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Abstract 
The Shapiro-Wilk test (SWT) for normality is well known for its competitive power against nu-
merous one-dimensional alternatives. Several extensions of the SWT to multi-dimensions have 
also been proposed. This paper investigates the relative strength and rotational robustness of 
some SWT-based normality tests. In particular, the Royston’s H-test and the SWT-based test pro-
posed by Villaseñor-Alva and González-Estrada have R packages available for testing multivariate 
normality; thus they are user friendly but lack of rotational robustness compared to the test pro-
posed by Fattorini. Numerical power comparison is provided for illustration along with some 
practical guidelines on the choice of these SWT-type tests in practice.  
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1. Introduction 
Normal distributions are of central importance in statistical inference and in numerous applications. Thus, test-
ing for normality including assessing multivariate normality has been studied extensively in statistics. For in-
stance, in a research monograph, Thode [1] reviewed more than 30 formal statistical procedures proposed spe-
cifically for testing normality. For univariate data, the Shapiro-Wilk test (SWT) [2] for normality is the well- 
known benchmark of omnibus tests in terms of competitive power performance against a broad range of alterna-
tives. Many extensions of the univariate SWT to multi-dimensions have been developed [1], and at least two R 
packages for testing multivariate normality have recently been made based on the SWT-based tests by Royston 
[3]-[7] and Villaseñor-Alva and González-Estrada [8] [9]. The recently developed R-packages make the two 
SWT-based tests quite user-friendly thus have potential to be widely used by many practitioners in various fields 
of applications. Therefore, assessing the relative strength and robustness of these normality tests and providing 
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insights and guidelines on when to use them would be of practical interest. This paper discusses the relative 
strength and rotational robustness of these user-friendly SWT-based tests and provides some guidelines for se-
lecting tests in practical applications. In the next section we briefly review the original SWT [2] and two 
SWT-based tests for multivariate normality with R packages [3]-[9]. Section 3 discusses rotational robustness 
and the FA test [10]. Section 4 discusses the Iris data example and reports Monte Carlo simulation results. Sec-
tion 5 provides some guidelines and remarks. The R code for the FA test is provided in the appendix. 

2. The SWT-Based Normality Tests with R-Packages 
Originally created to test univariate distributions for normality, given univariate data ( )1, , ,nx x=X   the Sha-
piro-Wilk test (SWT) [2] statistic is  
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where ( ) ( )1 , , nx x  are the order statistics of the univariate data ( )1, , nx x=X  , nX  is the sample mean, and 

the constants { }ia  are ( ) ( ) 1 2T 1 1 T 1
1, , na a m V V m m V

−− − −= , with ( )T
1, , nm m m=   and V  being the mean  

vector and covariance matrix of the order statistics of a random standard normal sample of size n . The univa-
riate SWT can be performed easily in R using the function shapiro.test based on Royston’s algorithms [3] [4]. 
The Shapiro-Wilk test (SWT) for normality is well known for its competitive power against numerous one-di- 
mensional alternatives. Many extensions of the SWT to the multivariate case have been proposed in the litera-
ture including Royston’s H-test [3]-[7] and a new multivariate extension of the SWT by Villaseñor-Alva and 
González-Estrada [8]. The first step in the extension of SWT proposed in [8] is to standardize the multiva- 

riate data ( )T
1, , pX X=X   by substracting the sample mean nX  and multiplying by the square root of the  

inverse of its covariance matrix nS . It is known that the covariance matrix nS  of a p -variate normal is non-  

degenerate with probability one. Without loss of generality, let 
1
2

nS
−

 be the symmetric square root of 1
nS −  and 

denote the standardized data as ( )
1
2 – , 1, , ,nnS X i n

−
= =i iZ X   and ( ), ,= 1 nZ Z Z  is the p n×  data matrix.  

Under the null hypothesis, X  has a multivariate normal distribution and Z  has approximately the multiva-
riate standard normal distribution [8]. Villaseñor-Alva and González-Estrada [8] proposed to use the following 
test statistic  
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where 
iCW  is the univariate SWT statistic evaluated on the ith coordinate of the standardized data ( )T

, ,= 1 pZ C C  

where ( )T
1, ,i inZ Z=iC  , 1, ,i p=  . This test is easy to understand and has been programmed into an R pack-  

age called mvShapiroTest that makes it very user friendly [9]. Moreover, power simulations against many al-
ternatives reported in [8] indicate that the new test has competitive power compared to many well-known nor-
mality tests including the HZ test of Henze and Zirkler [11]. Similarly, the well-known Royston’s extension of 
SWT has also been made into an R-package recently called royston [7]. Both Villaseñor-Alva and González- 
Estrada [8] and Royston developed effective numerical approximations to the null distribution of the normality 
tests so that p-values can easily be estimated for any given sample size. Thus the R-packages make these tests 
much more user-friendly than other SWT-based tests for multivariate normality in the literature [1] [12]-[14]. In 
addition, the royston package can also draw q-q plots thus facilitating visualization of the non-normality in the 
data [7]. Given the importance of assessing multivariate normality in practical applications, it is of practical in-
terest to systematically investigate the relative strength of these user-friendly normality tests and provide poten-
tial guidelines about test selection among these candidate tests in practice. 
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3. Rotational Robustness and the FA Test of Fattorini 
The multivariate normal distributions have rotational invariance. In particular, ( )1 2,X X=X  is bivariate nor-

mal if and only if ( ) ( )1 2 1 2,X X X X= − +U X  is bivariate normal. In general, ( )1 2,X X=X  is bivariate 

normal if and only if ( ) ( ) ( ) ( ) ( )( )1 2 1 2cos sin ,cos sinX X X Xθ θ θ θ θ= − +U X  is bivariate normal for any an-

gle θ . Also, when ( )1 2,X X=X  is not bivariate normal, ( )θU X  is not bivariate normal for all angle θ   
[15]. When ( )0, .θθ = =U X X  Thus if we know when 0θ =  the data is more non-normal than at other an-
gles, we would prefer testing normality for ( )1 2,X X=X . Similarly, if we know π 4θ =  is more non-normal 
than at other angles, we would prefer testing normality for ( ) ( )1 2 1 2,X X X X= − +U X  instead of testing nor-
mality for ( )1 2,X X=X . Ideally, when X  is not bivariate normal, we might desire a normality test with good 
power for detecting non-normality of ( )θU X  for all angle θ  or a test that can automatically search for the 
most non-normal direction to test, i.e., one might hope to have a robust normality test when there is no clue 
about which angle corresponds to the most non-normal data. Among the SWT-based test for multivariate nor-
mality, the FA test proposed by Fattorini [10] and a similar test proposed by Malkovich and Afifi [12] actually 
search for the most non-normal direction and thus would be more rotationally robust than either the mvShapi-  
roTest or the Royston test. The FA test statistic is given by ( ) ( )( )FA min

jj n ZW θ≤=Z , where ( )jZW θ  is the 

SWT statistic evaluated at ( ) T
j jZ Zθ = Z , where ( )T

1 , ,j pjZ Z=jZ   i.e. ( )1 2
nnS X−= −j jZ X  is the jth 

standardized observation 1, ,j n=  , and ( ), ,= 1 nZ Z Z  is the p n×  data matrix. Possibly due to the ro- 
bust power properties of the FA test, Thode [1] recommended the FA test as a generally powerful multivariate 
normality test besides the HZ test by Henze and Zirkler [11] after reviewing more than 30 tests for normality in-
cluding both SWT-based and non-SWT based tests. The HZ test uses empirical characteristic functions instead 
of using extensions of the SWT. 

4. The Iris Data Example and Numerical Studies 
4.1. The Iris Data Example 
The Iris data set is a well-known multivariate data set collected to measure the morphologic variation of Iris 
flowers of three related species. The data set consists of 50 samples from each of three species of Iris including 
setosa, virginica and versicolor. For each sample, four variables were measured including the length and the 
width of the sepals and petals, in centimeters. Fisher [16] used the Iris data to demonstrate the use of unclassi-
fied observations in estimating discriminant function. The non-normality of the multivariate Iris data has been 
investigated by many statisticians [17] [18]. For illustration, we consider the bivariate normality of the Iris data 
set by using the length and the width of the sepals of two of the species Iris setosa, and Iris versicolor that are 
the first two columns and first 100 rows of the Iris data. The p-values of the mvShapiro.Test and royston.test 
in R were 0.26 and 0.37, respectively. Thus both tests fail to detect non-normality when testing X. However, if 
we test U(X) instead of X for normality, both the mvShapiro.Test and royston.test have very small p-values, 
0.0003 and 0.0018, respectively, providing significant evidence of non-normality. Thus in this case, the two tests 
based on testing U(X) are more powerful than testing X. For the above data the FA test has p-values < 0.001 in 
testing both X and U(X) indicating rotational robustness. 

4.2. Simulation Studies 
From the above Iris data example, it is clear that testing for X and testing for U(X) can have dramatically differ-
ent powers for the mvShapiro.Test and royston.test, we conducted further simulations for a wide variety of al-
ternatives. Indeed, neither of these two tests has robust power against rotational alternatives when the marginal 
distributions of X are independent. They are seriously lack of rotational robustness compared to the FA test. 
More specifically, the R package mvShapiroTest was used to evaluate the test statistics, the critical values, and 
powers of the test discussed in [8] [9]. The mvShapiro.Test function was applied to 500,000 independent sam-
ples from the standard bivariate normal distribution to evaluate the test statistics and the percentiles correspond-
ing to alpha = 5% and 1%. The estimated power was the percentage of the simulated mvShapiro.Test$statistic  
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that exceeded the previously calculated critical values under 50,000 samples from each alternative. Similarly the 
royston package in R is used to calculate critical values of the royston.test based on 500,000 samples from the 
standard bivariate normal distribution and the empirical power based on 50,000 samples from each alternative 
distribution. Using the same set up, the critical values and power of the FA test [10] were obtained using the R 
code provided in the Appendix. Note that all three tests are applied to standardized data in our simulations to 
make sure Type I errors are correct under multivariate normality with unknown mean vector and covariance ma-
trix and to ensure fair power comparison.  

4.3. Simulation Findings 
The simulated power is illustrated in Table 1 for the sample size n = 50 and 0 or π 4θ = . The power patterns 
are the same for other sample sizes e.g. n = 25 or 100, thus not presented. More specifically, in Table 1, the al- 

 
Table 1. Power (in percent): (α = 5%, n = 50).                                                                 

Alternative Distributions for X = (X1, X2) 
Testing Normality of X = (X1, X2)  Testing U(X) = (X1 − X2, X1 + X2) 
FA mvShapiro Royston H R6 FA mvShapiro Royston H 

N (0,1)*N (0,1) 5 5 5 5 5 5 5 
Exponential*Exponential 100 100 100 100 100 90 89 

χ² (2)*χ² (2) 100 100 100 100 100 90 89 
χ² (5)* χ² (5) 92 99 97 94 93 48 46 
χ² (10)* χ² (10) 62 80 72 66 62 25 23 

Lognormal (0,0.5)*Lognormal (0,0.5) 96 99 98 97 97 67 62 
Lognormal (0,0.25)* Lognormal (0,0.25) 48 62 57 50 49 20 18 

Gamma (5,1)*Gamma (5,1) 63 80 73 66 63 26 24 
t (2)*t (2) 96 98 98 98 96 84 75 
t (5)*t (5) 45 51 55 52 46 26 26 

Beta (1, 1)*Beta (1,1) 51 93 79 63 52 4 3 
Beta (1,2)*Beta (1,2) 73 97 89 81 75 12 10 
Beta (2,2)*Beta (2,2) 6 23 13 6 6 3 2 

Logistic (0,1)*Logistic (0,1) 24 27 30 27 24 12 14 
Halfnormal*Halfnormal 93 100 97 95 93 35 33 
Weibull (1)*Weibull (1) 100 100 100 100 100 90 89 

Weibull (1.5)*Weibull (1.5) 89 98 95 92 89 38 36 
Pearson II (0) 26 49 34 35 26 49 33 
Pearson II (1) 6 11 7 6 6 11 7 

Pearson VII (4) 30 37 40 49 30 38 39 
Pearson VII (5) 43 26 28 35 43 25 28 

N (0, 1)*Exponential 99 99 98 98 99 43 45 
N (0, 1)*Beta (1, 1) 33 47 40 23 32 5 32 
N (0, 1)*Beta (1, 2) 51 61 55 38 52 9 54 
N (0, 1)*Halfnormal 75 80 75 68 75 17 42 
N(0, 1)*Gamma(5, 1) 41 47 43 34 41 14 3 

N(0, 1)*t(2) 81 82 84 81 81 51 7 
N(0, 1)*t(5) 28 30 33 30 29 14 9 

N(0, 1)*Chisq(2) 99 100 99 97 99 42 7 
N(0, 1)*Chisq(5) 73 79 74 60 74 21 1 

N(0, 1)*Weibull(1) 99 99 99 99 99 44 47 
N(0, 1)*Weibull(1.5) 68 74 69 62 68 18 47 

NMIX(.5, 2,0,0) 10 4 3 7 11 19 14 
NMIX(.5, 2, 0,0.9) 66 53 56 67 67 62 61 
NMIX(.75, 2, .9, 0) 86 85 69 84 86 69 71 
NMIX(.75, 2, 0, .9) 51 6 15 47 53 65 63 
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ternative χ2(5)*χ2(5) stands for a bivariate distribution with the two independent marginal distributions each be-
ing the χ2(5) distribution. ( ) ( ) ( ) ( ) ( )( )1 2 1 2cos sin ,cos sinX X X Xθ θ θ θ θ= − +U X  is non-normal for any 
given angle when ( )1 2,X X=X  is from χ2(5)*χ2(5) [15]. However, it is intuitively clear that 1 2X X+  is 
closer to normal than either 1X  or 2X  by the central limit theorem. Thus the mvShapiroTest and the Roys-
ton test both have high power to detect non-normality of χ2(5)*χ2(5) when testing ( )1 2,X X=X , but they only 
have less than 50% power to detect non-normality of ( ) ( )1 2 1 2, .X X X X= − +U X  On the other hand, the 
power for the FA test stays essentially at the same 92% level because it searches for the most non-normal direc-
tions to test. The power patterns for testing other alternatives with independent marginal distributions are similar. 
For illustration of alternatives with non-independent marginals, we use the same Pearson II and VII alternatives 
and the same normal mixture alternatives as in [8]. When marginal distributions are not independent, the 
( ) ( )1 2 1 2,X X X X= − +U X  can be more non-normal than ( )1 2,X X=X , then the mvShapiroTest and the 

Royston test both can have much higher power to detect non-normality when testing ( ) ( )1 2 1 2,X X X X= − +U X  
than when testing ( )1 2,X X=X . This can be seen clearly from the above Iris data example and from the last 
normal mixture alternative in Table 1, where the mvShapiroTest and the Royston test have only 6% and 15% 
power when testing ( )1 2,X X=X , respectively. However, both tests have much higher power (more than 60% 
power) when testing non-normality for ( ) ( )1 2 1 2, .X X X X= − +U X  From Table 1, if we know the observed 
marginal distributions are independent and correspond to the most non-normal directions, the mvShapiro.Test 
or the royston.test in R is a good choice for testing ( )1 2,X X=X  because of good power. However, the most 
non-normal angles are typically unknown in practice. In the absence of such information about alternatives, a 
rotationally robust test such as the FA test might be more desirable than both Royston’s H-test and the mvSha-
piro.Test proposed in [8] and [9]. 

5. Discussion 
If we have prior information that X  has independent margins and X  itself is the most non-normal configu-
ration than any of the ( )θU X , then we can use either the mvShapiro.Test or the royston.test in R to detect 
non-normality. When there is no such information available, one might prefer to use a rotationally robust test 
such as the FA test. The FA test has not been incorporated into R packages yet, but it can be coded easily using 
the shapiro.test function in R (see Appendix). Given its rotationally robust property, it is likely to be included in 
some R packages in the future. It is also likely that some new robust test possibly more powerful than the FA 
test might be developed. For example, Table 1 also reports a test based on searching for the most non-normal  

angle in the Royston test among six fixed angles π π π π 5π0, , , , ,
12 6 4 3 12

θ = 
 

 called the R6 test. Note that the R6 

test has equal power whether testing X  or ( ) ( )1 2 1 2,X X X X= − +U X  and seems to have robust power  
comparable to the FA test in the bivariate case. Of course, combining SWT-based tests with other non-SWT 
type tests (e.g. the kurtosis test [18]-[20]) might also worth consideration in order to obtain generally robust and 
powerful tests such as the combination test developed in [21]. 
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Appendix: The R Code for Calculating the FA Test Statistic 
“SW” <- function(X) shapiro.test(X)$statistic  
“FA” <- function(X) {  
X < - as.matrix(X)  
n < - NROW(X)  
p < - NCOL(X)  
mu< - apply(X,2,mean)  
nSinver< - solve((n-1)*cov(X))  
Y < - X%*%t ((X-matrix(rep(mu,n),ncol=p,byrow=TRUE))%*%nSinver)  
return(min(apply(Y,2,SW)))} 
## END 

http://dx.doi.org/10.1007/BF01891203
http://dx.doi.org/10.2307/2986146
http://cran.r-project.org/web/packages/royston/index.html
http://cran.r-project.org/web/packages/royston/index.html
http://cran.r-project.org/web/packages/royston/index.html
http://dx.doi.org/10.1080/03610920802474465
http://rpackages.ianhowson.com/cran/mvShapiroTest/
http://dx.doi.org/10.1080/03610929008830400
http://dx.doi.org/10.1080/01621459.1973.10481358
http://dx.doi.org/10.1080/03610929508831533
http://dx.doi.org/10.1016/0167-7152(87)90019-8
http://dx.doi.org/10.1016/j.jmva.2010.04.015
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.2307/2346414
http://dx.doi.org/10.1016/0167-7152(84)90062-2
http://dx.doi.org/10.1080/02664763.2013.839637


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	On Rotational Robustness of Shapiro-Wilk Type Tests for Multivariate Normality
	Abstract
	Keywords
	1. Introduction
	2. The SWT-Based Normality Tests with R-Packages
	3. Rotational Robustness and the FA Test of Fattorini
	4. The Iris Data Example and Numerical Studies
	4.1. The Iris Data Example
	4.2. Simulation Studies
	4.3. Simulation Findings

	5. Discussion
	Acknowledgements
	References
	Appendix: The R Code for Calculating the FA Test Statistic

