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Abstract

In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test
statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data.
An extensive simulation process is conducted to evaluate their controlling of type 1 error and
their power functions. Generally, the weighted Kolmogrov-Smirnov test statistics show a relatively
better performance than both, the Cramer von-Miss and the Anderson Darling test statistics. For
large sample values, the Anderson Darling test statistics cannot control type 1 error but for rela-
tively small sample values it indicates a better performance than the Cramer von-Miss test statis-
tics. Best selection of the test statistics and highlights for future studies are also explored.
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1. Introduction

In many real practical applications, when it is not feasible to have a complete data for statistical inference about
the hypothesized statistical model, grouped data arise frequently in many fields of economics, medicine, engi-
neering and variety branches of science. In survival and reliability analysis, performing industrial life testing
experiments by continuous monitoring the test units may incorporate an error measurements in some failure
units, tediously, costly and time consuming in many situations. Therefore, it is more convenient to inspect the
test units intermittently for failure by initially dividing the time scale line into adjacent intervals by constant in-
spection times t;, j=1,2,---,k to have the interval grouped which mainly consists of the numbers of failure
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units in the given intervals. Having the interval grouped data from the continuous lifetime model may override
the testing settings but increases the efforts needed for making any statistical inference. Such type of data is
considered by many authors as in Pipper and Ritz [1], Aludaat [2] and Migdadi and Al-Batah [3].

Many researchers have proposed and modified test statistics for fitting grouped data to the hypothesized sta-
tistical distributions. Initially, the Chi Square test statistic proposed by Pearson [4] is mainly considered. This
statistic is based on the discrepancies between the observed and the expected frequencies in the given intervals.
Further modifications of the Chi Square test statistic are studied by many authors, as in Best and Rayner [5] [6].

The initial statistic for goodness of fit test is CH square, then other statistics are considered as a distance be-
tween the theoretical and empirical distribution, for details see ref [10]. Test statistics are derived from the sum
of discrepancies between the empirical and the hypothetical distribution functions. Among these statistics are the
Kolmogrov- Smirnov, Cramer von-Miss and Anderson Darling test statistics. Choulakian [7] modified these sta-
tistics for testing a discrete distribution. Spinelli and Stephens [8] have used these statistics for testing the pois-
son distribution. Spinelli [9] has considered these statistics for testing grouped data fit to the exponential distri-
bution. Baklizi [10] proposed the weighted Kolmogorov test statistics for the Rayleigh interval grouped data.
Many other researchers studied the asymptotic distributions of some of these statistics as in Schmid [11] and
Pettitt and Stephens [12]. Modifications, critical values and powers of these statistics are also considered for
some distributions with grouped data as in Conover [13], Reidwyl [14], Maag [15], Damianou and Kemp [16],
Gulati and Neus [17], Richard and Lockhart [18], and Ampai and Kanisa [19].

As an extension to the Rayleigh distribution, the generalized Rayleigh distribution is used for a more general
lifetime data. The probability distribution, the cumulative distribution and the reliability functions of the genera-
lized Rayleigh distribution with scale parameter 6 and shape parameter £ are given respectively by

f(t.0,8) = 2p0exp(~0t*)(L-exp(-0t*)) o)
F(1,6,5)= (1—exp(—49t2))ﬂ )
R(t,0,8) =1~ (L-exp(~0t? ))ﬂ 3)

where: t>0,6>0,5>0.

Ragab and Kundu [20] showed that this lifetime model can be widely used in survival and reliability analysis.
Maximum likelihood estimators for both the scale parameter & and the shape parameter £ based on the in-
terval grouped data are obtained by Debasis and Ragabb [21].

The aim of this study is to evaluate performance of the weighted Kolmogrov-Smirnov and the modified Cra-
mer von-Miss and Anderson Darling test statistics for fitting the interval grouped data to the generalized Ray-
leigh distribution. The test statistics are compared in terms of their powers and controlling of type 1 errors. In
the next section the test statistics are derived using the interval grouped data. In Section 3 an extended simula-
tion study is conducted with the original generalized Rayleigh distribution data to find the test statistics that
control type 1 error. In Section 4 an alternative data from other lifetime distributions are used in connection with
the simulation study to obtain powers of the given test statistics. Results from the simulation study are summa-
rized in Section 5 and finally in Section 6 general conclusion and highlights of the overall finding and future
works are also involved.

2. The Test Statistics

Suppose, we have a random sample of size n from the generalized Rayleigh distribution with probability density
function given by (1).

Assume that the time scale line is divided by the inspection points t,i=12,---,k—1

Suppose t, =0,t, = oo, then we have the intervals [0,t,),[t,,t,),--,[t_4, ). .

Let f,: be the number of failure units in the ith interval, i=12,---,k, and assume that &, are the maxi-
mum likelihood estimators of &, f based on the above interval grouped data. Then the empirical and the theo-
retical distribution functions at the inspection times t;,i=1,2,---,k -1 are respectively

F(t) =%ij, F(t) =(l—exp(—ét2))[}

=1
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Hence, following Baklizi [10], the weighted Kolomogorov test statistics are given by

-1

Gvl= Zikj(lz (t)(1-F( )))7 S, 4)
Gv2= Zik_j(g—ijz S, (5)

Gv3=Y""s, (6)

i=1 1

where: S, =

Fo(t)-F(t)i=12k-1.

Setting: the probability of failure in the corresponding intervals: j=1,2,---,k
P,(6.8)=P(t,,<T <t;)=R(t;,,6,8)-R(t,,0,8)

Then, following Choulakian [7], the modified Anderson Darling test statistics is given by

k WJ'PJ (é"[})

1
Ad==»" ———= 7
nZHHj(l_HJ) "
where: H, =Y P (éﬁ) and W, =Y f, —nzij:lPi(é,/}).
And, following Spinelli [9], the modified Cramer test statistics is given by
1 <« Ao
Cm =31 WP, (6.5) ®)

3. Simulation Study

In this section, an extensive simulation study is conducted to obtain the test statistics that control type 1 error for
testing the hypotheses:

Ho: the data distribution is the generalized Rayleigh distribution

H,: the data distribution is not the generalized Rayleigh distribution

At the significance level: « =0.05 with the following indices:

The sample size: n=30,50,100

The number of intervals: k =5,7,10

The original generalized Rayleigh distribution data with parameters: & = 0.05, 8 = 0.8

The inspection times t,i=12,---,k—1 are taken to be equally likely spaced.

For each combination, the following steps describe the simulation process:

(1) Generate a random sample of size n from the generalized distribution and group it into k intervals

(2) Compute the values of the MLE’s: 4, 8 based on the interval grouped data

(3) Compute the values of the test statistics: Gvl, Gv2,Gv3, Ad,Cvm o

(4) Generate a bootstrap sample of size n from the generalized Rayleigh distribution with parameters 6, 8

and repeat the steps 2 and 3 to have the new values of the test statistics Gv1',Gv2",Gv3", Ad",Cvm’

(5) Repeat the step 4, m =500 times and compute the number of values h" for which the values of the test
statistics found in 4 are greater than the test statistics found in 2 and compute the p value for each statistics as:

_h'+1

m+1

(6) Repeat the steps 1-5, 1000 times and compute the empirical type 1 error for each statistics as —1(;7)0,

where: w = the number of the p values less than the given significance level: « =0.05.
Based on the Bradley [22] test, the test statistics is considered to control type 1 error if the corresponding val-
ue of its empirical type 1 error is between 0.025 and 0.075 for the significance level = 0.05.
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4. Power of the Test Statistics

To find the empirical power for each of the given test statistics, an alternative non-generalized Rayleigh data are
generated in step 1 of the simulation process described in the previous section. Hence, we consider the following
distributions:

-One parameter Rayleigh distribution with distribution function:

F(t,0)=1-exp(-60t*), t=0,0 >0
-Weibull distribution with distribution function:
F(t,0,8)=1-exp(-0t"), t20,0>0,8>0
-Generalized Exponential distribution with distribution function:

F(t,e,ﬁ)z(l—exp(—et))ﬂ, t>0,6>0,5>0

5. Results and Conclusions

In this section, found out results about the empirical type 1 error and the power functions of the test statistics are
illustrated. Compressions of the test statistics and the affecting factors are also illustrated.

5.1. Controlling of Type 1 Error

The empirical type 1 error rates at the significance level « =0.05 of the test statistics as applied to the original
data are presented in Table 1. It appears clearly that

(1) The test statistics Gv1, Gv3 can control type 1 error for any sample size and any number of inspection in-
tervals.

Table 1. Empirical type 1 error rates.

number of inspection intervals

Sample size Test statistics
10 7 5

Gvl 0.053 0.057 0.073

Gv2 0.058 0.059 0.066

30 Gv3 0.066 0.067 0.073
Cvm 0.053 0.064 0.068

Ad 0.067 0.069 0.071

Gvl 0.049 0.065 0.072

Gv2 0.050 0.057 0.061

50 Gv3 0.065 0.063 0.071
Cvm 0.057 0.061 0.067

Ad 0.061 0.068 0.062

Gvl 0.064 0.073 0.094"

Gv2 0.047 0.058 0.063

100 Gv3 0.048 0.057 0.058
Ccvm 0.079" 0.077" 0.076"

Ad 0.057 0.059 0.061

“Not control type 1 error.
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(2) The test statistic Gv1 cannot control type 1 error for the sample size n = 100 and the number of inspection
Intervals k = 5.

(3) The weighted Kolmogrov-Smirnov statistic Gv2 dominate Gv1 and Gv3 when the sample sizes n = 30, 50
and the statistic Gv3 is relatively better than Gv2 when the sample size n = 100.

(4) The Anderson Darling test statistic: Ad cannot control type 1 error for the sample size n = 100 using any
number of inspection intervals. But for the sample sizes: n = 30, n = 50 it gives a better controlling of type 1 er-
ror than the Cramer von-Miss Cvm test statistic.

(5) Generally, the statistics Gv1, Gv2 and Gv3 have more controlling of type 1 errors than both Cramer von-
Miss and Anderson Darling test statistics.

5.2. Power Performance

The powers of the test statistics applied to the nongeneralized Rayleigh grouped data are presented in the tables:
Tables 2-7 where we have the following results:

(1) The power functions of the given test statistics increases as the sample size and the number of inspection
intervals increases.

(2) For the sample sizes: n = 30 and n = 50, the Anderson Darling test statistic have more power than the
Cramer von-Miss test statistic.

(3) Among the weighted Kolmogrov-Smirnov statistics, Gv2 has the greatest power, next came Gv3, and then
Gvl.

(4) Generally, the weighted Kolmogrov-Smirnov test statistics have greater power than the Anderson Darling
and the Cramer von-Miss test statistics. Except at the sample size 30, the Anderson Darling test statistics gives
greater power than Gv1 when the alternative data are considered from the from: the one parameter Rayleigh dis-
tribution with scale parameter 6 =0.85, the Weibull distribution with scale Parameter 6 =0.65 and shape
parameter p =1.8 and the generalized exponential distribution with scale parameter 8=1.5 and shape para-
meter o6 =1.

Table 2. Power of the test statistics for the interval grouped data from the one parameter Rayleigh distribution with scale pa-
rameter 6 = 0.85.

Number of inspection intervals

Sample size Test statistics
5 7 10

Gvl 0.431 0.433 0.452

Gv2 0.445 0.453 0.472

30 Gv3 0.439 0.442 0.461
Cvm 0.440 0.451 0.468

Ad 0.398 0.406 0.417

Gvl 0.508 0.562 0.574

Gv2 0.512 0.567 0.583

50 Gv3 0.509 0.564 0.580
Cvm 0.507 0.536 0.559

Ad 0.478 0.508 0.532

Gvl 0.672 0.693 0.703

Gv2 0.684 0.721 0.755

100 Gv3 0.677 0.715 0.734
Cvm 0.662 0.691 0.701

Ad 0.673 0.702 0.718
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Table 3. Power of the test statistics for the interval grouped data from the one parameter Rayleigh distribution with scale pa-
rameter 6 = 0.05.

Number of inspection intervals

Sample size Test statistics
5 7 10

Gvl 0.602 0.612 0.703

Gv2 0.635 0.658 0.741

30 Gv3 0.619 0.635 0.727
Cvm 0.576 0.598 0.633

Ad 0.518 0.542 0.579

Gvl 0.687 0.771 0.803

Gv2 0.712 0.796 0.825

50 Gv3 0.705 0.782 0.811
Cvm 0.642 0.679 0.682

Ad 0.639 0.665 0.674

Gvl 0.732 0.799 0.853

Gv2 0.803 0.867 0.902

100 Gv3 0.794 0.855 0.902
Cvm 0.652 0.688 0.704

Ad 0.727 0.796 0.815

Table 4. Power of the test statistics for the interval grouped data from the Weibull distribution with scale parameter 6 = 0.65,
and shape parameter 8 = 1.8.

Number of inspection intervals

Sample size Test statistics
5) 7 10

Gvl 0.483 0.501 0.513

Gv2 0.522 0.546 0.581

30 Gv3 0.517 0.529 0.564
Cvm 0.519 0.536 0.579

Ad 0.476 0.500 0.507

Gvl 0.632 0.672 0.740

Gv2 0.671 0.703 0.776

50 Gv3 0.656 0.698 0.754
Cvm 0.603 0.651 0.698

Ad 0.584 0.622 0.679

Gvl 0.723 0.758 0.804

Gv2 0.761 0.790 0.813

100 Gv3 0.756 0.778 0.808
Cvm 0.632 0.677 0.715

Ad 0.722 0.746 0.796
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Table 5. Power of the test statistics for the interval grouped data from the Weibull distribution with scale parameter 6 = 0.05,
and shape parameter = 0.3.

Number of inspection intervals

Sample size Test statistics
5 7 10
Gvl 0.652 0.671 0.712
Gv2 0.692 0.703 0.755
30 Gv3 0.674 0.692 0.738
Cvm 0.579 0.633 0.661
Ad 0.568 0.621 0.646
Gvl 0.733 0.802 0.864
Gv2 0.762 0.836 0.907
50 Gv3 0.744 0.821 0.895
Cvm 0.712 0.792 0.852
Ad 0.710 0.775 0.791
Gvl 0.862 0.883 0.911
Gv2 0.865 0.902 0.932
100 Gv3 0.864 0.897 0.926
Cvm 0.724 0.798 0.853
Ad 0.767 0.832 0.861

Table 6. Power of the test statistics for the interval grouped data from the generalized exponential distribution with scale pa-
rameter 8 = 1.5 and shape parameter g = 1.

Number of inspection intervals

Sample size Test statistics
5 7 10
Gvl 0.512 0.518 0.523
Gv2 0.534 0.561 0.589
30 Gv3 0.528 0.543 0.572
Cvm 0.531 0.552 0.581
Ad 0.507 0.511 0.518
Gvl 0.653 0.679 0.748
Gv2 0.692 0.721 0.792
50 Gv3 0.684 0.709 0.765
Cvm 0.620 0.652 0.702
Ad 0.611 0.637 0.688
Gvl 0.752 0.771 0.810
Gv2 0.773 0.803 0.851
100 Gv3 0.772 0.796 0.835
Cvm 0.631 0.662 0.710
Ad 0.658 0.694 0.757

480
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Table 7. Power of the test statistics for the interval grouped data from the generalized exponential distribution with scale pa-
rameter 6 = 0.05 and shape parameter § = 2.5.

Number of inspection intervals

Sample size Test statistics
5 7 10
Gvl 0.681 0.693 0.732
Gv2 0.703 0.721 0.758
30 Gv3 0.695 0.713 0.755
Cvm 0.618 0.657 0.703
Ad 0.615 0.632 0.688
Gvl 0.784 0.815 0.866
Gv2 0.801 0.838 0.913
50 Gv3 0.792 0.831 0.907
Cvm 0.727 0.793 0.857
Ad 0.714 0.781 0.796
Gvl 0.868 0.887 0.923
Gv2 0.875 0.903 0.935
100 Gv3 0.872 0.901 0.928
Cvm 0.728 0.794 0.861
Ad 0.751 0.835 0.867

(5) There is a significant affection in the power of the test statistics in fitting the generalized Rayleigh distri-
bution with shape parameter 6 =1 for the lifetimes data. This affection clearly appears when using the alterna-
tives: the one parameter Rayleigh and the generalized exponential distributions

(6) The powers of the test statistics are mainly affected by the parameters of the alternative distributions,
when the alternative Weibull distribution with scale parameter 6 =0.65 and shape parameter p=1.8 is con-
sidered, the values of the power functions are strictly less than their corresponding values when the alternative is
the Weibull distribution with scale parameter 6 =0.05 and shape parameter p =3.

A possible explanation for this is the degree of similarity between the Weibull distribution and the Genera-
lized Rayleigh distribution when using a complete data at the indicated parameters.

6. Conclusion and Highlights for Future Work

This study explored the performance of goodness of fit test statistics for the generalized Rayleigh distribution.
Generally, the weighted Kolmogrov-Smirnov test statistics have a relatively better performance in controlling
type 1 error and in the power functions than the modified Cramer von-Miss and Anderson Darling test statistics.
As it cannot control type 1 error when the sample size n = 100, the Anderson Darling test has more power than
the Cramer von-Miss and the weighted Kolmogrov-Smirnov Gv1 test statistics when the sample size n =30 or n
= 50. This indicates that the researcher has to take into account both the sample size and number of inspection
intervals when choosing the test statistic for fitting the interval grouped data to the generalized Rayleigh distri-
bution. Future works may involve other lifetime models in the presence of censoring schemes within the inter-
vals. Critical regions for the test statistics at different significance levels can also be a subject of concern.
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