fractional part of the value  

y. In practice, the following forms of the good point ν  are recommended as square root sequence  

{ } { } { }( )1 2, , , qp p pν =  , 

where ip , 1 i q≤ ≤ , is a series of prime numbers, for example, the first q primes ifi jp p i j≠ ≠ . 

3.3. MLE in GLMMs by QMC Estimation  
When QMC method applied to marginal quasi-likelihood function (4)  
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where ( )1 .F −  is the inverse of CDF of b  and ( )
1
2
b θΣ  is the square root of bΣ , for example, it can be taken  

as the Cholesky decomposition of bΣ  or eigenvalue-eigenvector decomposition. 
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 , kw  is a weight for the kth point in the ith subject and it has the following form  
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The weight kw  given in (9) is a function of β  and θ , i.e. ( ),k kw w β θ≡ , which must be taken into 
account when calculating the second-order derivatives. 

The score Equations (7) and (8) in general have no analytical solutions for β  and θ . A numeral solution is 
given by Pan and Thompson (2007) [7], which used Newton-Raphson algorithm. 
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 is Hessian matrix of log like-  

lihood. 
Calculation of the Hessian matrix is difficult and its computation is intensive. When the difference between 
( )mβ  and ( )1mβ −  and the difference between ( )mθ  and ( )1mθ −  are both sufficient small, the maximum like- 

lihood estimates are confirmed, that is, the convergence is reached. The calculation process of Hessian matrix is 
given in Appendix A, which is an extension of Hessian matrix in Pan and Thompson (2007) [7]. At convergence,  

the MLEs, ( )ˆ ˆ,β θ ′  and asymptotic variance-covariance matrix of ( )ˆ ˆ,β θ ′  can be obtained.  

4. Modified Cholesky Decomposition and Covariance Modelling for Random  
Effects  

Modified Cholesky decomposition of 1
b
−Σ , rather than bΣ , and joint modelling of mean and covariance matrix 

were published by Pourahmadi (1999, 2000) [13] [14], to obtain a statistically meaningful unconstrained pa- 
rameterization of covariance. The remarkable advantages are: 1) it guarantees covariance matrix is positive 
definite; 2) it reduces the number of parameters so that it makes computation efficient; 3) it has very clear 
statistical interpretation. The main idea of modified cholesky decomposition is that a q q×  symmetric matrix 

bΣ  is positive definite if and only if there exist a unique unit lower triangular matrix T, with 1 as diagonal 
entries, and unique diagonal matrix D with positive diagonal entries such that  

bT T D′Σ = , 

where  
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It offers a simple unconstrained and statistically meaningful reparametrization of the covariance matrix. So 
( ) 11

b T D T −− ′Σ =  and 1 1
b T D T− −′Σ = . T and D are easy to compute and interpret statistically: the below-diagonal 

entries of T are the negatives of the autoregressive coefficients (ACs), jkφ , in the autoregressive model.  

( )
1

1

ˆ 1
j

j jk k
k

b b k j qφ
−

=

= ≤ < ≤∑ ,                               (11) 

where jb  is a 1 1×  number, which index the jth dimension of random effect b. That is, the linear least squares 
predictor of jb  based on its predecessors 1 1, ,jb b−  . On the other hand, the diagonal entries of D are the 
innovation variances (IVs), ( )2 Varj jeσ = , where ˆ

j j je b b= −  with ˆ
jb  given by (11). Obviously we have  

( )Cov , 0j ke e =  if j k≠  ( )1 ,j k q≤ ≤ . Denote ( )1, , qe e e ′=  . It is obvious e Tb= , so that ( )0,qe N D∼ . 

The linear joint models of the autoregressive coefficients (ACs) and the logarithms of innovation variances 
(IVs)  
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                                     (12) 

where ( )*
11jkc q′ ×  and ( )*

21jh q′ ×  are covariates, and γ  and λ  are low-dimensional parameter vectors. The 
choice of covariate vectors jkc  and jh  are flexible in some senses. 

5. Salamander Data Analysis  
The famous salamander interbreeding data set was published by McCullagh and Nelder (1989), which came 
from three repeated same protocol design experiments. The salamanders originally lived in two geographically 
isolated populations, Roughbutt (RB) and Whiteside (WS). Each experiment involved in two closed groups and 
each group involved 5 females and 5 males from each population. In a fixed period, each female mated with 6 
males, 3 from each population. So 60 correlated binary observations were created in each closed group, and 
totally, 360 binary observations (1 for successful interbreeding, 0 for failed interbreeding) were in three ex- 
periments. The primary two objectives of experiment are to study whether the successful mating rate is sig- 
nificant between populations and if heterogeneity between individuals in the mating probability exists. This 
binary data set is challenging because it is block crossed, correlated, balanced (as each female mated with a total 
of six males and vice verse) and incomplete (as each female mated with just three out of a possible five males, 
and vice verse). 

In a closed group, 5 females and 5 males from each population involved, so total 20 salamander were indexed 
by i or j. Denoting by ijy  the outcome for the mating of the ith female with the jth male, the logit mixed model 
for each experiment  

( ) ( )logit log , 1, , 20
1

b
ijb f m

ij ij i jb
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p
p x b b i j

p
β

 
′= = + + =  − 

 ,                (13) 

where the conditional probability { }Pr 1| ,b f m
ij ij i jp y b b= =  is used to model the correlated binary responses.  

( )T
1, , ,f m f m

ij i j i jx ws ws ws ws= × ,                             (14) 

1f
iws =  if the thi  female comes from WS, otherwise 0. Similarly, 1m

jws =  if the thj  male comes from WS, 
otherwise 0. 

Here the random effect is not assumed as normal distribution but multivariate t distribution with degree of 
freedom 3,7,10,15ν = , ( )20 0, ,T ν∼ Σb . 

Note that each experiment includes two closed groups and involves 40 salamanders so that the log-likelihood 
for each experiment involves a 40-dimensional integrals. The dimensionality for each experiment can be further 
reduced to the sum of two 20-dimensional integrals due to the block design of two closed groups, see Karim and 
Zeger (1992) [4] and Shun (1997) [15] for more details about the design. When the three experiments data are 
pooled as in model (13), the log-likelihood   is a sum of six 20-dimensional integrals so that the MLEs of the 
fixed effects β  and variance components θ  become extremely difficult to obtain. 

Modelling bΣ  for salamander mating data, 20q = , *
1 4q =  and *

2 4q = . The autoregressive coefficients 
(ACs) model is reordered as  
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where Φ  is a 190 1×  vector, C  is a 190 4×  matrix, ic′  is the thi  row of C , 1, ,190i =  . 

( )1 2 1 2 1 2 1 2 1 2, , , , ,1, , ,i d d d d d d d d d dc c G D G D′ ′= = × , 

where 

( )1 20 1 2 2i d d= + + + + − + , 

1 2, 1d dG =  if 1
thd  and 2

thd  salamander come from different genders, otherwise 0. Similarly, 
1 2, 1d dD =  if 1

thd  
and 2

thd  salamander come from different districts (populations), otherwise 0. 
The logarithms of innovation variances (IVs) model is  

2
1 1 1

2
2
20 20 3

log

log

h

h

σ λ
λ λ

σ λ

  ′  
    = = =    

    ′   

  HΩ  

where H  is a 20 3×  matrix, λ  is a 3 1×  vector, ( )2 1, , 20j jσ =   describes the variance of the thj  sala- 
mander  

( )1,Gender ,District 1, , 20j j jh j′ = =  , 

where Gender 1j = , if the thj  salamander is female, otherwise 0. Similarly, District 1j =  if the thj  sala- 
mander comes from WS, otherwise 0. 

In the logarithms of innovation variances (IVs) model, originally there were 4 covariates including the item 
Gender Districtj j×  with interaction parameter 4λ . But the results showed that 4λ  approximately equals zero 
and has smaller order of magnitude than 2λ  and 3λ . The hypothesis test also showed that there is no evidence 
to reject 4 0λ = . 

The salamander data is now analyzed by using QMC approach to calculate the MLEs of the fixed effects and 
variance components involved in the model. Specifically, we implement the simplest QMC point, square root 
sequences to estimate the parameters for the modelling of the pooled data. A set of 20-dimensional points on the 
unit cube [ )2020 0,1C =  were generated for the six 20-dimensional integrals. Then the points are modified  

through using transformation, ( )
1
2 1 .b F −Σ , where ( ).F  is the cumulative distribution function of the multi-  

variate t distribution, 
1
2
bΣ  is the modified Cholesky decomposition for ( )1 1

2 2
b b b

′
Σ = Σ ⋅ Σ . After that, we approxi-  

mate the integrated log-likelihood, then we use the Newton-Raphson algorithm (10) to maximize the appro- 
ximated log-likelihood function. 

The covariance modelling for ( )Covb bΣ = , the covariance matrix of random effect, uses 4 parameters for 
autoregressive coefficients of ib  and jb , 1 , 20i j≤ ≤ , (i and j index the dimension of b while ib  means the  

thi  salamander’s latent effect) and plus 3 parameters for innovation variances of ˆ
j jb b− , ( )ˆvar j jb b− ,  

1, , 20j =  . Using this joint modelling method to analyze the real world data can estimate bΣ  more to the true 
one because of no factitious assumption on it, instead, only the data tells us what is bΣ . Another advantage is  

the parameter is reduced from ( )20 20 1
2

× +
 to 7 in bΣ . This reduction of number of parameters makes the  

computation easier. Note that, the higher the dimension q, the more significant this advantage. Third, the 
modified Cholesky decomposition confirms that unconstrained parameters lead to strict condition that is the bΣ  
is a symmetric positive definite matrix. 

In the calculations, the convergence accuracy is set to be ( ) ( )( ) ( ) ( )( )2 21 1 0.01m m m mβ β θ θ− −− + − ≤ . The  

numerical results from Tables 1-4 show that for each of the degree of freedom, QMC method make the 
maximum log-likelihood similar when increasing the number of QMC points from 10,000 to 100,000 which 
indicates any number of points between these could prove reasonable estimate of the parameters. In addition, the 
parameter estimates using these sequences become stable quickly. Bearing in mind that the integral space is  
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Table 1. MLEs of the parameters by covariance modelling for the pooled salamander data using square root sequence points 
when varying K, the number of square root sequence points (standard errors in parentheses) (random effect-multivariate 3t ).                                

K  0β  1β  2β  3β  1γ  2γ  3γ  4γ  1λ  2λ  3λ  m̂axl  iteration  

10,000 0.98 −2.92 −0.94 3.69 0.00042 0.00035 0.0061 0.0024 0.26 −0.038 0.0084 −220.14 9 
 (0.50) (0.65) (0.23) (0.31) (0.0043) (0.0018) (0.0048) (0.0040) (0.0017) (0.043) (0.053)   

20,000 0.72 −2.93 −0.89 3.72 0.00069 0.0028 −0.0078 0.0054 0.18 0.0019 0.0089 −219.48 3 
 (0.42) (0.60) (0.36) (0.59) (0.0029) (0.0094) (0.0028) (0.0058) (0.0042) (0.072) (0.043)   

30,000 1.23 −3.03 −0.82 3.84 0.000017 0.0059 −0.0028 −0.0026 0.28 0.0046 0.00029 −218.29 5 
 (0.37) (0.48) (0.29) (0.62) (0.00038) (0.0028) (0.0000) (0.0029) (0.0000) (0.031) (0.036)   

40,000 1.26 −2.98 −0.94 3.69 0.00043 0.00060 −0.0035 0.0043 0.39 0.0042 0.0013 −219.63 2 
 (0.32) (0.50) (0.22) (0.53) (0.0000) (0.00016) (0.00053) (0.0013) (0.0025) (0.0028) (0.034)   

50,000 1.28 −3.02 −0.92 3.73 −0.00053 0.00028 0.00073 −0.00023 0.42 −0.0028 0.0046 −218.94 3 
 (0.30) (0.44) (0.25) (0.67) (0.0000) (0.00019) (0.0000) (0.0000) (0.0038) (0.045) (0.027)   

60,000 1.23 −2.99 −0.91 3.69 0.00043 0.00039 −0.0072 0.00034 0.43 −0.0028 0.0028 −216.42 2 

 (0.30) (0.46) (0.24) (0.68) (0.00035) (0.0000) (0.0022) (0.0000) (0.0027) (0.048) (0.0075)   

70,000 1.27 −3.04 −0.92 3.73 0.00054 0.00047 0.0082 0.0041 0.41 −0.0039 0.00046 −216.21 2 

 (0.34) (0.44) (0.10) (0.64) (0.00048) (0.0000) (0.0035) (0.0027) (0.081) (0.023) (0.037)   

80,000 1.28 −3.02 −0.94 3.76 −0.00037 −0.0027 0.0083 0.0029 0.42 −0.00022 −0.00056 −216.65 2 

 (0.39) (0.52) (0.19) (0.65) (0.0025) (0.0000) (0.0028) (0.0027) (0.034) (0.052) (0.030)   
90,000 1.21 −2.92 −0.88 3.77 −0.00029 −0.0026 0.0078 −0.0036 0.37 0.0064 −0.0023 −216.96 1 

 (0.23) (0.43) (0.24) (0.62) (0.0073) (0.0073) (0.0076) (0.00058) (0.00028) (0.055) (0.029)   
100,000 1.29 −3.05 −0.93 3.72 −0.00094 −0.0018 0.0089 0.0032 0.42 −0.0029 −0.00041 −216.34 2 

 (0.40) (0.48) (0.17) (0.55) (0.0031) (0.0026) (0.0065) (0.0089) (0.0097) (0.046) (0.033)   

 
Table 2. MLEs of the parameters by covariance modelling for the pooled salamander data using square root sequence points 
when varying K, the number of square root sequence points (standard errors in parentheses) (random effect-multivariate 7t ).                                

K  0β  1β  2β  3β  1γ  2γ  3γ  4γ  1λ  2λ  3λ  m̂axl  iteration  

10,000 0.58 −2.68 −0.98 3.77 0.00056 0.00023 0.00089 0.0061 0.47 0.0014 0.024 −212.37 7 

 (0.36) (0.52) (0.43) (0.67) (0.0026) (0.0052) (0.0059) (0.0049) (0.0036) (0.023) (0.031)   

20,000 0.64 −2.85 −0.89 3.61 0.00012 0.0036 0.00056 0.0056 0.49 −0.0016 −0.0023 −209.58 4 

 (0.50) (0.49) (0.32) (0.59) (0.00023) (0.0039) (0.00067) (0.0048) (0.0002) (0.033) (0.020)   
30,000 1.34 −2.98 −0.97 3.72 0.00023 0.00053 −0.0036 −0.0032 0.30 0.0024 0.00042 −210.32 4 

 (0.33) (0.42) (0.35) (0.64) (0.0000) (0.0083) (0.0032) (0.0037) (0.0000) (0.042) (0.023)   
40,000 1.26 −3.05 −0.95 3.66 0.00017 0.00024 −0.0082 0.0021 0.39 0.0032 0.0034 −211.26 3 

 (0.38) (0.35) (0.24) (0.53) (0.00024) (0.00037) (0.00038) (0.0016) (0.0000) (0.0034) (0.0037)   
50,000 1.28 −3.05 −0.96 3.70 0.00037 0.00054 0.00027 0.00072 0.43 −0.0013 0.0027 −207.93 2 

 (0.41) (0.37) (0.27) (0.64) (0.0000) (0.00015) (0.0000) (0.0012) (0.0027) (0.013) (0.0092)   
60,000 1.27 −3.11 −0.99 3.68 0.00043 0.00082 −0.0034 0.00083 0.46 −0.0035 0.0047 −210.29 3 

 (0.41) (0.42) (0.21) (0.59) (0.0000) (0.00034) (0.0032) (0.0000) (0.0039) (0.034) (0.0023)   

70,000 1.29 −3.11 −0.96 3.69 0.00072 0.00036 0.0055 0.00023 0.49 −0.0032 0.00039 −210.34 2 
 (0.38) (0.38) (0.20) (0.56) (0.00023) (0.0000) (0.0048) (0.0000) (0.032) (0.018) (0.0034)   

80,000 1.28 −3.08 −0.98 3.66 −0.00031 −0.0052 0.0024 0.0042 0.47 −0.0037 −0.00027 −210.55 1 
 (0.41) (0.39) (0.24) (0.54) (0.00031) (0.00027) (0.0023) (0.0000) (0.025) (0.039) (0.0090)   

90,000 1.23 −3.06 −0.89 3.70 −0.00079 −0.0036 0.0030 −0.0013 0.37 0.0029 −0.0016 −210.16 2 

 (0.35) (0.52) (0.19) (0.36) (0.00015) (0.0014) (0.0045) (0.00032) (0.00082) (0.021) (0.0024)   

100,000 1.27 −3.10 −0.97 3.68 −0.00034 −0.0019 0.0043 0.0012 0.45 −0.0036 −0.00034 −210.38 2 

 (0.43) (0.45) (0.20) (0.55) (0.00028) (0.0035) (0.0023) (0.0013) (0.0037) (0.035) (0.0027)   
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Table 3. MLEs of the parameters by covariance modelling for the pooled salamander data using square root sequence points 
when varying K, the number of square root sequence points (standard errors in parentheses) (random effect-multivariate 10t ).                                

K  0β  1β  2β  3β  1γ  2γ  3γ  4γ  1λ  2λ  3λ  m̂axl  iteration  

10,000 0.72 −2.99 −0.82 3.66 0.0003 0.0004 0.0036 0.0020 0.24 −0.046 −0.0098 −212.32 2 
 (0.49) (0.78) (0.39) (0.07) (0.0042) (0.0037) (0.0034) (0.0029) (0.0051) (0.056) (0.046)   

20,000 0.68 −2.93 −0.68 3.61 0.00082 0.0039 −0.0098 0.0047 0.098 0.0093 0.0085 −209.67 3 
 (0.34) (0.61) (0.67) (0.61) (0.0072) (0.0087) (0.0078) (0.0070) (0.044) (0.067) (0.034)   

30,000 1.27 −2.89 −1.02 3.68 −0.000017 0.0027 −0.0023 −0.0042 0.47 0.0064 0.00039 −211.24 4 
 (0.23) (0.53) (0.27) (0.57) (0.00082) (0.0092) (0.0000) (0.0000) (0.0000) (0.024) (0.027)   

40,000 1.24 −2.88 −0.93 3.68 −0.0004 0.00063 −0.0013 0.0029 0.39 0.0041 0.0061 −212.36 2 
 (0.31) (0.58) (0.33) (0.51) (0.00094) (0.00067) (0.00036) (0.00083) (0.0036) (0.0065) (0.035)   

50,000 1.23 −2.87 −0.92 3.72 0.00025 0.00087 0.000023 −0.00021 0.44 0.00026 0.0052 −211.04 2 
 (0.30) (0.52) (0.29) (0.59) (0.00067) (0.0000) (0.0000) (0.0000) (0.0000) (0.034) (0.018)   

60,000 1.20 −2.85 −0.97 3.69 0.00019 0.00093 −0.000026 0.00029 0.48 −0.00038 0.0038 −211.32 2 

 (0.32) (0.49) (0.31) (0.63) (0.0000) (0.0000) (0.0000) (0.0000) (0.0024) (0.062) (0.0087)   

70,000 1.20 −2.86 −0.98 3.72 0.00032 0.00072 0.0015 −0.0031 0.51 −0.00022 0.0063 −211.34 3 

 (0.33) (0.51) (0.092) (0.62) (0.00031) (0.0000) (0.00035) (0.0000) (0.052) (0.035) (0.043)   

80,000 1.22 −2.97 −0.94 3.75 −0.00051 −0.0023 0.0046 −0.0025 0.56 0.00097 −0.00026 −211.89 1 

 (0.40) (0.52) (0.25) (0.65) (0.0024) (0.00071) (0.0000) (0.0034) (0.028) (0.027) (0.031)   
90,000 1.19 −2.96 −0.89 3.73 −0.00062 −0.0042 0.0031 −0.0076 0.51 −0.0028 −0.0033 −211.83 2 

 (0.28) (0.47) (0.24) (0.63) (0.0026) (0.0075) (0.0083) (0.00045) (0.00039) (0.052) (0.025)   
100,000 1.27 −3.04 −0.90 3.70 −0.00071 −0.0034 0.0051 −0.0024 0.46 −0.0025 −0.00034 −211.52 3 

 (0.40) (0.52) (0.23) (0.65) (0.0031) (0.0023) (0.00054) (0.0089) (0.077) (0.055) (0.023)   

 
Table 4. MLEs of the parameters by covariance modelling for the pooled salamander data using square root sequence points 
when varying K, the number of square root sequence points (standard errors in parentheses) (random effect-multivariate 15t ).                                

K  0β  1β  2β  3β  1γ  2γ  3γ  4γ  1λ  2λ  3λ  m̂axl  iteration  

10,000 0.92 −2.99 −0.57 3.72 0.00060 0.00071 0.0058 0.0046 0.28 −0.037 −0.032 −212.53 5 
 (0.37) (0.34) (0.31) (0.07) (0.0033) (0.0069) (0.0077) (0.0069) (0.052) (0.058) (0.037)   

20,000 0.59 −2.90 −0.54 3.64 0.0013 0.0012 0.0062 0.0052 0.087 0.0079 −0.0004 −210.62 3 
 (0.36) (0.49) (0.55) (0.64) (0.0030) (0.0062) (0.0082) (0.023) (0.064) (0.059) (0.052)   

30,000 1.28 −2.92 −1.00 3.75 0.000031 0.0027 −0.0020 0.0033 0.45 0.0043 0.00063 −209.04 4 
 (0.15) (0.35) (0.23) (0.52) (0.0006) (0.0002) (0.0000) (0.0000) (0.0003) (0.025) (0.011)   

40,000 1.22 −2.92 −0.97 3.68 −0.00046 0.00089 −0.0043 0.0026 0.39 0.0021 0.0020 −209.01 2 

 (0.33) (0.50) (0.24) (0.57) (0.0001) (0.0000) (0.0000) (0.0000) (0.024) (0.043) (0.029)   
50,000 1.24 −2.93 −0.96 3.67 0.00033 0.00088 0.000059 0.0014 0.45 0.00020 0.0045 −209.21 2 

 (0.29) (0.48) (0.29) (0.54) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.032) (0.020)   

60,000 1.20 −2.89 −0.96 3.74 0.00042 0.00083 −0.00008 0.00081 0.41 −0.00038 0.0019 −209.39 1 
 (0.30) (0.51) (0.26) (0.59) (0.0000) (0.0003) (0.0000) (0.0000) (0.024) (0.037) (0.026)   

70,000 1.23 −2.86 −0.93 3.70 0.00054 0.00079 −0.00026 −0.0051 0.56 −0.00044 0.0020 −209.98 2 
 (0.35) (0.49) (0.070) (0.53) (0.0000) (0.0000) (0.0001) (0.0000) (0.064) (0.063) (0.050)   

80,000 1.23 −2.92 −0.92 3.75 −0.00092 −0.0012 0.0068 −0.0035 0.50 0.0021 0.00013 −209.13 2 

 (0.37) (0.45) (0.20) (0.61) (0.0012) (0.0022) (0.0004) (0.0047) (0.0013) (0.044) (0.027)   

90,000 1.18 −2.87 −0.87 3.72 −0.00048 −0.0045 0.0054 −0.0078 0.47 −0.0042 −0.0024 −209.48 3 

 (0.29) (0.42) (0.24) (0.59) (0.0020) (0.0077) (0.0055) (0.0000) (0.0000) (0.031) (0.023)   

100,000 1.27 −2.99 −0.91 3.69 −0.00082 −0.0030 0.0062 −0.0022 0.43 −0.0022 −0.00036 −207.86 3 
 (0.40) (0.50) (0.22) (0.56) (0.0022) (0.0040) (0.0000) (0.0034) (0.021) (0.026) (0.025)   
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20-dimensional unit cube so that even if the number of the QMC points is chosen as 100000K = , it is still 
small in such a space. Nevertheless, the numerical results show that the QMC points approximation based 
estimation in the GLMMs performs very well in terms of accuracy and stabilization. When using 100,000 QMC 
points, our Fortran code takes about 50 minutes to obtain the results. Furthermore, the convergence of our 
algorithm is usually made between the 3th and 5th iterations. On the other hand, increasing the number of points 
may lead to less iterations. 

For mean model, the estimators for fixed effects, β  are similar when K increases over 30,000. For 
autoregressive coefficients (ACs) model, the estimations of γ , including 1̂γ , 2γ̂ , 3γ̂  and 4γ̂  are very close 
to zero. For logarithms of innovation variances (IVs), only 1̂γ  is not close to zero. It needs to be noted that 
some of standard deviations are 0.0000 for γ̂  and λ̂ , which means those values are less than 710− . 

A criteria easy to be executed to decide which covariate is significant is if the estimator is greater than twice 
of standard error. So the four fixed effect parameters of β̂  are significant; four parameters for γ̂  are not; 1̂λ  
is significant, but 2̂λ  and 3̂λ  are not. The conclusion is that 1̂γ , 2γ̂ , 3γ̂ , 4γ̂  2̂λ  and 3̂λ  can be regarded 
as zero. In other words, T is an identity matrix and D is a diagonal matrix with the same element. So 2ˆ ˆb qIσΣ = , 
it can be said that every dimension of random effect of each salamander is independent of others. Also, the 
effects of female and male salamanders are independent and no heterogeneity between female and male. 

Another point is why the random effect is not assumed as multivariate mixture normal distribution for the 
salamander data because Newton-Raphson algorithm does not achieve convergency until the mixture normal 
distribution degenerates to normal distribution. 

6. Simulation  
We conducted a simulation study to assess the efficiency of the QMC estimation in the GLMMs, in particular, to 
assess the performance of the GP set point when the distribution of random effect is multivariate t distribution (1) 
and multivariate mixture normal distribution (2). Based on the logistic model in (13), we simulate the sala- 
mander pooling data, which have 360 correlated binary observations. In the simulation study, we run 100 
simulations. The same protocol design as the salamander mating experiment is adopted for the simulated data 
and the log-likelihood function for each simulated data set thus involves six 20-dimensional integrals that are 
analytically intractable. 

When using the QMC approximation, we generate 50000K =  integration nodes on the cube 20C  using the 
square roots of the first 20 prime numbers (the GP set method). Then, we use Equation (6) to approximate the 
integrated log-likelihood when random effect followed multivariate t distribution. When random effect followed 
multivariate mixture normal distribution, the log-likelihood changes to  
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.   (15) 

The Newton-Raphson algorithm (10) is used to maximize the approximated log-likelihood function. The true 
values are chosen to be (1.20, −2.80, −1.00, 3.60) for the fixed effects, ( )1.2, 0.6, 0.1, 0.4− −  for ACs para- 
meters and ( )2, 1,0.5−  for IVs parameters. ACs parameters and IVs parameters build variance components. 
The starting values for the algorithm are chosen to be the estimators as for the real data analysis. The 
convergence criterion is set to be 210−  for the successive iterated values. The algorithm stops after 20 iterations 
and is considered to be non-convergent. The simulation studies are conducted and coded in FORTRAN 
language and this programme was run on a PC Pentium (R) 4 PC (CPU 3.20 GHz). A summary of the 
simulation results is presented in Table 5 for multivariate t distribution and Table 6 for multivariate mixture 
normal distribution. The results given are the average parameter estimates based on 100 replications and their 
standard errors. 

It is clear that estimation by modified Cholesky decomposition with QMC approach is able to produce 
reasonably good results in GLMMs when the random effect is not normal distribution. When the random effects 
followed by multivariate t distribution (Table 5), the estimates of regression fixed effects and variance com- 
ponents are those on average of 100 simulation, which has little bias. That means the method of modified  
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Table 5. The average of the 100 parameter estimates in the simulation study, where the QMC approximation uses 
50000K =  points implemented using the gp set for random effect of multivariate 3t , 7t , 10t  and 15t  distribution (si- 

mulated standard errors are given in parentheses).                                                               

 0β  1β  2β  3β  1γ  2γ  3γ  4γ  

True 1.20 −2.80 −1.00 3.60 −1.20 0.60 −0.10 0.40 

3t  1.22 −2.95 −0.98 3.72 −1.20 0.60 −0.10 0.40 

StD 0.055 0.101 0.0950 0.179 −0.0000 −0.0003 0.0000 0.0000 

7t  1.18 −2.75 −0.88 3.51 −1.22 0.59 −0.11 0.43 

StD 0.05 0.10 0.10 0.19 −0.0001 0.0019 0.0053 0.0000 

10t  1.22 −2.86 −1.07 3.80 −1.20 0.61 −0.12 0.39 

StD 0.043 0.065 0.083 0.12 0.0000 −0.0007 0.0004 −0.0042 

15t  1.19 −2.84 −0.99 3.64 −1.20 0.62 −0.086 0.39 

StD 0.049 0.103 0.086 0.187 0.0001 −0.0067 0.0035 0.0072 

 1λ  2λ  3λ  max̂      

True −2.00 −1.00 0.50      

3t  −2.00 −1.00 0.50 −211.00     

StD −0.0000 −0.0000 −0.0000      

7t  −1.99 −1.02 0.52 −210.47     

StD −0.0001 0.0002 −0.0001      

10t  −1.98 −0.97 0.52 −211.36     

StD −0.0000 0.0014 0.0001      

15t  −2.01 −0.99 0.51 −209.93     

StD 0.0024 0.0024 0.0026      

 
Table 6. The average of the 100 parameter estimates in the simulation study, where the QMC approximation uses 

50000K =  points implemented using the gp set for random effect of multivariate mixture normal distribution by 0.25π = , 
0.5π =  and 0.75π =  (simulated standard errors are given in parentheses).                                                     

 0β  1β  2β  3β  1γ  2γ  3γ  4γ  

True 1.20 −2.80 −1.00 3.60 −1.20 0.60 −0.10 0.40 

0.25π =  1.29 −2.84 −0.97 3.45 −1.20 0.67 −0.085 0.43 

StD 0.050 0.11 0.10 0.19 0.0001 −0.0012 −0.0025 0.0002 

0.5π =  1.36 −3.20 −0.93 3.70 −1.21 0.57 −0.083 0.40 

StD 0.044 0.075 0.097 0.13 0.0000 0.0002 −0.0012 0.0026 

0.75π =  1.39 −3.16 −1.12 3.94 −1.20 0.64 −0.062 0.36 

StD 0.049 0.077 0.094 0.14 −0.0000 −0.056 −0.0026 −0.0060 

 1λ  2λ  3λ  max̂      

True −2.00 −1.00 0.50      

0.25π =  −2.00 −1.00 0.51 −212.10     

StD 0.0002 0.0016 0.0008      

0.5π =  −2.06 −1.06 0.47 −226.41     

StD 0.0000 0.0007 0.0005      

0.75π =  −1.99 −1.03 0.47 −299.15     

StD 0.0006 −0.0026 0.0002      
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Cholesky decomposition of covariance modelling with QMC approach is quite useful and effective. When the 
random effects followed by multivariate mixture normal distribution (Table 6), the estimates of regression fixed 
effects are acceptable although bigger bias, especially for fixed effects. The estimates of variance components 
are quite accurate. That is, when random effects change to two peaks distribution, the accuracy need to be en- 
hanced. 

7. Conclusion and Discussion  
It is quite common in the literatures that random effects are independent identically distributed normal variables 
in generalized linear models (GLMMs). In longitudinal study, the covariance-variance matrix of random effects 
for individuals are usually assumed to be homogeneous. However, this assumption may not be valid in practice. 
In this article, the assumption extends to random effects follow multivariate t and mixture normal distribution. 
Approximation of marginal quasi-likelihood and parameter estimation in GLMMs is very difficult and 
challenging because they involve integral on random effects, especially for high-dimensional problems. 

In this article, we have used Quasi-Monte Carlo (QMC) sequence approximation to calculate the maximum 
likelihood estimates and marginal log quasi-likelihood in GLMMs. The key idea of QMC sequences is to 
generate integration points which are scatted uniformly in the integration domain. The good point, one simple 
QMC point, is used through this article. Newton-Raphson (NR) algorithm is the iterative method to obtain op- 
timum. QMC-NR method converges very quickly and performs very well in terms of accuracy and stabilization. 
In longitudinal studies, the covariance structure plays a crucial role in statistical inferences. The correct 
modelling of covariance structure improves the efficiencies of the mean parameters and provides much more 
reliable estimates (Ye and Pan, 2006, [16]). The joint modelling (JM) for mean and for covariance-variance 
components for random effects reduces the number of parameters and has a clear statistical meaning. QMC-NR 
method with joint modelling can be called as QMC-NR-JM method. Although QMC-NR-JM method performs 
well in stability and produces accurate estimation of the parameters in GLMMs, there is no way to avoid 
intensive computation in real data analysis and simulation study. Particularly, the binary cross-designed sala- 
mander dataset, involving six 20-dimensional integrals in the log quasi-likelihood function, has been analyzed 
and the same protocol design is adopted for simulations. 

Note that a practical issue is how to select of the number of integration points? My solution is increasing the 
number of QMC points gradually until the MLEs become stable. It correspondingly leads to increasing the 
computational time and efforts. This problem is quite obvious for simulation study, especially when the number 
of parameters increases. Another worth noting issue is that a range of starting values for the fixed effects and 
variance components have been tried and we find that the different starting values almost can’t change the 
results when algorithm reaches convergency. 

In the QMC-NR-JM approximation method, the estimators of random effects cannot be calculated at the same 
time when estimating MLEs for fixed effects and variance components. Pan and Thompson (2007) [7] proposed 
an iterative method to predict of the random effects, implying that an initial value of b substituted into the 
equation to yield a new prediction of b. This process is then repeated until the convergence of b̂ , but this 
method cannot guarantee convergence for arbitrary data. So how to estimate the random effects is still a open 
question in QMC-NR-JM method. 

Acknowledgements 
We thank the editors and the reviewers for their comments. This research is funded by the National Social 
Science Foundation No. 12CGL077, National Science Foundation granted No. 71201029, No.71303045 and No. 
11561071. This support is greatly appreciated. 

References 
[1] Breslow, N.E. and Clayton, D.G. (1993) Approximate Inference in Generalized Linear Mixed Models. Journal of the 

American Statistical Association, 88, 9-25. 
[2] Lin, X. and Breslow, N.E. (1996) Bias Correction in Generalized Linear Mixed Models with Multiple Components of 

Dispersion. Journal of the American Statistical Association, 91, 1007-1016. 
http://dx.doi.org/10.1080/01621459.1996.10476971 

http://dx.doi.org/10.1080/01621459.1996.10476971


Y. Chen et al. 
 

 
580 

[3] Lee, Y. and Nelder, J.A. (2001) Hierrarchical Generalized Linear Models: A Synthesis of Generalized Linear Models, 
Random Effect Models and Structured Dispersions. Biometrika, 88, 987-1006.  
http://dx.doi.org/10.1093/biomet/88.4.987 

[4] Karim, M.R. and Zeger, S.L. (1992) Generalized Linear Models with Random Effects; Salamnder Mating Revisited. 
Biometrics, 48, 681-694. http://dx.doi.org/10.2307/2532317 

[5] Booth, J.G. and Hobert, J.P. (1999) Maximizing Generalized Linear Mixed Model Likelihoods with an Automated 
Monte Carlo EM Algorithm. Journal of the Royal Statistical Society, 61, 265-285.  
http://dx.doi.org/10.1111/1467-9868.00176 

[6] Pan, J. and Thompson, R. (2003) Gauss-Hermite Quadrature Approximation for Estimation in Generalized Linear 
Mixed Models. Computational Statistics, 18, 57-78. 

[7] Pan, J. and Thompson, R. (2007) Quasi-Monte Carlo Estimation in Generalized Linear Mixed Models. Computational 
Statistics and Data Analysis, 51, 5765-5775. http://dx.doi.org/10.1016/j.csda.2006.10.003 

[8] Al-Eleid, E.M.O. (2007) Parameter Estimation in Generalized Linear Mixed Models Using Quasi-Monte Carlo Me-
thods. PhD Dissertation, The University of Manchester, Manchester. 

[9] McCullouch, C.E. (2003) Generalized Linear Mixed Models. NSF-CBMS Regional Conference Series in Probability 
and Statistics Volume 7. Institution of Mathematical Statistics and the American Statistical Association, San Francisco. 

[10] McCulloch, P. and Nelder, J.A. (1989) Generalized Linear Models. 2nd Edition, Chapman and Hall, London.  
http://dx.doi.org/10.1007/978-1-4899-3242-6 

[11] Niederreiter, H. (1992) Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia.  
http://dx.doi.org/10.1137/1.9781611970081 

[12] Fang, K.T. and Wang, Y. (1994) Number-Theoretic Methods in Statistics. Chapman and Hall, London.  
http://dx.doi.org/10.1007/978-1-4899-3095-8 

[13] Pourahmadi, M. (1999) Joint Mean-Covariance Models with Applications to Longitudinal Data: Unconstrained Para-
meterization. Biometrika, 86, 677-690. http://dx.doi.org/10.1093/biomet/86.3.677 

[14] Pourahmadi, M. (2000) Maximum Likelihood Estimation of Generalized Linear Models for Multivariate Normal Co-
variance Matrix. Biometrika, 87, 425-435. http://dx.doi.org/10.1093/biomet/87.2.425 

[15] Shun, Z. (1997) Another Look at the Salamander Mating Data: A Modified Laplace Approximation Approach. Journal 
of the American Statistical Association, 92, 341-349. http://dx.doi.org/10.1080/01621459.1997.10473632 

[16] Ye, H. and Pan, J. (2006) Modelling Covariance Structures in Generalized Estimating Equations for Longitudinal Data. 
Biometrika, 93, 927-941. http://dx.doi.org/10.1093/biomet/93.4.927 

 
 

http://dx.doi.org/10.1093/biomet/88.4.987
http://dx.doi.org/10.2307/2532317
http://dx.doi.org/10.1111/1467-9868.00176
http://dx.doi.org/10.1016/j.csda.2006.10.003
http://dx.doi.org/10.1007/978-1-4899-3242-6
http://dx.doi.org/10.1137/1.9781611970081
http://dx.doi.org/10.1007/978-1-4899-3095-8
http://dx.doi.org/10.1093/biomet/86.3.677
http://dx.doi.org/10.1093/biomet/87.2.425
http://dx.doi.org/10.1080/01621459.1997.10473632
http://dx.doi.org/10.1093/biomet/93.4.927


Y. Chen et al. 
 

 
581 

Appendix A. Second-Order Derivatives of Log-Likelihood Newton-Raphson  
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Appendix B: MLEs for Covariance Modeling  
The first and second derivative of bΣ  respect to γ  and λ  are:  

( ) ( )
1
21 1

2 2

1
*
1( ) 1, ,

j

b

j j

T
D j qγ

γ
λ

γ γ

−∂∂Σ
Σ = = ⋅ =

∂ ∂


                         (16) 

( ) ( ) ( )
1
21 1

2 2

2 12
*
12 2 1, ,

j

b

j j

T
D j qγ

γ
λ

γ γ

−∂∂ Σ
Σ = = ⋅ =

∂ ∂


                        (17) 

( ) ( ) ( )
1
21 1

2 2

2 12
*
1and 1 ,

j k

b

j k j k

T
D j k j k qγ γ

γ
λ

γ γ γ γ

−∂∂ Σ
Σ = = ⋅ ≠ ≤ ≤

∂ ∂ ∂ ∂
                  (18) 

*Φ  is introduced for the purpose of calculation for 
( )1

j

T γ
γ

−∂
∂

, 
( )2 1

2
j

T γ
γ

−∂

∂
 and 

( )2 1

j k

T γ
γ γ

−∂
∂ ∂

. Note that the  

matrix *Φ  looks similar to the matrix T, but opposite sign for the lower triangular elements.  

21

31 32*

,1 ,2 ,3 , 1

1
1

1

1q q q q q

φ
φ φ

φ φ φ φ −

 
 
 
 

=  
 
 
  
 

   

   



Φ                            (19) 

Every element in *Φ  was rearranged into a response vector Φ , such that γ= CΦ , i.e.,  

( ) ( ) ( ) ( )

*
1

*
1

*
* 1
1

1,1 1, 1,1 121

31

,1 , ,32

1, 1 1 1 1
,1 , ,2 2 2 2

j q

i i i j i q j

q qq q q q q q q q qj q

c c c

c c c

c c c

φ γφ
φ

φ γφ

φ γφ −
− − − −

                         = = =                          

 

   



 




  



 

Φ                (20) 

We can put the thj  column of C  into a q q×  lower triangular matrix like *Φ . So we have *
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matrices. The element ,i jc  in (20) can be put into the place ( )1 2,d d  in the thj  matrix. For the thj  matrix, 
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The above relationship is a one-to-one correspondence between i and ( )1 2,d d . So iφ  and ,i jc  in (20) can 
be also expressed as  
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The first derivative can be calculated as  
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