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Abstract 
Experimental studies are usually designed with specific expectations about the results in mind. 
However, most researchers apply some form of omnibus test to test for any differences, with follow 
up tests like pairwise comparisons or simple effects analyses for further investigation of the ef-
fects. The power to find full support for the theory with such an exploratory approach which is 
usually based on multiple testing is, however, rather disappointing. With the simulations in this 
paper we showed that many of the common choices in hypothesis testing led to a severely under-
powered form of theory evaluation. Furthermore, some less commonly used approaches were 
presented and a comparison of results in terms of power to find support for the theory was made. 
We concluded that confirmatory methods are required in the context of theory evaluation and that 
the scientific literature would benefit from a clearer distinction between confirmatory and explo-
ratory findings. Also, we emphasis the importance of reporting all tests, significant or not, includ-
ing the appropriate sample statistics like means and standard deviations. Another recommenda-
tion is related to the fact that researchers, when they discuss the conclusions of their own study, 
seem to underestimate the role of sampling variability. The execution of more replication studies 
in combination with proper reporting of all results provides insight in between study variability 
and the amount of chance findings. 
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1. Introduction 
Experimental studies are usually designed with specific expectations about the results in mind. Van den Hout 
and colleagues, for instance, designed a study to investigate differences in performance between interventions 
for posttraumatic stress disorder [1]. While it has been shown that Eye Movement Desensitization and Repro-
cessing (EMDR) is an effective treatment, recently, therapists sometimes replace eye movements (EMs) by al-
ternating beep tones. To investigate if the intervention based on beep tones was: 1) effective at all, and 2) equal-
ly effective as the intervention using EMs, patients were randomized over three groups: recall only, recall with 
EMs, or recall with beep tones. Three competing expectations for the outcome were formulated: 

H1: beep tones are as effective as EMs.  
H2: beep tones are not effective at all.  
H3: beep tones are effective, but not as effective as EMs. 
In terms of the three conditions, this can also be expressed as: 
H1: { }EMs beep tones recall only= > . 
H2: { }EMs beep tones recall only> = .  
H3: EMs beep tones recall only> > . 
The main goal of this experiment was to evaluate for which of these three competing hypotheses the data pro-

vided most support.  
Another illustration of research with specific expectations about the results is presented by [2]. In a study on 

the effect of stereotype threats on the math performance of women and men, they hypothesized that on a relative 
simple math test there would be no differences in performance between men and women, but on a difficult test 
where they expected both men and women to perform worse than on the simple test, they did also expect men to 
score better than women. Let µ  denote the mean performance and the subscripts w = women, m = men, s = 
simple and d = difficult. The expectations can be expressed as: { }Spencer , , , ,  : w d m d w s m sH µ µ µ µ< < = . 

This is an example of a factorial design but the hypothesis of interest is not formulated as, nor approached by, 
(default) testing for main or interaction effects, but instead expresses the specific theory of the researcher in one 
hypothesis.  

Both examples show that research expectations are often expressed using order constraints on the model pa-
rameters (e.g. means in experimental groups). Hypotheses in terms of such constraints are denoted ordered, in-
equality constrained, or informative hypotheses [3]. We prefer the last term for two reasons. First, the hypothesis 
of interest can include order/inequality constraints (<, >), but also equality constraints (=) and unconstrained 
parts (denoted using a comma, e.g. { }1 2 3,µ µ µ>  states that both 1µ  and 2µ  are greater than 3µ , but there 
is no constraint with respect to the mutual relation of 1µ  and 2µ ). Second, it emphasizes that the hypothesis is 
informative in the sense that it captures the information the researcher is interested in (i.e., the theory or explicit 
expectation).  

A review of empirical literature shows that many research articles contain such hypotheses, that is, in the in-
troduction of the paper the authors clearly state what their expectations with respect to (part of) the outcomes are. 
This is especially the case in experimental studies. Despite such prespecified expectations or theories, most re-
searchers apply some form of omnibus test to test for any differences, with follow up tests like pairwise compar-
isons or simple effects analyses for further investigation of the effects. The power to find full support for the 
theory with such an approach is, however, rather disappointing.  

To illustrate this consider the hypothesis expressing the expectation that four means are of increasing magni-
tude, that is, the hypothesis states what is called a simple ordering of four means: informative 1 2 3 4:H µ µ µ µ< < < . 

After assuring that all assumptions to perform an analysis of variance (ANOVA) are met, we believe that the 
majority of researchers would approach this hypothesis by first testing the omnibus F-test to see if there is evi-
dence for any differences between the four means. After rejection of the null hypothesis “all means equal”, one 
would probably investigate the pairwise comparisons to determine which means differ from each other. 
Throughout the paper, 0.05α =  will be used to determine statistical significance. 

Full support for the theory could be claimed if 1) the omnibus F-test is statistically significant, 2) the sample 
means are in the hypothesized order, and 3) the pairwise comparisons testing 01 1 2:H µ µ= , 02 2 3:H µ µ= , and 

03 3 4:H µ µ=  are statistically significant. Note that other approaches to decide on full support for Hinformative are 
available and several will be discussed and investigated in the next section.  

In a small simulation study, with population means in the hypothesized order, an effect size that can be la-
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beled as medium (Cohen’s   0.27f = ) and a sample size of 50 per group, the power of the omnibus ANOVA 
was 0.92. Stated differently, in 92% of the data sets that were all simulated from the specified population, the 
hypothesis 0 1 2 3 4:H µ µ µ µ= = =  was rejected (p < 0.05). However, the percentage of data sets in which also 
the sample means were in the hypothesized order (i.e., 1 2 3 4M M M M< < < ) was only 65%. Worse, when 
counting the data sets in which also all three pairwise tests were statistically significant (p < 0.05), we ended up 
with a disappointing result of zero! The power to find full support for the hypothesized order, where full support 
is defined as finding statistically significant pairwise differences between the four subsequent means, is 0.00. 

From these numbers it is clear that the power for an omnibus ANOVA and the power to find support for a 
specific expectation about a pattern of means can deviate substantially. Similar results and conclusions were 
previously reported in [4], although not in the context of testing informative (order constrained) hypotheses but 
in the general context of multiple testing. In [4] it was argued that multiple testing causes studies to be under-
powered and that this leads to inconsistencies in the published literature. Multiple testing is also the main expla-
nation for the low power in our illustration. 

This paper has two main goals. We will show that many of the common choices in hypothesis testing lead to a 
severely underpowered form of theory evaluation. Furthermore, we will compare the results with available but 
less commonly used approaches and discuss when each of them could serve as a valuable and more powerful al-
ternative.  

In the next section six approaches are described that can be used in the context of a one-way ANOVA when 
the hypothesis of interest is a simple ordering of k means. For a variety of populations, two questions are inves-
tigated: “What is the power to find full support given that the power for the omnibus test is 80%?”, and “What is 
the required sample size to obtain 80% full support power for the specific expectations?”. In Section 3, the re-
sults are reported of simulation studies meant to investigate the specific interaction hypothesis in the two-way 
design of the math performance example just introduced. The paper is concluded with a discussion of results and 
possible implications for psychological research. 

2. One-Way Analysis of Variance 
In the context of a one-way ANOVA with k groups, six approaches are presented that researchers could employ 
when evaluating the explicit research hypothesis that the means are increasing, that is: informativeH :  

1 2 k 1 kµ µ µ µ−< < < < . Although we do not claim that these are the only options available, we do believe that 
many researchers will recognize one or more of the presented approaches and probably have employed them in 
their own research. With simulation studies the performance of the six approaches will be systematically eva-
luated for a variety of populations. The question that is investigated is: If the hypothesized ordering of means is 
indeed present in the population, how often will each of the approaches find full support for this hypothesis? The 
technical aspects of approaches I-V (all using NHT) are provided in Appendix A. A short summary of approach 
VI (a Bayesian approach) is presented in Appendix B. 

In Section 2.1, we present three approaches that are frequently seen in published research papers. However, 
these methods are not the best choice for theory evaluation, that is, for testing explicit hypotheses. Therefore, in 
Section 2.2, three alternative approaches are presented that may be better suited to evaluate pre-specified explicit 
hypotheses, but that are probably less familiar to some researchers. Sections 2.3, 2.4, and 2.5 present the results 
of several simulation studies. 

2.1. Three Omnibus Test Based Approaches 
The first three approaches are based on performing an omnibus ANOVA, despite the fact that the hypothesis of 
interest is more specific than the hypothesis evaluated with the omnibus test: 

0H : 1 kµ µ= = . 
AH : not 0H . 

Additionally, to evaluate the actual research hypothesis (i.e., to be able to claim full support), three different 
follow-up procedures are considered. 

I. Omnibus ANOVA + sample means in hypothesized order 
To claim support for the research hypothesis, the omnibus test must be statistically significant (p < 0.05) and 

the sample means ( )jM  must be in the hypothesized order. To have convincing evidence for the specific hy-
pothesis and to get the work published it seems, however, necessary to include follow-up testing. This is not yet 
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done in approach I.  
II. Omnibus ANOVA + sample means in hypothesized order + all pairwise tests for subsequent means signifi-

cantly different (with 0.5α = , no multiple testing correction) 
If the omnibus test is significant (p < 0.05), researchers often continue with pairwise comparisons to further 

investigate which means differ significantly from each other. Full support for the hypothesis can only be claimed 
if all subsequent pairs of means (i.e., 1M  with 2M , 2M  with 3M , etc.) are significantly different and in the 
correct direction ( 1 2M M< , 2 3M M< , etc.).  

Since we are now applying multiple tests (each with α  level 0.05) to get an answer to one specific research 
question, the issue of inflated type 1 errors emerges. Researchers have to make a decision about how to control 
the family wise error and make a choice between a long list of available correction methods. This is not yet done 
in approach II, where no α  correction is made. Note that this is equal to using the LSD (Least Significant Dif-
ference) method that SPSS offers (see, for instance, [5]).  

III. Omnibus ANOVA + sample means in hypothesized order + all pairwise tests for subsequent means signif-
icantly different (with Bonferonni corrected α ) 

In the third approach, the Bonferonni α  correction is applied for the pairwise tests. The Bonferonni correc-
tion divides the desired overall α  level by the total number of pairwise comparisons. Approaches II and III, 
therefore, provide results for two extremes: LSD is very liberal (no correction), Bonferonni is rather conserva-
tive (stringent correction). Note that default SPSS Bonferonni output is based on the total number of possible 
tests, that is, ( )1 2 1k k − . However, since we investigate a simple ordering, we only need ( )1k −  pairwise 
comparisons and will therefore use a less stringent correction (retaining more power). 

2.2. Three Alternative Approaches 
To do justice to the confirmatory nature of research, for informativeH  an approach that tests the hypothesis more 
directly would be a better choice. Here, we present three approaches that can be used to evaluate an informative 
hypothesis that states a simple order of means. 

IV. Multiple planned contrasts (one-sided) 
Planned contrast testing is an alternative to omnibus testing and can be used whenever pre-specified hypo-

theses are available (e.g., [6]). In case of a simple order of k  means, one option is to test 1k −  contrasts, 
where each contrast iC  ( )1, , 1i k= −  represents the pairwise comparison of two subsequent means. The set 
of contrasts for 6k =  means, for instance, is: 

 
1C : −1 +1 0 0 0 0 

2C : 0 −1 +1 0 0 0 

3C : 0 0 −1 +1 0 0 

4C : 0 0 0 −1 +1 0 

5C : 0 0 0 0 −1 +1 

 
This provides, for example, 1 1 2 3 4 5 6 2 11 1 0 0 0 0C M M M M M M M M= − ∗ + ∗ + ∗ + ∗ + ∗ + ∗ = − . For each 

contrast, 0 : 0iH C =  is tested against : 0A iH C >  (i.e., with one sided p -values). With planned contrast 
testing it is not necessary to first evaluate the omnibus ANOVA, but to have full support for the informative hy-
pothesis each contrast must be statistically significant.  

V. Linear contrast test (one-sided) 
For hypotheses imposing a simple order on a sequence of means, the linear contrast is a close approximation. 

The linear contrast weights for 3k = , 4, and 6 means (the values that we will use in the simulations) are: 
 

Clin,3: −1 0 +1    

Clin,4: −3 −1 +1 +3   

Clin,6: −5 −3 −1 +1 +3 +5 

 
This provides, for example, lin,4 1 2 3 43 1 1 3C M M M M= − ∗ − ∗ + ∗ + ∗ . Since the contrast weights that are as-

signed to the sample means are increasing from negative to positive values, the value for lin,kC  will be positive 
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if the means are in the hypothesized order. Consider, for instance means 1 1M = , 2 2M = , 3 3M =  and 
4 4M =  leading to lin,4 3 2 3 12 10C = − − + + = , while 1 4M = , 2 3M = , 3 2M =  and 4 1M =  will provide 

lin,4 12 3 2 3 10C = − − + + = − . Therefore, 0 lin,: 0kH C =  is tested against lin,: 0A kH C >  (i.e., with one sided 
p -values). An advantage of this approach, compared to the previous, is that with one test the, for the hypothesis 

at hand, relevant p -value is obtained. A disadvantage is that the hypothesis that is tested (is the linear increase 
significantly different from zero?) is not equal to the originally stated hypotheses (are all means ordered from 
smallest to largest?).  

VI. Bayesian approach developed specifically for the evaluation of informative hypotheses 
Another method that will be evaluated is a Bayesian procedure specifically designed for the evaluation of in-

formative hypotheses (see, for instance, [3] and [7]). With this model selection approach the support in the data 
for any hypothesis of interest is quantified with so-called Bayesian probabilities. Bayesian probabilities are 
numbers between zero and one reflecting the relative support for each hypothesis in a predefined set. In the si-
mulation studies where the main interest is in a specific order constrained hypothesis, the set of models that will 
be compared consists of the null hypothesis ( )0 1: kH µ µ= =  stating that all means are equal and the infor-
mative hypothesis imposing the ordering ( )1 1 k:H µ µ< < . To be able to compare the performance of the 
Bayesian model selection with the results based on p-values, in the simulation studies we will use the Bayesian 
probabilities to make dichotomous decisions, that is, either the informative hypothesis received the most support, 
or not. Note that making such dichotomous decisions does fit in the NHT framework (a result is statistically sig-
nificant or not, usually judged with the 0.05 criterion) but not in the Bayesian framework, where it is up to the 
researcher to decide if he/she considers the resulting support for a certain hypothesis worthwhile ([3], page 51). 
A short summary of the Bayesian approach used in the simulations is provided in Appendix B. More extensive, 
non-technical introductions of Bayesian evaluation of informative hypotheses are provided in [8]-[10]. 

2.3. Simulation Studies 
2.3.1. Defining the Populations 
We investigated hypotheses expressing a simple ordering of 3k = , 4 and 6 means. The population parame-
ter values were defined in agreement with the informative hypothesis and varied to obtain different effect 
sizes. In the context of an ANOVA the common effect size (ES) measure is Cohen’s f , which is the ratio 
of the between groups standard deviation ( )Mσ  and the within groups (residual) standard deviation ( )Wσ . 
Cohen proposed to label 0.1f =  as a small effect, 0.25f =  as a medium effect and 0.4f =  as a large 
effect. In Table 1, the subpopulation means for each combination of k  and ES are provided assuming re-
sidual variation 1Wσ = . 

2.3.2. Power and Sample Sizes 
From each population presented in Table 1, 10,000 data sets were sampled and subsequently analyzed with ap-
proaches I-V. The results for the Bayesian approach are based on 1000 data sets due to its intensive computation 
time. The sample sizes of the data sets are based on a power analysis using the following assumptions: 1) nowa-
days, it is more or less standard practice to start a research project with a power analysis to determine the number  
 
Table 1. Population parameter values used for the simulation studies.                                            

k ES Cohen’s f µ1 µ2 µ3 µ4 µ5 µ6 

3 Small 0.10 0 0.125 0.25    

 Medium 0.25 0 0.31 0.62    

 Large 0.40 0 0.49 0.98    

4 Small 0.10 0 0.09 0.18 0.27   

 Medium 0.25 0 0.225 0.45 0.675   

 Large 0.40 0 0.36 0.72 1.08   

6 Small 0.10 0 0.06 0.12 0.18 0.24 0.3 

 Medium 0.25 0 0.145 0.29 0.435 0.58 0.725 

 Large 0.40 0 0.235 0.47 0.705 0.94 1.175 
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of required participants to obtain power of 0.80; 2) we expect that most researchers perform their power analysis 
for the omnibus test (i.e., for the one-way ANOVA) and that they do not take possible follow-up analyses and/or 
alpha corrections for multiple testing into account in the power analysis. Therefore, for each population, the re-
quired sample size to have 0.80 power for the omnibus ANOVA was determined and used in the simulations 
(numbers are reported in Table 2). 

Additionally, for each of the six approaches, the approximate sample sizes required to obtain 0.80 full support 
power, as defined by the approach at hand and for the informative hypothesis of interest, are determined. 

2.3.3. Results 
In Table 2, the results for the six approaches are presented. The sample sizes used are provided in the first col-
umn and are based on a power analysis to obtain 0.80 power for the omnibus ANOVA. Note that all reported 
sample sizes are group sizes ( jN  for 1, ,j k=  ). The last six columns present the power to find full support 
for the research hypothesis with each of these approaches and using the sample sizes from the first column. So, 
for the 10,000 (1000 for approach VI) data sets that were sampled from prespecified populations with ordered 
means and effect sizes as specified, the resulting numbers in the table represent the proportions of these samples 
in which full support, as defined by each of the methods, for the hypothesis was found. 

The results in column I show that, even if the only requirement is that the observed sample means should be 
in the hypothesized order, the power to find full support diminishes fast with an increasing number of means in 
the ordered hypothesis (approximately 0.70 for k = 3, 0.50 for k = 4, and 0.10 for k = 6). The power to find full 
support for the true order using the requirement that additional pairwise tests (one-sided or two-sided, and, with 
or without alpha corrections) should be significant reduces the power to zero in most cases (only for k = 3, full 
support power ranges between 0.02 - 0.15; see columns II-IV). Stated differently, with 10,000 replications from 
the same population, the true effect in the population was, with these methods, never fully confirmed. 

The last two columns show that with the two confirmatory methods that do not rely on multiple tests, the 
power to find support for the ordered hypothesis is in almost all cases higher than the power of the omnibus test 
(ranging from 0.74 to 0.98). Further, it shows that for small effect sizes the linear contrast test has higher power 
than the Bayesian model selection approach, but that for medium and large effect sizes this is the other way 
around. 

In Table 3, for the six approaches, the approximate required group sample sizes to obtain 0.80 full support 
power are provided. The numbers are obtained by running a sequence of simulations for each population (i.e., 
combination of k  and ES) with increasing sample sizes. We did not evaluate group sample sizes larger than 
1000 because we believe they are not realistic in experimental research, so further precision seems unnecessary. 
The notation “>1000” in Table 3 therefore means that with 1000jN =  the full support power was still below 
80%.  
 
Table 2. Full support power for the six approaches for group sample sizes Nj that provide 0.80 power for the omnibus 
ANOVA (for several number of groups k and effect sizes ES).                                                      

k ES Nj
* 

Approach 

I II III IV V VI 

3 Small 310 0.72 0.05 0.02 0.14 0.87 0.79 

 Medium 52 0.73 0.05 0.02 0.14 0.87 0.93 

 Large 22 0.75 0.07 0.03 0.15 0.90 0.97 

4 Small 271 0.50 0.00 0.00 0.00 0.91 0.74 

 Medium 45 0.51 0.00 0.00 0.00 0.91 0.93 

 Large 18 0.51 0.00 0.00 0.00 0.92 0.98 

6 Small 205 0.10 0.00 0.00 0.00 0.95 0.76 

 Medium 36 0.11 0.00 0.00 0.00 0.95 0.91 

 Large 15 0.12 0.00 0.00 0.00 0.96 0.98 

*Sample sizes Nj that provide 0.80 power for the ANOVA were determined using Gpower 3.1 [11]. 
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Table 3. Approximate required group sample sizes Nj to obtain 0.80 full support power for each of the six approaches.       

k ES 
Approach 

I II III IV V VI 

3 Small 360 >1000 >1000 >1000 260 315 

 Medium 60 220 260 180 45 26 

 Large 25 90 110 75 18 6 

4 Small 550 >1000 >1000 >1000 200 300 

 Medium 90 470 600 390 32 23 

 Large 35 190 240 150 12 4 

6 Small >1000 >1000 >1000 >1000 125 220 

 Medium 280 >1000 >1000 >1000 22 21 
 Large 110 500 670 415 9 4 

 
The results show that huge samples are required to have reasonable full support power to detect a small ES 

with any of the approaches I-IV (ranging from 360 to >1000 per group). Approach V is, for small ES, most po-
werful ( jN  range: 125 - 260) and outperforms the Bayesian approach ( jN  range: 220 - 315). However, given 
that the smallest required jN  is still more than 100 respondents per subgroup, the results most of all show how 
difficult it is to find reliable and replicable support for specific expectations given that effect sizes are small. 

The required sample sizes to find full support for medium effect sizes vary greatly between the approaches as 
well as between different numbers of subgroups. For 3k = , approaches I-IV require sample sizes ranging from 

60jN =  to 260, for 4k =  this increases to a range of 90jN =  to 600 and for 6k =  only approach I gives 
a number below 1000 (i.e., 280jN = ). Here, the gain of using approaches V or VI is clearly observed. Re-
quired jN  range from 21 to 45, where the Bayesian approach slightly outperforms the linear contrast approach. 
Similar patterns were observed for large effect sizes, where jN  ranged from 25 to 670 for approaches I-IV and 
from 4 to 18 for approaches V and VI. 

Overall, the numbers in Table 2 and Table 3 clearly show that confirmatory methods that do not suffer from 
multiple testing issues (that is, approaches V and VI) are needed to have a good chance—with feasible sample 
sizes—to find full support for the true order of the means. 

2.3.4. Additional Results for the Bayesian Approach 
The Bayesian analysis for comparing 0H  with 1H  provides a so-called Bayes factor (BF): 10BF  expresses 
how much more support the data provide for 1H  compared to 0H . Therefore, 10BF 1>  means more support 
for 1H , 10BF 1=  implies equal support for both hypotheses, and 10BF 1<  means more support for 0H . 

In Table 2, the reported proportions (the “power” of the Bayesian approach) were based on counting how of-
ten, in 1000 replications, 10BF  was bigger than 1. The interpretation of BFs is however not intended to be di-
chotomous (“hypothesis is supported or not”). To elaborate on the amount of support for the informative hypo-
theses that was found in the simulations, one could use the rules of thumb as presented by [12]. They propose 
that 10BF  below 3 is still “not worth more than a bare mention”, but that support can be claimed in the range 3 
to 20 and that this support can be labeled as strong for 10 BF 20> . For the simulations presented in Table 2, 
these elaborated results are provided in Table 4 for the medium effect size. 

From Table 4, we can see that in 7% to 9% of the samples the null hypothesis is favored over the ordered 
hypothesis, leading to a wrong conclusion. Note that this information was also presented in Table 2, where the 
“power of the Bayesian approach” was defined as finding 10BF 1> . On the second line of Table 4, we see that 
in about 10% of the samples the evidence is weakly in favor of the ordered hypothesis. In the remaining samples 
the support for the ordered hypothesis is substantial (in 22% ( )3k =  to 33% ( )6k =  of the samples) or even 
strong (49% for k = 6 to 62% for k = 3). 

2.3.5. Non-Linear True Effects 
A hypothesis stating a simple ordering of means is not equal to a hypothesis stating a non-zero linear effect. It is 
interesting to see if the power of approach V also holds when the population means are ordered from small to 
large, but not linearly, and how this power compares to approach VI that explicitly states the expected order.  
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A small simulation study was performed for k = 3, 4, 6, with 25jN = , 50 for all cells and different non-  
linearly increasing population means. In Table 5, the investigated means are provided. The residual variance 

1Wσ =  and this provides effect sizes f  as reported in the second column of the table. The results are based 
on 10,000 samples for approach V and 1000 samples for approach VI and reported in the last two columns of 
Table 5. 

The results show that the power of the Bayesian approach is higher for k = 3 and k = 4 and that the differences 
between approaches V and VI are largest for 25jN = . For k = 6, approach V outperforms approach VI for 

50jN = . No clear pattern emerges for 25jN = : in some cases the power of approach V is higher and in others 
it is the other way around. 

3. An Illustration of a Two-Way Analysis of Variance 
Often, ANOVA tests are done in the context of factorial designs, that is, with two or more factors and an interest 
in main and/or interaction effects. The example provided in the introduction will be used as an illustration. The 
researchers investigated stereotypes and gender differences in math performance in three subsequent studies [2]. 
In their first study, a group of highly selected respondents (see [2] for details) consisting of 28 men and 28 
women, was randomized over easier and difficult math tasks. The goal of this study was to investigate if a spe-
cifically described expected interaction pattern was found. They formulated their expectation, for the studied 
population, as: “women underperform on difficult tests but perform just as well on easier test” ([2], page 9).  

The hypothesized outcome, assuming general lower performance on the difficult test compared to the simple 
test, is represented in Figure 1. Formulated as an informative hypothesis, the expectation is:  

{ }, , , ,:i w d m d w s m sH µ µ µ µ< < = . 
The tests executed and reported in [2], however, not directly address this expectation. They report F-tests for 

two main effects and an interaction effect (all p < 0.05), as well as posthoc pairwise comparisons of means. 
Therefore, multiple tests were required to come to the conclusion that, indeed, their expectation was supported. 

A simulation study was designed to investigate the power to find full support for this specific expectation as-
suming different effect sizes and using several different approaches for the evaluation of the hypothesis. In Sec-
tion 3.1 the approaches are presented and in Section 3.2 the design and results of the simulation study are pro-
vided. 
 
Table 4. Proportions of different Bayes factors for k = 3, 4, 6 groups, medium effect size, and group sample sizes Nj provid-
ing power of 0.80 for the omnibus ANOVA.                                                                  

BF10 k = 3/Nj = 52 k = 4/Nj = 45 k = 6/Nj = 36 

Less than 1 0.07 0.07 0.09 

1 to 3 0.10 0.09 0.10 

3 to 20 0.22 0.25 0.33 

Greater than 20 0.62 0.60 0.49 

 
Table 5. Comparison of the power of approaches V and VI when population means are increasing non-linearly.             

 Cohen’s f µ1 µ2 µ3 µ4 µ5 µ6 
Nj = 25 Nj = 50 

V VI V VI 

k = 3 0.25 0 0.2 0.6    0.54 0.80 0.85 0.91 

 0.26 0 0.1 0.6    0.55 0.81 0.85 0.93 

k = 4 0.25 0 0.1 0.5 0.6   0.69 0.82 0.94 0.94 

 0.23 0 0.1 0.2 0.6   0.56 0.73 0.85 0.86 

 0.22 0 0.25 0.35 0.6   0.55 0.71 0.85 0.87 

k = 6 0.25 0 0.05 0.1 0.5 0.55 0.6 0.83 0.79 0.98 0.80 

 0.20 0 0.05 0.1 0.15 0.20 0.6 0.54 0.59 0.83 0.74 

 0.18 0 0.25 0.28 0.32 0.35 0.6 0.51 0.55 0.80 0.68 
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Figure 1. Hypothesized results for the 
study on stereotypes and gender diffe- 
rences in mathematics [2], with math 
performance on the y-axis.              

3.1. Approaches 
3.1.1. Factorial Approach 
Most researchers would analyze these data with a two way ANOVA, testing for both main effects and the 
interaction effect. Different follow-up strategies could be considered, leading to three approaches described 
below. To limit the number of variations only results for two-sided tests and without alpha corrections are 
reported. 

A. To conclude support for the theory, both main effects as well as the interaction effect should be statis-
tically significant and the sample means ( )jM  should be in a specific order, that is: ( ), ,w d m dM M< , 
( ), ,m d m sM M< , ( ), ,m d w sM M< . 

B. To conclude support for the theory, in approach B the three omnibus tests should be significant and the 
sample means in the right order (as in A) but also the simple main effects should support the theory. This 
implies finding a significant result for the test 0 , ,: w d m dH µ µ=  and a non-significant result for  

0 , ,: w s m sH µ µ= . 
C. Following [2], as a follow-up to the requirements of approach A, we tested all pairwise comparisons of 

means. The results should be non-significant for 0 , ,: w s m sH µ µ= , while the other 5 pairwise comparisons 
must be statistically significant.  

3.1.2. One Way Approach 
Since the factorial approach is rather exploratory (testing for any main effect and any interaction and not for 
the specific, expected patterns), the omnibus tests could be skipped and instead planned comparisons on the 
four subgroup means could be executed and interpreted. Note that this implies ignoring the factorial struc-
ture in the design. Two approaches are included in the simulations: 

D. The first approach is based on planned comparisons on specific contrasts. The ordering  
{ }, , , ,w d m d w s m sµ µ µ µ< < =  is captured by: 1 , , , ,3 1 2 2w d m d w s m sC M M M M= − ∗ − ∗ + ∗ + ∗ . Support for the 

expectation can be concluded if the test 0 1: 0H C =  against 1 1: 0H C >  (i.e., with a one-sided p-value) is 
statistically significant. However, 1C  does not include the expectation that the last two means are not dif-
ferent. So, in addition we formulate the contrast: 2 , , , ,0 0 1 1w d m d w s m sC M M M M= ∗ + ∗ + ∗ − ∗ , and to con-
clude support for the theory this contrast test should not be significant (two-sided p-value).  

E. The Bayesian approach for informative hypotheses can evaluate the expected pattern directly. In the 
simulation we will evaluate how often the informative hypothesis { }Spencer , , , ,: w d m d w s m sH µ µ µ µ< < =  rece-
ives more support than the null hypothesis 0 , , , ,: w d m d w s m sH µ µ µ µ= = = . Note again that, in a Bayesian 
framework, one would not make dichotomous decisions but evaluate the amount of support for each hypo-
thesis. Furthermore, iH  could be compared to several other alternative hypotheses than 0H , e.g., a hypo-
thesis imposing no constraints ( ), , , ,: , , ,A w d m d w s m sH µ µ µ µ  or a hypothesis expressing an alternative com-
peting informative hypothesis. However, the current choices (evaluating against 0H  and drawing dicho-
tomous conclusions) are made to be able to meaningfully compare the results with the NHT results in ap-
proaches A-D. 

Male

Female

DifficultEasy
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3.2. Simulation Study and Results 
For the simulation study, several populations were specified with means in agreement with the informative hy-
pothesis of [2]. The residual variance was always one, and the differences between the means were increasing 
form relatively small to larger differences. The population means in five simulations are presented in Table 6. 
Results are also found in the table and are based on drawing 10,000 (1000 for approach E) samples with a sam-
ple size of 50 per group.  

The results show, once again, that the power to find full support for a specific expectation dramatically de-
creases when several multiple tests are involved, as in approach A, B and—most of all—C. The power of ap-
proach D is already much higher. This can be explained by the fact that, here, only two tests were involved of 
which the first contrast specifically represents the order of interest and was evaluated with a one-sided p -value, 
that is, it was evaluated in a relatively powerful, confirmatory way. Finally, the Bayesian approach (E) slightly 
outperforms approach D. The advantage of specifying precisely what one wants to know and evaluating this 
with a direct approach results in the highest power levels. 

4. Discussion 
Attention for limitations of null hypothesis testing in general, e.g., [13]-[15], and problems with power, lack of 
replication, and multiple testing specifically, e.g., [4] [16], is widespread in both statistical and applied research 
literature. In the past two decades, a Bayesian approach for the evaluation of informative hypothesis was pre-
sented as an alternative, confirmatory approach, e.g., [7] [17] [18]. In these papers it is often claimed that with 
the formulation and evaluation of informative hypotheses more powerful methods are obtained. In a few papers, 
some examples are provided to support this claim with numbers, e.g., [19] [20]. However, so far, no systematic 
study of the power of different—exploratory and confirmatory—approaches was reported and this is, therefore, 
the main contribution of this paper. 

We presented several simulations in the context of evaluating a simple ordering of k  means in a one-way 
design. The results, however, present a more general message and are similar when the k  means come from a 
factorial design and irrespective of which expected pattern of means is evaluated. To illustrate this, one example 
of a two-way analysis of variance and an informative hypothesis that did impose a different set of constraints on 
the means was also provided.  

Results in this paper show that the approaches that are mostly found in the research literature, that is, analysis 
of variance omnibus tests with multiple follow-up comparisons of means, have very limited power to detect the 
true pattern of means. Approaches that are specifically designed for the evaluation of prespecified expectations 
like planned contrast testing or the Bayesian approach for informative hypotheses do much better. Typical dif-
ferences observed in the simulations for the one-way design were power levels between 0% - 15% for ap-
proaches based on multiple testing, whereas the power of the confirmatory approaches reached power levels 
between 80% - 100%. 

Additional simulations were done to investigate what sample sizes would be needed to have reasonable power 
with the commonly used approaches. The main conclusion from these simulations is that it is practically un-
feasible to detect the true pattern of means with such approaches if the effect size is small, and that it still re-
quires huge group sample sizes to detect medium effects ( jN  between 180 and more than 1000) or large effects 
( jN  between 75 and 670). Again, the two confirmatory approaches fare much better although, also here, the 
sample sizes to detect small effect sizes are relatively large (between 125 - 315 per group). 
 
Table 6. Comparison of the power of approaches A-E when population means are in agreement with the hypothesis of inter-
est with increasing differences between the means (Nj = 50).                                                        

μw,d μm,d μw,s μm,s 
Approach 

A B C D E 
0 0.05 0.1 0.1 0.00 0.00 0.00 0.08 0.09 
0 0.1 0.2 0.2 0.00 0.00 0.00 0.21 0.24 
0 0.2 0.4 0.4 0.00 0.00 0.00 0.62 0.67 
0 0.3 0.6 0.6 0.02 0.02 0.00 0.91 0.96 
0 0.5 1.0 1.0 0.17 0.17 0.06 0.97 1.0 
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The results lead to a couple of recommendations. First of all, if specific expectations are formulated before-
hand, as is, for instance, often the case in psychological experiments like those described in the paper, we 
strongly recommend considering approaches that use as few multiple tests as possible. Planned contrasts have 
much more power to detect the true patterns than omnibus ANOVA’s with several follow-up tests, and so does 
the Bayesian approach. Whenever the expectation can be formulated in one contrast (e.g., the linear contrast we 
used in the one-way design to reflect the simple ordering of means), the differences in power between the con-
trast testing approach and the Bayesian approach are negligible for the effect sizes and numbers of groups inves-
tigated in this paper. A potential advantage of the Bayesian approach is flexibility in terms of the types of hypo-
theses that can be formulated and evaluated. Any expected pattern that can be expressed using a combination of 
smaller than (<), bigger than (>), equal to (=), and/or, no mutual constraint (,) can be evaluated using the Baye-
sian approach. An example where planned contrast testing required two tests and therefore resulted in less power 
to detect the true pattern than the Bayesian method was provided in the context of a factorial design and specific 
expectations about the interaction effect of the two factors. 

The results of this paper also show how variable different samples from the same population can be. Although 
sampling variability is a concept known to all researchers that are familiar with data analysis and NHT, pub-
lished literature shows that many researchers do often underestimate the size and consequences of sampling va-
riability in their own study. Not finding a specific expected difference between two means, for instance, is often 
explained by substantive arguments. The fact that this could very likely be a type 2 error, due to limited power, 
is hardly ever mentioned, especially when some other interesting comparisons did reach statistical significance. 
Likewise, the finding of a significant difference between certain means that was not a priori expected often 
receives considerable attention. However, in the context of multiple testing the probability of finding at least one 
significant difference is large and therefore it might just as well be a chance finding (inflated type 1 error due to 
multiple testing). It seems that, significant and non-significant results are too often interpreted as rather certain 
indicators of the true effects. With this paper, we hope to contribute to the awareness that results from a single 
study can only provide conclusions with very limited certainty and that replication studies are crucial. 

Another recommendation relates to the publication process, where a clearer distinction could be made be-
tween confirmatory and exploratory analyses. When specific theories or expectations are specified a priori and 
confirmatory methods are used to evaluate the expectations, conclusions can be relatively strong, although the 
need for replication studies will always remain. Other findings, or when no specific hypotheses were formulated, 
should be reported acknowledging the exploratory nature of the results. One can conclude that interesting find-
ings were seen in this particular data set but replications with new data, and preferably confirmatory methods, 
are required before it can be concluded if they reflect real effects or chance findings.  

5. Conclusion 
The need for replication leads to a final recommendation, which is not at all original, but crucial to the accumu-
lation of scientific knowledge. All results of all tests within a study should be properly reported, irrespective of 
their statistical significance, including the appropriate sample statistics (e.g. means, standard deviations, group 
sample sizes). This holds not only for non-significant findings within a study but also for studies where no sig-
nificant results were found at all and that are currently often hard to get published. Only when these types of 
publication bias are avoided, replication studies can be properly synthesized and results judged for what they are 
worth. If such a publication culture could be established we can work towards accumulation of knowledge in a 
truly scientific way. 
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Appendix A: Tests Used in Approaches I-V (Section 2) and A-D (Section 3) 
Notations used for one-way design:  

N =  total sample size; M =  overall sample mean; 
k =  number of groups ( )1, ,j k=  ; jN =  group sample size ( )1, , ji N=  ; 

jM =  group sample mean; 2
jS =  group sample variance.  

Approach I 

The ANOVA test result is determined using: between

within

MS
F

MS
= , 

with:  

( )2

1
between

between

k

j j
j

N M M
MS

df
=

−
=
∑

, 

( ) 2

1
within

within

1

d

k

j j
j

N S
MS

f
=

−
=
∑

, 

between   1df k= − ,  

within  df N k= − , 

and evaluated using the ( )between within,  F df df  distribution. 
Approaches II and III 

The pairwise t -test is based on: 1

within
1

1 1

j j

j j

M M
T

MS
N N

−

−

−
=

 
+  

 

, 

and evaluated using the ( )withinT df  distribution. For approach II the p -value is equal to the two-sided tail 
probability. For approach III, the p -value is that probability multiplied by ( )1k − . 

Approach IV 

Each planned contrast t -test is based on: 1

within
1

1 1

j j

j j

M M
T

MS
N N

−

−

−
=

 
+  

 

, 

and evaluated using the ( )withinT df  distribution and the one-sided tail probability (taking the hypothesized order 
into account).  

Approach V 
Denoting the linear contrast weight for jM  with jλ  the test is based on:  

lin,

2

within

j

j

j j

C
T

MS
N
λ

=

∗∑
, 

with:  
lin,3 1 2 31 0 1C M M M∗ ∗= + ∗− + , 

lin,4 1 2 3 43 1 1 3C M M M M∗ ∗ ∗− + + ∗= − , 

lin,6 1 2 3 4 5 65 3 1 1 3 5C M M M M M M∗ ∗ ∗ ∗ ∗− − − + + ∗= + , 
and evaluated using the ( )withinT df  distribution and the one-sided tail probability (taking the hypothesized order 
into account).  

Notations used for two-way design:  
N =  total sample size; M = overall sample mean; 
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k =  number of levels first factor ( )1, ,j k=  ; h =  number of levels second factor ( )1, ,g h=  ; 
jgN =  cell sample size ( )1, , jgi N=  ; .jN  and .gN =  marginal sample sizes; 
jgM =  cell sample mean; .gM  and .jM =  marginal sample means;  

2
jgS = cell sample variance. 

Approach A 

The ANOVA test results are determined using: effect

within

MS
F

MS
= , 

with:  

( )2
. .

1
effect1

effect1

k

j j
j

N M M
MS

df
=

−
=
∑

, effect1   1df k= − , for main effect 1, 

( )2
. .

1
effect2

effect2

h

g g
g

N M M
MS

df
=

−
=
∑

, effect2   1df h= − , for main effect 2, 

( )2
. .

1 1
effect3

effect3

k h

jg jg j g
j g

N M M M M
MS

df
= =

− − +
=
∑∑

, ( ) ( )effect3     1 1df k h= − ∗ − , for the interaction effect, 

( ) 2

1 1
within

within

1
k h

jg jg
j g

N S
MS

df
= =

−
=
∑∑

, within  df N k h= − ∗ , 

and evaluated using the ( )effect within,  F df df  distributions. 
Approach B 
Two t-tests are used for the simple main effects: 

within
1 1

wd md

wd md

M M
T

MS
N N

−
=

 
+ 

 

 and 

within
1 1

ws ms

ws ms

M M
T

MS
N N

−
=

 
+ 

 

 

and evaluated using the ( )withinT df  distribution. Note that the first test is evaluated with the one-sided tail 
probability, whereas the second is not.  

Approach C 
All pairwise t -tests comparing group jg  with j g′ ′  are based on: 

within
1 1

jg j g

jg j g

M M
T

MS
N N

′ ′

′ ′

−
=

 
+  

 

 

and evaluated using the ( )withinT df  distribution. 
Approach D 
Denoting the contrast weights for jgM  with jgλ  the tests used are: 

2

within
jg

j g jg

CT

MS
N
λ

=

∗∑∑
 

and evaluated using the ( )withinT df  distribution. Note that the first test with  
1 , , , ,3 1 2 2w d m d w s m sC M M M M= − ∗ − ∗ + ∗ + ∗  is evaluated with the one-sided tail probability, whereas the 

second test with 2 , , , ,0 0 1 1w d m d w s m sC M M M M= ∗ + ∗ + ∗ − ∗  is not.  
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Appendix B: A Short Summary of the Bayesian Method in Approach VI (Section 2)  
and E (Section 3) 
Note that this appendix was previously published as an appendix to the paper by Klugkist, Van Wesel, Bullens 
(2011). 

Here, we will shortly outline the Bayesian approach applied in this paper for the analysis of variance 
(ANOVA) model: 

1

J

i j ji i
j

y dµ ε
=

= +∑  

where iy  is the outcome of person i  ( )1, ,i n=  , jid  denotes group membership for 1, ,j J=   groups 
(where 1jid =  if person is a member of group j , and zero otherwise), and jµ  is the mean of group j . The 
residuals iε  are assumed to be independent and normally distributed with mean zero and variance 2σ . 

The ANOVA model has the following likelihood: 

( )
2

2
221 1

1 1, , exp
22π

n J

i j ji
i j

f y D y dµ σ µ
σσ= =

    = − −        
∏ ∑  

where { }1, , ny y y=  , { }1, , JD d d=  , { }1, ,j j jnd d d=  , and { }1, , Jµ µ µ=  . 
Prior based on training data 
The method and software used for the Bayesian analysis is based on Van Wesel, Hoijtink and Klugkist, 

(2011). In this paper, a thorough investigation of different priors that can be used for the analysis of informative 
hypotheses ( )iH  in the context of ANOVA is presented. The method is based on the use of an encompassing 
prior, that is, a (low informative) prior is specified for the unconstrained hypothesis AH  and the prior distribu-
tions for the constrained hypotheses can be derived by truncation of the prior parameter space, using: 

( ) ( )
( )

2
2

2 2

,
,

, d d
i

i

i H
i

i H

g H I
g H

g H I

µ σ
µ σ

µ σ µ σ
=
∫

 

where 
iHI  is an indicator function with value one if the means are in agreement with iH , and zero otherwise.  

The specification of the unconstrained prior ( )2, ig Hµ σ  is based on training data (Berger and Pericchi, 
2004, 1996; Perez and Berger, 2002). A training sample is a small part of the data that can be used to update the 
reference prior for the ANOVA model, 21 σ  (Bernardo, 1979), such that the resulting posterior is proper but 
also low informative and objective (i.e., no subjective information is used). In the approaches described in the 
references above, multiple training samples are used and the results are combined in different ways. Van Wesel 
et al. (2011) proposed a prior that is based on the same principles but tailored for constrained hypotheses and 
less computer intensive (i.e., faster). This prior is called the average constrained posterior prior (ACPP). For a 
detailed explanation and elaborate motivation for this prior we refer to the original paper. 

The general form of the ACPP is: 

( ) ( ) ( )ACPP 2 2 2 2ˆ ˆ ˆˆ, , Inv ,Ag H Nµ σ µ µ χ σ ν κ= Σ × −  

where ( )N ⋅  denotes the multivariate normal distribution with a mean parameter and covariance matrix, and 
( )2Inv χ− ⋅  denotes the scaled inverse chi-square distribution with the degrees of freedom and a scale parame-

ter.  
Posterior 
The posterior distribution based on the ACPP is: 

( ) ( ) ( ) ( )ACPP 2 2 2 2 2ˆ ˆ ˆˆ, , , , , , Inv ,Ay D f D Nh H yµ σ µ σ µ µ χ σ ν κ∝ × Σ × −  

Bayes factors 
The Bayes factor comparing two hypotheses is the ratio of two marginal likelihoods. A marginal likelihood, 

for instance ( )Am y H , is the density of the data averaged over the prior distribution of AH . Chib (1995) noted 
that for the estimation of the marginal likelihood it can be useful to use the expression (imputing our choice of 
prior and subsequent posterior): 
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( )
( ) ( )

( )
2 ACPP 2

ACPP 2

, , ,
.

, , ,

A
A

A

f y D g H
m y H

h y D H

µ σ µ σ

µ σ
=  

Subsequently, Klugkist and Hoijtink (2007) derived that in the context of encompassing priors (i.e., the con-
strained model is nested in the unconstrained), the Bayes factor comparing an informative hypothesis iH  with 
the unconstrained AH  ( ),BFi A  reduces to the ratio of two proportions: the proportion of the unconstrained 
posterior distribution in agreement with the constraints of iH , and the proportion of the unconstrained prior 
distribution in agreement with the constraints of iH . These proportions are estimated using (MCMC) sampling 
methods.  

Note that in this approach each iH  is evaluated against AH  but that mutual comparison of, for instance 
1iH  with 2iH  is also possible, using: 

1,
1, 2

2,

BF
BF

BF
i A

i i
i A

= . 

Posterior model probabilities 
Using a uniform prior on the model space, the posterior model probabilities for t  ( )1, ,t T=   hypotheses 

are computed using: 

( ) ,

,1

BF
PMP

BF
t A

t T
t At

H
=

=
∑

. 
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