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Abstract 
In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test 
statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. 
An extensive simulation process is conducted to evaluate their controlling of type 1 error and 
their power functions. Generally, the weighted Kolmogrov-Smirnov test statistics show a relatively 
better performance than both, the Cramer von-Miss and the Anderson Darling test statistics. For 
large sample values, the Anderson Darling test statistics cannot control type 1 error but for rela-
tively small sample values it indicates a better performance than the Cramer von-Miss test statis-
tics. Best selection of the test statistics and highlights for future studies are also explored. 
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1. Introduction 
In many real practical applications, when it is not feasible to have a complete data for statistical inference about 
the hypothesized statistical model, grouped data arise frequently in many fields of economics, medicine, engi-
neering and variety branches of science. In survival and reliability analysis, performing industrial life testing 
experiments by continuous monitoring the test units may incorporate an error measurements in some failure 
units, tediously, costly and time consuming in many situations. Therefore, it is more convenient to inspect the 
test units intermittently for failure by initially dividing the time scale line into adjacent intervals by constant in-
spection times , 1, 2, ,jt j k=   to have the interval grouped which mainly consists of the numbers of failure 
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units in the given intervals. Having the interval grouped data from the continuous lifetime model may override 
the testing settings but increases the efforts needed for making any statistical inference. Such type of data is 
considered by many authors as in Pipper and Ritz [1], Aludaat [2] and Migdadi and Al-Batah [3]. 

Many researchers have proposed and modified test statistics for fitting grouped data to the hypothesized sta-
tistical distributions. Initially, the Chi Square test statistic proposed by Pearson [4] is mainly considered. This 
statistic is based on the discrepancies between the observed and the expected frequencies in the given intervals. 
Further modifications of the Chi Square test statistic are studied by many authors, as in Best and Rayner [5] [6]. 

The initial statistic for goodness of fit test is CH square, then other statistics are considered as a distance be-
tween the theoretical and empirical distribution, for details see ref [10]. Test statistics are derived from the sum 
of discrepancies between the empirical and the hypothetical distribution functions. Among these statistics are the 
Kolmogrov- Smirnov, Cramer von-Miss and Anderson Darling test statistics. Choulakian [7] modified these sta-
tistics for testing a discrete distribution. Spinelli and Stephens [8] have used these statistics for testing the pois-
son distribution. Spinelli [9] has considered these statistics for testing grouped data fit to the exponential distri-
bution. Baklizi [10] proposed the weighted Kolmogorov test statistics for the Rayleigh interval grouped data. 
Many other researchers studied the asymptotic distributions of some of these statistics as in Schmid [11] and 
Pettitt and Stephens [12]. Modifications, critical values and powers of these statistics are also considered for 
some distributions with grouped data as in Conover [13], Reidwyl [14], Maag [15], Damianou and Kemp [16], 
Gulati and Neus [17], Richard and Lockhart [18], and Ampai and Kanisa [19]. 

As an extension to the Rayleigh distribution, the generalized Rayleigh distribution is used for a more general 
lifetime data. The probability distribution, the cumulative distribution and the reliability functions of the genera-
lized Rayleigh distribution with scale parameter θ  and shape parameter β  are given respectively by 

( ) ( ) ( )( )2 2, , 2 exp 1 expf t t t
β

θ β βθ θ θ= − − −                         (1) 

( ) ( )( )2, , 1 expF t t
β

θ β θ= − −                                     (2) 

( ) ( )( )2, , 1 1 expR t t
β

θ β θ= − − −                                   (3) 

where: 0, 0, 0t θ β≥ > > . 
Raqab and Kundu [20] showed that this lifetime model can be widely used in survival and reliability analysis. 

Maximum likelihood estimators for both the scale parameter θ  and the shape parameter β  based on the in-
terval grouped data are obtained by Debasis and Raqabb [21]. 

The aim of this study is to evaluate performance of the weighted Kolmogrov-Smirnov and the modified Cra-
mer von-Miss and Anderson Darling test statistics for fitting the interval grouped data to the generalized Ray-
leigh distribution. The test statistics are compared in terms of their powers and controlling of type 1 errors. In 
the next section the test statistics are derived using the interval grouped data. In Section 3 an extended simula-
tion study is conducted with the original generalized Rayleigh distribution data to find the test statistics that 
control type 1 error. In Section 4 an alternative data from other lifetime distributions are used in connection with 
the simulation study to obtain powers of the given test statistics. Results from the simulation study are summa-
rized in Section 5 and finally in Section 6 general conclusion and highlights of the overall finding and future 
works are also involved. 

2. The Test Statistics 
Suppose, we have a random sample of size n from the generalized Rayleigh distribution with probability density 
function given by (1). 

Assume that the time scale line is divided by the inspection points , 1, 2, , 1it i k= −  
Suppose 0 0, kt t= = ∞ , then we have the intervals [ ) [ ) [ )1 1 2 10, , , , , ,kt t t t − ∞ . 
Let if : be the number of failure units in the ith interval, 1, 2, ,i k=  , and assume that ˆ ˆ,θ β  are the maxi-

mum likelihood estimators of ,θ β  based on the above interval grouped data. Then the empirical and the theo-
retical distribution functions at the inspection times 1,2, ,, 1it i k= −  are respectively 

( ) ( ) ( )( )
ˆ

2

1

1 ˆ, 1 exp
i

n i j i
j

F t f F t t
n

β
θ

=

= = − −∑  
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Hence, following Baklizi [10], the weighted Kolomogorov test statistics are given by 

( ) ( )( )( )
1

1 2
11 1k

i i iiGv F t F t S
−

−

=
= −∑                             (4) 

2
1
12

2
k

ii

kGv i S−

=

 = − 
 

∑                                      (5) 

1
13 k

iiGv S−

=
= ∑                                             (6) 

where: ( ) ( ) , 1, 2, , 1i n i iS F t F t i k= − = − . 

Setting: the probability of failure in the corresponding intervals: 1, 2, ,j k=   

( ) ( ) ( ) ( )1 1, , , , ,j j j j jP P t T t R t R tθ β θ β θ β− −= < < = −  

Then, following Choulakian [7], the modified Anderson Darling test statistics is given by 

( )
( )1

ˆ ˆ,1
1

j jk
j

j j

W P
Ad

n H H

θ β
=

=
−

∑                                    (7) 

where: ( )1
ˆ ˆ,j

j iiH P θ β
=

= ∑  and ( )1 1
ˆ ˆ,j j

j i ii iW f n P θ β
= =

= −∑ ∑ . 

And, following Spinelli [9], the modified Cramer test statistics is given by 

( )1

1 ˆ ˆ,k
j jiCvm W P

n
θ β

=
= ∑                                   (8) 

3. Simulation Study 
In this section, an extensive simulation study is conducted to obtain the test statistics that control type 1 error for 
testing the hypotheses: 

H0: the data distribution is the generalized Rayleigh distribution 
H1: the data distribution is not the generalized Rayleigh distribution 
At the significance level: 0.05α =  with the following indices: 
The sample size: 30,50,100n =  
The number of intervals: 5,7,10k =  
The original generalized Rayleigh distribution data with parameters: 0.05, 0.8θ β= =  
The inspection times , 1, 2, , 1it i k= −  are taken to be equally likely spaced. 
For each combination, the following steps describe the simulation process: 
(1) Generate a random sample of size n from the generalized distribution and group it into k intervals 
(2) Compute the values of the MLE’s: ˆ ˆ,θ β  based on the interval grouped data 
(3) Compute the values of the test statistics: 1, 2, 3, ,Gv Gv Gv Ad Cvm  
(4) Generate a bootstrap sample of size n from the generalized Rayleigh distribution with parameters ˆ ˆ,θ β  
and repeat the steps 2 and 3 to have the new values of the test statistics * * * * *1 , 2 , 3 , ,Gv Gv Gv Ad Cvm  
(5) Repeat the step 4, 500m =  times and compute the number of values *h  for which the values of the test 

statistics found in 4 are greater than the test statistics found in 2 and compute the p value for each statistics as:  
* 1

1
hp
m
+

=
+

. 

(6) Repeat the steps 1-5, 1000 times and compute the empirical type 1 error for each statistics as 
1000

w
, 

where: w = the number of the p values less than the given significance level: 0.05α = . 
Based on the Bradley [22] test, the test statistics is considered to control type 1 error if the corresponding val-

ue of its empirical type 1 error is between 0.025 and 0.075 for the significance level = 0.05. 
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4. Power of the Test Statistics 
To find the empirical power for each of the given test statistics, an alternative non-generalized Rayleigh data are 
generated in step 1 of the simulation process described in the previous section. Hence, we consider the following 
distributions: 

-One parameter Rayleigh distribution with distribution function: 

( ) ( )2, 1 exp , 0, 0F t t tθ θ θ= − − ≥ >  

-Weibull distribution with distribution function: 

( ) ( ), , 1 exp , 0, 0, 0F t t tβθ β θ θ β= − − ≥ > >  

-Generalized Exponential distribution with distribution function: 

( ) ( )( ), , 1 exp , 0, 0, 0F t t t
β

θ β θ θ β= − − ≥ > >  

5. Results and Conclusions 
In this section, found out results about the empirical type 1 error and the power functions of the test statistics are 
illustrated. Compressions of the test statistics and the affecting factors are also illustrated. 

5.1. Controlling of Type 1 Error 
The empirical type 1 error rates at the significance level 0.05α =  of the test statistics as applied to the original 
data are presented in Table 1. It appears clearly that 

(1) The test statistics Gv1, Gv3 can control type 1 error for any sample size and any number of inspection in-
tervals. 
 
Table 1. Empirical type 1 error rates.                                                                        

number of inspection intervals 
Test statistics Sample size 

5 7 10 

0.073 0.057 0.053 Gv1 

30 

0.066 0.059 0.058 Gv2 

0.073 0.067 0.066 Gv3 

0.068 0.064 0.053 Cvm 

0.071 0.069 0.067 Ad 

0.072 0.065 0.049 Gv1 

50 

0.061 0.057 0.050 Gv2 

0.071 0.063 0.065 Gv3 

0.067 0.061 0.057 Cvm 

0.062 0.068 0.061 Ad 

0.094* 0.073 0.064 Gv1 

100 

0.063 0.058 0.047 Gv2 

0.058 0.057 0.048 Gv3 

0.076* 0.077* 0.079* Cvm 

0.061 0.059 0.057 Ad 

*Not control type 1 error. 
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(2) The test statistic Gv1 cannot control type 1 error for the sample size n = 100 and the number of inspection 
Intervals k = 5. 

(3) The weighted Kolmogrov-Smirnov statistic Gv2 dominate Gv1 and Gv3 when the sample sizes n = 30, 50 
and the statistic Gv3 is relatively better than Gv2 when the sample size n = 100. 

(4) The Anderson Darling test statistic: Ad cannot control type 1 error for the sample size n = 100 using any 
number of inspection intervals. But for the sample sizes: n = 30, n = 50 it gives a better controlling of type 1 er-
ror than the Cramer von-Miss Cvm test statistic. 

(5) Generally, the statistics Gv1, Gv2 and Gv3 have more controlling of type 1 errors than both Cramer von- 
Miss and Anderson Darling test statistics. 

5.2. Power Performance 
The powers of the test statistics applied to the nongeneralized Rayleigh grouped data are presented in the tables: 
Tables 2-7 where we have the following results: 

(1) The power functions of the given test statistics increases as the sample size and the number of inspection 
intervals increases. 

(2) For the sample sizes: n = 30 and n = 50, the Anderson Darling test statistic have more power than the 
Cramer von-Miss test statistic. 

(3) Among the weighted Kolmogrov-Smirnov statistics, Gv2 has the greatest power, next came Gv3, and then 
Gv1. 

(4) Generally, the weighted Kolmogrov-Smirnov test statistics have greater power than the Anderson Darling 
and the Cramer von-Miss test statistics. Except at the sample size 30, the Anderson Darling test statistics gives 
greater power than Gv1 when the alternative data are considered from the from: the one parameter Rayleigh dis-
tribution with scale parameter 0.85θ = , the Weibull distribution with scale Parameter 0.65θ =  and shape 
parameter 1.8ρ =  and the generalized exponential distribution with scale parameter 1.5θ =  and shape para-
meter 1δ = . 
 
Table 2. Power of the test statistics for the interval grouped data from the one parameter Rayleigh distribution with scale pa-
rameter θ = 0.85.                                                                                              

Number of inspection intervals 
Test statistics Sample size 

10 7 5 

0.452 0.433 0.431 Gv1 

30 

0.472 0.453 0.445 Gv2 

0.461 0.442 0.439 Gv3 

0.468 0.451 0.440 Cvm 

0.417 0.406 0.398 Ad 

0.574 0.562 0.508 Gv1 

50 

0.583 0.567 0.512 Gv2 

0.580 0.564 0.509 Gv3 

0.559 0.536 0.507 Cvm 

0.532 0.508 0.478 Ad 

0.703 0.693 0.672 Gv1 

100 

0.755 0.721 0.684 Gv2 

0.734 0.715 0.677 Gv3 

0.701 0.691 0.662 Cvm 

0.718 0.702 0.673 Ad 
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Table 3. Power of the test statistics for the interval grouped data from the one parameter Rayleigh distribution with scale pa-
rameter θ = 0.05.                                                                                           

Number of inspection intervals 
Test statistics Sample size 

10 7 5 

0.703 0.612 0.602 Gv1 

30 

0.741 0.658 0.635 Gv2 

0.727 0.635 0.619 Gv3 

0.633 0.598 0.576 Cvm 

0.579 0.542 0.518 Ad 

0.803 0.771 0.687 Gv1 

50 

0.825 0.796 0.712 Gv2 

0.811 0.782 0.705 Gv3 

0.682 0.679 0.642 Cvm 

0.674 0.665 0.639 Ad 

0.853 0.799 0.732 Gv1 

100 

0.902 0.867 0.803 Gv2 

0.902 0.855 0.794 Gv3 

0.704 0.688 0.652 Cvm 

0.815 0.796 0.727 Ad 

 
Table 4. Power of the test statistics for the interval grouped data from the Weibull distribution with scale parameter θ = 0.65, 
and shape parameter β = 1.8.                                                                                

Number of inspection intervals 
Test statistics Sample size 

10 7 5 

0.513 0.501 0.483 Gv1 

30 

0.581 0.546 0.522 Gv2 

0.564 0.529 0.517 Gv3 

0.579 0.536 0.519 Cvm 

0.507 0.500 0.476 Ad 

0.740 0.672 0.632 Gv1 

50 

0.776 0.703 0.671 Gv2 

0.754 0.698 0.656 Gv3 

0.698 0.651 0.603 Cvm 

0.679 0.622 0.584 Ad 

0.804 0.758 0.723 Gv1 

100 

0.813 0.790 0.761 Gv2 

0.808 0.778 0.756 Gv3 

0.715 0.677 0.632 Cvm 

0.796 0.746 0.722 Ad 
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Table 5. Power of the test statistics for the interval grouped data from the Weibull distribution with scale parameter θ = 0.05, 
and shape parameter β = 0.3.                                                                                

Number of inspection intervals 
Test statistics Sample size 

10 7 5 

0.712 0.671 0.652 Gv1 

30 

0.755 0.703 0.692 Gv2 

0.738 0.692 0.674 Gv3 

0.661 0.633 0.579 Cvm 

0.646 0.621 0.568 Ad 

0.864 0.802 0.733 Gv1 

50 

0.907 0.836 0.762 Gv2 

0.895 0.821 0.744 Gv3 

0.852 0.792 0.712 Cvm 

0.791 0.775 0.710 Ad 

0.911 0.883 0.862 Gv1 

100 

0.932 0.902 0.865 Gv2 

0.926 0.897 0.864 Gv3 

0.853 0.798 0.724 Cvm 

0.861 0.832 0.767 Ad 

 
Table 6. Power of the test statistics for the interval grouped data from the generalized exponential distribution with scale pa-
rameter θ = 1.5 and shape parameter β = 1.                                                                         

Number of inspection intervals 
Test statistics Sample size 

10 7 5 

0.523 0.518 0.512 Gv1 

30 

0.589 0.561 0.534 Gv2 

0.572 0.543 0.528 Gv3 

0.581 0.552 0.531 Cvm 

0.518 0.511 0.507 Ad 

0.748 0.679 0.653 Gv1 

50 

0.792 0.721 0.692 Gv2 

0.765 0.709 0.684 Gv3 

0.702 0.652 0.620 Cvm 

0.688 0.637 0.611 Ad 

0.810 0.771 0.752 Gv1 

100 

0.851 0.803 0.773 Gv2 

0.835 0.796 0.772 Gv3 

0.710 0.662 0.631 Cvm 

0.757 0.694 0.658 Ad 
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Table 7. Power of the test statistics for the interval grouped data from the generalized exponential distribution with scale pa-
rameter θ = 0.05 and shape parameter β = 2.5.                                                                       

Number of inspection intervals 
Test statistics Sample size 

10 7 5 

0.732 0.693 0.681 Gv1 

30 

0.758 0.721 0.703 Gv2 

0.755 0.713 0.695 Gv3 

0.703 0.657 0.618 Cvm 

0.688 0.632 0.615 Ad 

0.866 0.815 0.784 Gv1 

50 

0.913 0.838 0.801 Gv2 

0.907 0.831 0.792 Gv3 

0.857 0.793 0.727 Cvm 

0.796 0.781 0.714 Ad 

0.923 0.887 0.868 Gv1 

100 

0.935 0.903 0.875 Gv2 

0.928 0.901 0.872 Gv3 

0.861 0.794 0.728 Cvm 

0.867 0.835 0.751 Ad 

 
(5) There is a significant affection in the power of the test statistics in fitting the generalized Rayleigh distri-

bution with shape parameter 1δ ≠  for the lifetimes data. This affection clearly appears when using the alterna-
tives: the one parameter Rayleigh and the generalized exponential distributions 

(6) The powers of the test statistics are mainly affected by the parameters of the alternative distributions, 
when the alternative Weibull distribution with scale parameter 0.65θ =  and shape parameter 1.8ρ =  is con-
sidered, the values of the power functions are strictly less than their corresponding values when the alternative is 
the Weibull distribution with scale parameter 0.05θ =  and shape parameter 3ρ = . 

A possible explanation for this is the degree of similarity between the Weibull distribution and the Genera-
lized Rayleigh distribution when using a complete data at the indicated parameters. 

6. Conclusion and Highlights for Future Work 
This study explored the performance of goodness of fit test statistics for the generalized Rayleigh distribution. 
Generally, the weighted Kolmogrov-Smirnov test statistics have a relatively better performance in controlling 
type 1 error and in the power functions than the modified Cramer von-Miss and Anderson Darling test statistics. 
As it cannot control type 1 error when the sample size n = 100, the Anderson Darling test has more power than 
the Cramer von-Miss and the weighted Kolmogrov-Smirnov Gv1 test statistics when the sample size n = 30 or n 
= 50. This indicates that the researcher has to take into account both the sample size and number of inspection 
intervals when choosing the test statistic for fitting the interval grouped data to the generalized Rayleigh distri-
bution. Future works may involve other lifetime models in the presence of censoring schemes within the inter-
vals. Critical regions for the test statistics at different significance levels can also be a subject of concern. 
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