
Open Journal of Statistics, 2015, 5, 10-20 
Published Online February 2015 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2015.51002  

How to cite this paper: Ohtsuka, Y. and Kakamu, K. (2015) Comparison of the Sampling Efficiency in Spatial Autoregressive 
Model. Open Journal of Statistics, 5, 10-20. http://dx.doi.org/10.4236/ojs.2015.51002 

 
 

Comparison of the Sampling Efficiency in 
Spatial Autoregressive Model 
Yoshihiro Ohtsuka1, Kazuhiko Kakamu2 
1Department of Economics, University of Nagasaki, Nagasaki, Japan 
2Faculty of Law, Politics and Economics, Chiba University, Chiba, Japan 
Email: ohtsuka@sun.ac.jp, kakamu@le.chiba-u.ac.jp 
 
Received 29 December 2014; accepted 18 January 2015; published 22 January 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of 
spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as 
an alternative approach, the griddy Gibbs sampler is proposed by [1] and utilized by [2]. This pa-
per proposes an acceptance-rejection Metropolis-Hastings algorithm as a third approach, and com-
pares these three algorithms through Monte Carlo experiments. The experimental results show 
that the griddy Gibbs sampler is the most efficient algorithm among the algorithms whether the 
number of observations is small or not in terms of the computation time and the inefficiency fac-
tors. Moreover, it seems to work well when the size of grid is 100. 
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1. Introduction 
Spatial models have been widely used in various research fields such as physical, environmental, biological 
science and so on. Recently, a lot of researches are also emerging in econometrics (e.g., [3] [4] and so on), and 
[5] gave an excellent survey from the viewpoint of econometrics. When we focus on the estimation methods, 
properties of several estimation methods are studied. For example, the efficient maximum likelihood (ML) 
method was proposed by [6], and [7] first formally proved that the quasi maximum likelihood estimator had the 
usual asymptotic properties, including n -consistency, asymptotic normality, and asymptotic efficiency. A 
class of moment estimators was examined by [8] and [9]. The Bayesian approach was first considered by [10] 
and [11] proposed a Markov chain Monte Carlo (hereafter MCMC) method to estimate the parameters of the 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2015.51002
http://dx.doi.org/10.4236/ojs.2015.51002
http://www.scirp.org
mailto:ohtsuka@sun.ac.jp
mailto:kakamu@le.chiba-u.ac.jp
http://creativecommons.org/licenses/by/4.0/


Y. Ohtsuka, K. Kakamu 
 

 
11 

model. We have to mention that in economic analysis typically the sample size is small, for instance, areal data 
such as state-level data is widely used. The maximum likelihood methods depend on their asymptotic properties 
while the Bayesian method does not, because the latter evaluates the posterior distributions of the parameters 
conditioned on the data. Therefore, it is reasonable to examine the properties of Bayesian estimators (see [12]). 

Although there are a lot of works using spatial models in a Bayesian framework, previous literature has rarely 
examined sampling methods for the parameter of spatial correlation. [13] proposed a random walk Metropolis- 
Hastings (hereafter RMH) algorithm. This method is widely used (e.g., [11] [12] [14] and so on). On the other 
hand, [2] applied a griddy Gibbs sampler (hereafter GGS) proposed by [1] and showed the GGS got an advan-
tage over the RMH method from a simulated data and estimated the regional electricity demand in Japan. How-
ever, [2] has examined only one case. In this paper, we compare the properties of the GGS in the case that the 
number of observation is small (or large) through the Monte Carlo experiments. Desirable properties for sam-
pling methods in the Bayesian inference are efficiency and well mixing, which yield fast convergence. In addi-
tion to these properties, computational requirements and model flexibility are important for applied econome-
trics. Therefore, the purpose of this paper is to investigate the properties of some sampling algorithms given 
several parameters of a model. 

In this paper, we examine the efficiency of the existing Markov chain Monte Carlo methods for the spatial 
autoregressive (hereafter SAR) model which is the simplest and most commonly used model in the spatial mod-
els. Moreover, we propose an acceptance-rejection Metropolis-Hastings (hereafter ARMH) algorithm as an al-
ternative MH algorithm, which is proposed by [15] because it is well known that the RMH is inefficient. This 
algorithm is widely used for the acceleration of MCMC convergence, for example, in the time series models (see 
[16]-[18] and so on). The advantage of this method is that the computational requirement is very small since it is 
irrelevant to the shape of the full conditional density. Therefore, we apply the algorithm to the SAR model. 

We illustrate the properties of these algorithms using simulated data set given the three number of observa-
tions and the seven values of spatial correlation. From the results, we find that the GGS is the most efficient 
method whether the number of observations is small or not in terms of both the computation time and the ineffi-
ciency factors. Furthermore, we show that it is efficient when the number of grid in the GGS sampler is one 
hundred. These results give a benchmark of sampling the spatial correlation parameter of the models. 

The rest of this paper is organized as follows. Section 2 summarizes the SAR model. Section 3 discusses the 
computational strategies of the MCMC methods, and reviews three sampling methods for spatial correlation pa-
rameter. Section 4 gives the Monte Carlo experiments using simulated data set and discusses the results. Finally, 
we summarize the results and provide concluding remarks. 

2. Spatial Autoregressive (SAR) Model 
Spatial autoregressive model explains the spatial spillover using a weight matrix (see [19]). There are numerous 
approaches to construct the weight matrix, which plays an important role in the model. For example, those are a 
first order contiguity matrix, inverse distance one and so on. Among the approaches, [20] recommended the first 
order contiguity dummies, because they showed that the first order contiguity weight matrix identifies the true 
model more frequently than the other matrices through the Monte Carlo simulations. Thus, we also utilize the 
first order contiguity dummies as the weight matrix. 

Let C  be an n n×  matrix of contiguity dummies, with 1ijc =  if areas i  and j  are adjacent and 
0ijc =  otherwise (with 0iic = ). We standardized the weight matrix as follows  

1

ij
ij n

ijj

c
w

c
=

=
∑

 

and we define { }ijw=W , where ijw  denotes the spatial weight on the j -th unit with respect to the i -th unit. 

Note that we have 1 1n
ijj w

=
=∑  for all i . 

Next, let iy  and ix  be a dependent variable and a 1 k×  vector of covariates on the i th unit for 
1, ,i n=  , respectively. Then, the SAR model conditioned on the parameters ρ , β , 2σ  is written as 

follows:  
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( )2

1
,     0, ,   1

n

i ij j i i i
j

y w yρ σ ρ
=

= + + <∑ x   β                        (1) 

where ρ  and 2σ  indicates the spatial correlation, and the variance of the disturbance term, respectively. As 
is shown in [21], we know that 1

min 1λ− = −  amd 1
max 1λ− = , where minλ  and maxλ  denote the minimum and 

maximum eigenvalue of W , since we standardize the weight matrix like W . Thus, we restrict ρ  to 
( )1,1ρ ∈ − . 

Then the likelihood function of the model (1) is given as follows:  

( ) ( )2 2 2
2, , , , 2π exp

2

n

nL σ ρ σ ρ
σ

− ′ = − − 
 

e ey X W I Wβ                     (2) 

where ( ), ,i ny y ′= y , ( )1 , , n
′′ ′= X x x , ( ), ,i ne e ′= e , 1

n
i i ij j ije y w yρ

=
= − −∑ x β , and nI  is an n n×  

unit matrix. 

3. Posterior Analysis and Simulation 
3.1. Joint Posterior Distribution 
Since we adopt the Bayesian approach, we complete the model by specifying the prior distribution over the 
parameters. We use the following independent prior distribution:  

( ) ( ) ( ) ( )2 2, ,π σ ρ π π σ π ρ=β β  

Given a prior density ( )2, ,π σ ρβ  and the likelihood function given in (2), the joint posterior distribution 
can be expressed as  

( ) ( ) ( )2 2 2, , , , , , , , , ,Lπ σ ρ π σ ρ σ ρ∝y X W y X Wβ β β                     (3) 

Finally, we assume the following prior distributions:  

( ) ( ) ( )2
0 0 0 0, ,     2, 2 ,     1,1N IG Uµ σ ν λ ρ −  Σβ  

where ( ),IG a b  denotes an inverse gamma distribution with scale and shape parameters a  and b . 
Since the joint posterior distribution is given by (3), we can now adopt the MCMC method. The Markov 

chain sampling scheme can be constructed from the full conditional distributions of ρ , β  and 2σ . 

3.2. Sampling ρ  
From (3), the full conditional distribution of ρ  is written as  

( )2
2

', , , , , exp
2np ρ σ ρ ρ
σ

 ∝ − − 
 

e ey X W I Wβ                        (4) 

As it is difficult to sample from the standard distribution, we examine three approaches for sampling ρ . First, 
we introduce the GGS, which is applied by [2]. Second, we overview the RMH algorithm, which is extended by 
[13]. Finally, we propose an ARMH algorithm. These sampling methods are summarized in the following. 

3.2.1. Griddy Gibbs Sampler 
The GGS was proposed by [1]. This sampling algorithm approximates a cumulative distribution function of the 
full conditional distribution by each kernel function over a grid of points and uses a numerical integration 
method, and is sampling method from the full conditional distribution by using the inverse transform method. 
Let the grid be as follows  

1 2 11 1m ma a a a +− = < < < < =  

and { }( )1, ,i i mρ ∈  , which is centered in the interval [ ]1,i ia a + . Then, the full conditional distribution in the 

interval [ ]1,i ia a +  is approximated as follows  
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Thus, we select the grid ia∗  with probabilities,  
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Finally, we sample ρ  from the uniform ( )1,i ia a∗ ∗
+ . [22] stated that the choice of the grid of points has to be 

made carefully and constitute the main difficulty in applying GGS. In this paper, we select the equal interval 
among 1m ma a+ −  as in [1]. Then, our numerical experiments examines to choice the size of grid for estimating 
the spatial correlation. 

3.2.2. Random Walk Metropolis-Hastings Algorithm 
The RMH method is a simple algorithm because it needs the previous value and a random walk process such as 

( )new old 2,Nφ φ τ , where oldφ  is the parameter of the previous sampling, and τ  denotes the tuning para- 

meter, respectively. Therefore, the following Metropolis step is used: Sample newρ  from  

( )new old 2,N sρ ρ  

where s  is the tuning parameter. In the numerical example below, we select the tuning parameter such that the 
acceptance rate lies between 0.4 and 0.6 (see [13]). Next, we evaluate the acceptance probability  

( ) ( )
( )

new 2
old new

old 2

, , , , ,
, min ,1

, , , , ,
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p

ρ σ ρ
α ρ ρ

ρ σ ρ

 
 =
 
 

y X W

y X W

β

β
 

And finally set newρ ρ=  with probability ( )old new,α ρ ρ , otherwise oldρ ρ= . The proposal value of ρ  is 
not truncated to the interval ( )1,1−  because the constraint is part of the target density. Thus, if the proposed 
value of ρ  is not within the interval, the conditional posterior is zero, and the proposal value is rejected with 
probability one (see [23]). It is well known that the method is not efficient because the convergence is slow for 
using the previous sampled parameter. 

3.2.3. Acceptance-Rejection Metropolis-Hastings Algorithm 
An acceptance-rejection Metropolis-Hastings (ARMH) algorithm method was proposed by [15]. This algorithm 
samples the parameter using the AR and MH steps. Suppose that there is a candidate function ( )g ρ  such that 
it is possible to sample directly from ( )g ρ  by some known method. Then, the AR step proceeds as follows. 
We sampling the parameter from the candidate function ( )g ρ , and accepts the candidate draw with probability 
( ) ( )p cgρ ρ . This step is iterated until the candidate draw is accepted. 
Next, suppose the candidate newρ  is produced from above AR step. The MH part proceeds as follows. We 

calculate the acceptance probability, q  as following: 

( ) ( )

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
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In this step, the candidate draw is accepted with probability q  and rejected with probability 1 q− . If the 
draw is rejected, the previously sampled value is sampled again. If q  is small, the probability of sampling the 
same value consecutively is high, causing high autocorrelation across sample values (see [24]). Hence, we 
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should also make q  as close to one as possible. 
The advantage of this method is that it is free to functional form which differs from the GGS and RMH. In 

this paper, in order to construct the candidate function, we utilize the result of [7], which showed the consistency 
and asymptotic normality of quasi-ML estimators of model parameters, to the candidate density. Then, we 
construct the candidate density ( )g ρ  as an approximation to the the conditional posterior density by omitting 
the determinant ρ−I W  as follows:  

( ) ( )2ˆ ˆ,g N ρ ρρ µ σ                                     (5) 

where ( ) ( ){ }1ˆρµ
− ′′ ′= −y W Wy y X Wyβ  and ( ) 12 2ˆρσ σ −′ ′= y W Wy . Thus we sample newρ  from the distribu-

tion, and apply the ARMH algorithm. 

3.3. Sampling Other Parameters 
The full conditional distributions of β  and 2σ  are  

( ) ( )2ˆ ˆˆ ˆ, ,    and   2, 2N IGσ ν λ Σβ β  

where ( ){ }2 1
0 0

ˆ ˆβ σ ρ− −′= − +Σ ΣX y Wy β , ( ) 12 1
0

ˆ σ
−− −′= +Σ ΣX X , 0ˆ nν ν= + , and 0λ̂ λ′= +e e . These para-

meters are easily sampled from the Gibbs sampler (see [25]). 

4. Comparison of MCMC Methods 
4.1. Measures of Efficiency for Comparison 
In this section, we examine the properties of three MCMC methods by simulated data sets. Desirable properties 
for sampling methods in MCMC are efficiency and well mixing, which yield fast convergence. [17] compared 
from the view point of acceptance rate in the AR and MH step. [26] [27] evaluated the efficiency of sampling 
methods, comparing the inefficiency factor and time of MCMC simulation. Following previous literatures, we 
also compare inefficiency factor and computational time. 

The inefficiency factor is defined as 
11 2 ss r∞

=
+ ∑  where sr  is the sample autocorrelation at lag s  calcu-  

lated from the sampled values. It is used to measure how well the chain mixes and is the ratio of the numerical 
variance of the sample posterior mean to the variance of the sample mean from the hypothetical uncorrelated 
draws (see [28]). 

4.2. Data Generating Process and Estimation Procedures 
We now explain the simulated data for an experiment. First, we give the weight matrix as an exogenous variable. 
We construct the spatial weight matrix W  as follows: 1) generate ijc  for i j>  from Bernoulli distribution 
with a probability of success 0.3, 2) set ij jic c=  for i j=/  and 0ijc =  for i j= , and 3) compute 

1
n

ij ij ijjw c c
=

= ∑  for all i , j . Next, for the independent variables ( )1 2 31, , ,i i i ix x x=x , we take the standard 

normal variates and set the X , which are 4n×  covariate matrices. 
Given W , X , 0.9, 0.6, 0.3, 0, 0.3, 0.6, 0.9ρ = − − − , and 50, 100, 200n = , the true data generating 

process is as follows:  

1

n

i ij j i i
j

y w yρ
=

= + +∑ x β                                  (6) 

where the i  is normally and independently distributed with ( ) 0iE u =  and ( )2 2
iE u σ= . The parameter is 

set to be ( ) ( )0 1 2 3, , , 1,1,1,1β β β β′ = =β  and 2 0.1σ = , respectively. The parameters of ρ  for simulated data 
reflect the values obtained in [12]. All the results in this paper were calculated using the Ox version 5.1 (see 
[29]). 

The prior distributions are as follows:  
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( ) ( ) ( )2
4,100 ,    1.0 2,0.01 2 ,    and   1,1N IG Uσ ρ× −I  0β  

We perform the MCMC procedure by generating 35,000 draws in a single sample path and discard the first 
20,000 draws as the initial burn-in. For the GGS, we consider the number of grid, 50, 100, 300m =  for 
estimating the parameters. 

4.3. Results of Comparison 
Table 1 reports inefficiency factors by using three methods. Although there are some differences, the perfor-
mances of the GGS are almost equivalent to those of the ARMH. In addition, these algorithms are more efficient 
than RMH. For example, from the table in 50n = , the inefficiency factors calculated by the ARMH are smaller 
than the other methods. However, if spatial correlation is positive strong such as 0.9ρ = , the value by the GGS 
( )100m =  has the smallest inefficiency factor. Next, we focus on the results in 100n = . In this case, the GGS 
( )50,100m =  perform the best for 0.6,0.9ρ = , respectively. In the case of 200n = , the values of the GGS 
( )100m =  and the ARMH are similar in each parameter. We can also find such similarity in sample paths and 
autocorrelation functions. Figure 1 shows the results of MCMC simulation in each method in the cases of 

0.3ρ = , 50n =  and 100m = . The figure shows that the marginal posterior densities (middle of the figure)  
 
Table 1. Inefficiency factor of models. 

Observation: 50n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 7.2 3.2 3.4 3.4 2.8 

−0.6 27.6 4.4 4.4 4.7 3.7 

−0.3 15.4 23.7 6.6 6.9 4.3 
0 41.6 9.0 10.1 11.5 6.6 

0.3 79.8 24.6 19.6 20.9 13.1 

0.6 117.0 46.3 45.2 52.3 44.6 
0.9 806.1 312.9 223.1 327.2 324.9 

Observation: 100n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 10.7 4.8 5.0 5.3 4.7 

−0.6 17.0 6.7 7.3 7.5 4.6 

−0.3 34.7 9.0 10.2 10.9 5.0 
0 72.4 15.4 16.2 17.8 9.5 

0.3 85.1 24.5 25.5 32.6 19.9 

0.6 202.3 36.1 56.6 65.8 51.3 
0.9 609.1 379.3 338.0 342.1 338.9 

Observation: 200n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 22.2 7.1 8.3 5.7 7.8 

−0.6 31.0 11.5 12.4 13.5 9.0 
−0.3 64.8 17.6 17.6 19.1 13.8 

0 75.7 23.5 26.4 33.6 23.7 

0.3 163.6 57.4 67.3 65.6 50.5 
0.6 697.3 164.2 117.5 163.3 159.3 

0.9 860.4 695.1 628.7 694.0 780.6 
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Figure 1. Sample paths, sample autocorrelation and posterior density of 0.3ρ = , 50n = . 

 
have similar shapes but that the sample paths (top of the figure) and autocorrelation functions (bottom of the 
figure) are different. From the sample paths, we can find that the ARMH and GGS mix better than the RMH. As 
same as the sample paths, autocorrelation functions shows the same tendency. The figure of autocorrelation in-
dicates that both GGS and ARMH perform similarly in the autocorrelation disappear. On the contrary, the result 
for the RMH indicates that serious autocorrelation for parameter at large lag length. 

Table 2 shows CPU time on a Pentium Core2 Duo 2.4GHz including discarded and rejected draws. For the 
GGS, the computation time depends on the number of grid because the increase of grid number causes the cost 
of computation time. In all cases, the GGS ( )50m =  overwhelms the others. If we focus on the case of 50n = , 
the computational time of the GGS ( )100m =  are as same as those of the RMH and ARMH methods. Futher-
more, if 200n = , the GGS needs much shorter time than the RMH and ARMH methods. Summarizing the re-
sults of inefficiency factors and computational time, if the number of observation is not only small (like 50n = ) 
but also large, then it is suitable to use the GGS. In addition, the choice of grid number affects to the computa-
tional time. In this numerical experiments, the results of selecting 100m =  seem to work well in terms of inef-
ficiency factors and computational time. 

Table 3 shows the results with acceptance probabilities in both AR and MH parts in the ARMH. From the ta-
ble, the acceptance probabilities in those part are exceed 89%. This result shows that our candidate function 
seems to work well, and the probabilities of sampling the same value consecutively are low. However, our 
ARMH algorithm does not improve the values of inefficiency factor. Thus, we think that the SAR model has the 
problem of identification. 

Figure 2 and Table 4 depict the sample path and the correlation among the parameters in the case of 100n = , 
0.9ρ = , 100m =  using the GGS. From 2β  to 4β  and 2σ  in the figure, the MCMC draws seem to be well 

mixing. In addition, correlations among these parameters are very small. On the other hand, strong correlation 
between 0β  and ρ  can be found from the figure. Moreover, the correlation between 0β  and ρ  is 0.995−  
from the table. Therefore, we assume that the spatial correlation and constant term is weakly identified. 

5. Concluding Remarks 
This paper reviewed the MCMC estimation procedures for sampling the spatial correlation of SAR model, and 
proposed the ARMH algorithm as more efficient than the RMH in order to show the property of the GGS pro-
posed by [2]. To illustrate the differences between the estimates of three MCMC methods, we compared these 
algorithms by simulated data set. From the Monte Carlo experiments, we found that the GGS was the most effi-
cient algorithm with respect to the mixing, efficiency and computational requirement of the MCMC. Moreover,  
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Table 2. Time of convergence. 

Observation: 50n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 22.17 11.12 22.68 1:05.96 24.24 

−0.6 23.22 11.57 23.06 1:05.99 23.95 

−0.3 23.31 11.71 23.21 1:07.18 23.99 

0 23.27 11.83 23.27 1:07.87 24.01 

0.3 23.20 12.26 23.10 1:09.49 23.99 

0.6 24.16 12.07 22.70 1:08.36 24 

0.9 23.17 12.06 23.64 1:08.66 24.02 

Observation: 100n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 1:31.73 18.67 35.49 1:37.61 1:44.90 

−0.6 1:41.36 17.25 35.75 1:37.83 1:42.99 

−0.3 1:43.81 19.93 36.64 1:39.25 1:43.22 

0 1:40.10 18.30 40.15 1:38.47 1:43.53 

0.3 1:40.90 19.90 40.04 1:41.40 1:43.55 

0.6 1:41.73 18.91 37.35 1:43.97 1:43.13 

0.9 1:43.36 17.93 37.89 1:40.33 1:42.27 

Observation: 200n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 8:40.79 26.88 56.62 2:43.63 9:05.58 

−0.6 8:43.81 26.66 56.76 2:45.73 9:07.63 

−0.3 8:59.71 26.74 58.84 2:44.22 9:08.03 

0 8:57.87 26.92 57.48 2:46.64 8:56.41 

0.3 9:03.95 27.02 58.49 2:45.99 8:51.45 

0.6 9:12.82 28.24 58.13 2:48.13 9:01.35 

0.9 9:22.86 27.10 57.84 2:48.15 8:59.61 

Note: Time denotes CPU time on a Pentium Core2 Duo, including discarded and rejected draws. 
 
Table 3. Acceptance probability of the ARMH methods. 

Parameter 50n =  100n =  200n =  

ρ  AR step MH step AR step MH step AR step MH step 

−0.9 0.9866 0.9116 0.9578 0.8975 0.9881 0.9505 

−0.6 0.9999 0.9500 0.9999 0.9438 1.0000 0.9724 

−0.3 1.0000 0.9848 1.0000 0.9805 1.0000 0.9906 

0 1.0000 0.9849 1.0000 0.9787 1.0000 0.9949 

0.3 1.0000 0.9670 1.0000 0.9544 1.0000 0.9861 

0.6 0.9991 0.9553 0.9958 0.9375 1.0000 0.9802 

0.9 0.9997 0.9716 0.9977 0.9649 0.9997 0.9821 
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Table 4. Correlation of parameters. 

 1β  2β  3β  4β  2σ  

2β  −0.050     

3β  0.087 0.106    

4β  −0.059 0.205 0.183   
2σ  0.161 −0.007 0.002 −0.025  
ρ  −0.995 0.054 −0.075 0.078 −0.160 

Note: True parameter is 0.9. The number of observation set to be 100. 
 

 
Figure 2. Sample paths of SAR model with GGS ( 0.9ρ = , 100n = , 100m = ). 

 
the results of selecting 100m =  seem to work well in terms of inefficiency factors and computational time. 
Therefore, the GGS is beneficial algorithm for estimating the spatial parameter as same as the result of [22]. 

Finally, we will state our remaining issues. In this paper, we found that the GGS was the most efficient algo-
rithm in sampling the intensity of spatial interaction. On the other hand, we showed the problem of the SAR 
model such that the spatial correlation and constant term was weakly identified. Thus, we have to construct the 
model which is identified, or appropriate algorithm to sample the intensity of spatial interaction. Furthermore, 
we found that the number of grids is appropriate when 100m = . In this paper, we could not derive the theoreti-
cal reason why 100m =  was appropriate number of grids, that was, we only showed the results of Monte Carlo 
experiments. However, it is important to know the properties of the existing sampling methods, though research 
on the convergence of the GGS algorithm has never been examined. We think that, in this respect, our experi-
ment gives the benchmark in applied econometrics. 
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