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Abstract 
In this paper maximum ranked set sampling procedure with unequal samples (MRSSU) is pro-
posed. Maximum likelihood estimator and modified maximum likelihood estimator are obtained 
and their properties are studied under exponential distribution. These methods are studied under 
both perfect and imperfect ranking (with errors in ranking). These estimators are then compared 
with estimators based on simple random sampling (SRS) and ranked set sampling (RSS) proce-
dures. It is shown that relative efficiencies of the estimators based on MRSSU are better than those 
of the estimator based on SRS. Simulation results show that efficiency of proposed estimator is 
better than estimator based on RSS under ranking error. 
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1. Introduction 
In many studies where sampling is used, such as environmental managements, ecology, sociology and agricul-
ture, exact measurement of a selected unit is either difficult or costly and time-consuming. However, the ranking 
of a small set of selected units can be carried out easily either by visual inspection with respect to the study va-
riable or on the basis of auxiliary variable. McIntyre [1] proposed a method, later called ranked set sampling 
(RSS), for estimating mean pasture and forage yields when measurement is costly. In RSS one first draws m2 
units at random from the population and partitions them into m sets of m units. The m units in each set are 
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ranked without making actual measurements. From the first set of m units the unit ranked lowest is chosen for 
actual quantification. From the second set of m units the unit ranked second lowest is measured. This process is 
continued until the unit ranked largest is measured from the m-th set of m units. If a large sample is required 
then the procedure can be repeated r times to obtain a sample of size n rm= . These chosen elements are called 
ranked set sample. Dell and Clutter [2] and Takahasi and Wakimoto [3] studied theoretical aspects of this tech-
nique on the assumption of perfect judgment ranking and imperfect judgment ranking, respectively. Dell and 
Clutter [2] showed that the variance of the ranked set sample mean is never larger than the variance of the ran-
dom sample mean, whether or not judgment ranking is perfect (for more research work on parametric methods 
for RSS, see for example, Lam et al. [4], Stokes [5]). Samwi et al. [6] used extreme ranked set sample (ERSS) 
which is easier to use than RSS procedure to estimate the population mean in case of symmetric distributions. 
Al-Odat and Al-Saleh [7] introduced concept of varied set size RSS which they called moving extreme ranked 
set sampling (MERSS).  

Al-Saleh and Al-Hadhrami [8] studied the MLE of location distributions based on MERSS. Abu-Dayyeh and 
Al-Sawi [9] have obtained modified MLE of the mean of exponential distribution using MERSS. The MERSS 
requires identification of ( )1m m +  sample units and 2m of these are actually measured, thus making a com-
parison of this sampling procedure with RSS of size m is meaningless. In the next section we introduce a maxi-
mum ranked set sampling procedure with unequal samples. The existence of MLE for scale parameter of expo-
nential distribution is demonstrated and properties are studied in Section 3. Since under some regularity condi-
tions the asymptotic efficiency of the MLE can be obtained from the inverse of the Fisher information number, 
we compute Fisher information number for scale parameter in Section 4. The asymptotic efficiency of the MLE 
using proposed sampling scheme w.r.t. that using SRS and RSS is compared numerically for the scale parameter 
of the exponential distribution in this section. In order to get a closed form expression of the approximate MLE 
of θ , some terms of the likelihood equation will be replaced by their expectations. This technique was used by 
Mehrotra and Nanda [10] for studying MLE based on censored data, Zheng and Al-Saleh [11] for MLE with 
RSS data, and Al-Saleh and Al-Hadhrami [8] [12] and Abu-Dayyeh and Al-Sawi [9] for MLE using MERSS 
data. In Section 5 we study a modified MLE for estimating the scale parameter of exponential distribution as-
suming perfect ranking. Numerical comparison of these estimators is given here. Errors in ranking are studied in 
Section 6.  

2. Maximum Ranked Set Sampling with Unequal Samples (MRSSU) 
In the maximum ranked set sampling with unequal samples (MRSSU), we draw m simple random samples, 
where the size of the i-th sample is i, 1, 2, ,i m=  . The procedure of MRSSU is described as follows  

1) Select m SRS of size 1,2,3, , m , respectively.  
2) Order the element of each set by visual inspection or other relatively inexpensive methods, without actual 

measurement of the characteristic of interest.  
3) Measure accurately the maximum ordered observation from each set.  
4) Repeat the above steps r times until the desired sample size n rm=  is obtained. 

In MRSSU, we measure accurately only m maximum order statistics out of ( )
1

1 2
m

i
i m m

=

= +∑  ranked units.  

Since it is not difficult to identify maximum in each set. MRSSU is a very useful modification of RSS. It allows 
for an increase in set size without introducing too many ranking errors. 

3. The Maximum Likelihood Estimator 
Assume that the characteristic of interest X has a probability density function ( ),f x θ  and distribution function 
( ),F x θ , where the form of F is known, our interest is to estimate θ  based on MRSSU. Let { }1 2, , ,i i iiX X X , 
1, 2, ,i m=   be m sets of random samples from X, and they are independent. Denote  

{ }: 1 2Max , , ,i i i i iiX X X X=  , 1, 2, ,i m=  . Then { }1:1 2:2 :, , , m mX X X  is a MRSSU from X. Note that the 
elements of this sample are independent. If the judgment ranking is perfect then :i iX  has the same density as 
the i-th order statistic (maximum) of an SRS of size i from ( ),f x θ , i.e., :i iX  has the density  

( ) ( ) ( )1
: , , , .

i
i if x i F x f xθ θ θ

−
=     
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The likelihood function based on MRSSU can be written as 

( ) ( )( ) ( )1
: :

1
, ,

m i
i i i i

i
L i F x f xθ θ θ

−

=

=∏  

The log-likelihood function is 

( ) ( ) ( ) ( ): :
1 1

log , 1 log , ,
m m

i i i i
i i

L C f x i F xθ θ θ∗

= =

 = + + −  ∑ ∑  

where C is a constant. Let a MRSSU be drawn from an exponential distribution with pdf ( ), 1 e xf x θθ θ −= , 
0x > , 0θ >  and hence taking the first derivative of ( )L θ∗  w.r.t. θ , we have 

( ) ( )
:

:

: :
2

1 1 2

e1 0
1 e

i i

i i

x
m m

i i i i
x

i i

L x xm i
θ

θ

θ
θ θ θ

θ

−
∗

−
= =

∂
= − + − − =

∂  
−  

 

∑ ∑                        (1) 

If the MLE of θ  exists, then it is a solution of ( ) 0L θ θ∗∂ ∂ = . The MLE of θ  denoted by MRSSUθ̂ , which 
satisfies 

( )
:

:

:
:

1 1

e1 1 1 0.
1 e

i i

i i

x
m m

i i
i i x

i i

xx i
m m

θ

θ

θ

−

−
= =

− + − =
 
−  

 

∑ ∑                            (2) 

Now, taking second derivative we have 

( ) ( ) ( )
: :

::

2 2
: :

:2 2 2 2 3
1 1 1

e e1 2 1= 1 1 1
1 e1 e

i i i i

i ii i

x x
m m m

i i i i
i i xxi i i

L x xm mi x i
mm

θ θ

θθ

θ
θ

θ θ θ θ

− −∗

− −= = =

    
    
 ∂   − + − + − − −    ∂       − −              

∑ ∑ ∑      (3) 

Note that the first term of Equation (3) is always negative and the second term is zero at any solution θ̂  of 
Equation (2). Thus ( )2 2

ˆ 0L
θ

θ θ∗∂ ∂ < . The left hand side (LHS) of Equation (2) is a continuous function of  

θ . When 0θ → , the LHS of (2) goes to :
1

1
m

i i
i

m x
=

− ∑  and when θ →∞ , the LHS of Equation (2) goes to ∞ .  

Thus the solution θ̂  of (2) exists. Thus Equation (2) has a unique solution and this solution is MLE of θ . 
From Equation (2), we get the MLE MRSSUθ̂ , which can be obtained iteratively. 

Theorem 1. Assume that we are sampling from an exponential distribution using MRSSU then for any real 
number “a” satisfies 

1) ( )1:1 2:2 :
MRSSU MRSSU 1:1 2:2 :

1ˆ ˆ, , , , , ,m m
m m

X X X
X X X

a a a a
θ θ  = 

 
 

 

2) ( )( )1:1 2:2 :
MRSSU MRSSU 1:1 2:2 :2

1ˆ ˆVar , , , Var , , ,m m
m m

X X X
X X X

a a a a
θ θ
   =  

  
 

 

Proof. Proof of this theorem is similar to Theorem 1 of Chen et al. [13]. 

4. The Fisher Information Number 
We denote the MLE’s based on SRS by SRSθ̂  and RSS by RSSθ̂ , respectively. In order to compare the perfor-
mance of estimator based on MRSSU w.r.t. SRS and RSS, we need to study the asymptotic efficiency of 

MRSSUθ̂  w.r.t. SRSθ̂  and RSSθ̂ , respectively. Since under some regularity conditions (see Lehmann [14] (pp. 
440-441)) the asymptotic efficiency of the MLE can be obtained from the inverse of the Fisher information 
number, we consider the Fisher information number of the scale parameter in this section. 
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If ( ),f x θ  satisfies regularity conditions, the Fisher number in X is 

( ) ( )2

2

log ,
.

f X
I E

θ
θ

θ
 ∂

= −   ∂ 
 

We give the Fisher information number based on MRSSU in the following theorem. 

Theorem 2. With 0
k
i

 
= 

 
 for k i< , the Fisher information number based on MRSSU of size m is given by 

( )
( )

( )
( ) ( )

( ) ( ) ( )
1 3

MRSSU 2 2 2 3 2 2 2
1 0 1 0

1
1

32 2 1 1 11 1 .
1 2 2 3

j

m i m i j

i j i j

i
ij mI i i i

jj j j j
θ

θ θ θ

− −

= = = =

 −  
−    −   = + − − − + −   + + + +      

 

∑ ∑ ∑ ∑   (4) 

Proof. From Equation (1), we have 

( ) ( )
:

: : :
22 2

2:
: : :2 2 3 4 3 3

1 1

e 2 22 1 e e 1 e
i i

i i i i i i
x

x x xm m
i i

i i i i i i
i i

L xm i x x x
θ

θ θ θ
θ

θ θ θ θ θ θ

−−∗
− − −

= =

 
 ∂  = − − − − + −  ∂     

∑ ∑  

Note that 

( ) ( )

( )

: : :

:

2

MRSSU 2

22
: : :

4 3 3
:

2 3 2
1 1

2 2e e e
                2 1 .

1 e

i i i i i i

i i

X X X
i i i i i i

m m
i i

Xi i

L
I E

X X X
Xm E E i

θ θ θ

θ

θ
θ

θ

θ θ θ

θ θ

∗

− − −

= = −

 ∂
= −   ∂ 

    − + 
     = − + + −  

    
−      

∑ ∑
        (5) 

After simplification Equation (5) reduces to Equation (4). 

We compare the ML estimator from the SRS which is ˆ xθ = , where :
1

1
m

i i
i

x m x
=

= ∑  and the ML estimator  

from the RSS which is obtained from Equation (2.6) of [5] denoted by RSSθ̂  which satisfies 

( ) ( ) ( ) ( )

( )

( )1 1

1 1 e1 1 0,

1 e

i

i

x

m m

i i x
i i

m i x i x
m m

θ

θ

θ
−

= = −

 
  − − + + − =  

   − 

∑ ∑                     (6) 

where ( )ix  denote the i-th order statistics from i-th set of RSS with size m. The Fisher information about θ  
based on SRS is 

SRS 2

mI
θ

=                                       (7) 

From [5] Fisher information number about θ  is given by 

( ) ( )( )2 1 1 0.4041 .m
mI mθ
θ

= + −                               (8) 

Asymptotic efficiency of MLE using MRSSU w.r.t. that of using SRS is defined as 

( ) ( )
( )

MRSSU
MRSSU SRS

SRS

ˆ ˆ, .
I

AE
I

θ
θ θ

θ
=                              (9) 

Similarly, we have 
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( ) ( )
( )

MRSSU
MRSSU RSS

RSS

ˆ ˆ, .
I

AE
I

θ
θ θ

θ
=                              (10) 

The numerical results are shown in Table 1. ARE of MRSSUθ̂  w.r.t. SRSθ̂  is greater than 1 and increases with 
m. ARE of MRSSUθ̂  w.r.t. RSSθ̂  is greater than 1 for 1 3m< ≤  and decreases as m increases for 4m ≥ . This 
is because RSS of the same size m uses more ranked units than MRSSU of the same size, for example RSS of 
size 5 uses 25 ranked units, whereas MRSSU of the same size uses only 15 ranked units. 

5. Modified MLE (MMLE) 
In order to obtain closed form approximate MLE of θ , the last term of LHS of likelihood Equation (2) is re-
placed by its expectation. The idea of replacing the hazard rate in the maximum likelihood equation by its ex-
pectation was proposed by Mehrotra and Nanda [10], who estimated parameters of normal and gamma distribu-
tions based on Type II censored data. This technique used by Zheng and Al-Saleh [11] for obtaining MLE of 
location and scale parameters based on RSS. 

Taking the expectation of third term of LHS of (2), we obtain 

( ) 22

0
1

11 e 1 e d
ix xm

i

i i
x x

m
θ θ

θ

−
− −∞

=

 −
−  

 
∑ ∫  

After simplification, we get likelihood Equation (2) as 

( )
( )

( )
2

: 2
1 2 0

2
1

1 1 0
2

j

m m i

i i
i i j

i
j

x i i
m m j

θθ
−

= = =

− 
− 

 − + − =
+

∑ ∑ ∑  

Solving for θ , we have 

:
1

ˆ ,
m

i i
i

d x
m

θ
=

= ∑                                     (11) 

where 

( )
( )

( )
1

2

2
2 0

1 211 1 .
2

m i j

i j

i i i
d

jm j

−
−

= =

  − −   = + −  
 +     

∑∑  

θ̂  is called modified MLE of θ . 
 
Table 1. The information numbers and asymptotic efficiencies of MRSSUθ̂  w.r.t. SRSθ̂  and MRSSUθ̂  w.r.t. RSSθ̂ . 

m 2
MRSSUIθ  2

SRSIθ  2
RSSIθ  ( )MRSSU SRS

ˆ ˆ,AE θ θ  ( )MRSSU
ˆ ˆ, RSSAE θ θ  

1 1.000 1.000 1.000 1.000 1.000 

2 3.000 2.000 2.808 1.500 1.068 

3 5.500 3.000 5.425 1.833 1.014 

4 8.611 4.000 8.849 2.153 0.973 

5 12.273 5.000 13.082 2.455 0.938 

6 16.439 6.000 18.123 2.740 0.907 

7 21.070 7.000 23.972 3.010 0.879 

8 26.136 8.000 30.630 3.267 0.853 

9 31.608 9.000 38.095 3.512 0.830 

10 37.464 10.000 46.369 3.746 0.808 
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Theorem 3. 
a) θ̂  is unbiased estimator of θ . 

b) ( )
( )

( )
( )

( )
2

2 2 1 1

2 3 2
1 0 1 0

1 1ˆVar 2 1 1 ,
1 1

m i m ij j

i j i j

i id i i
j jm j j

θθ
− −

= = = =

  − −     = − − −     + +      
∑∑ ∑ ∑                     (12) 

where d is defined as in Equation (11). 
Proof a). From Equation (11), we have 

( )
:

1ˆ

m

i i
i

X
E dE

m
θ =

 
 
 =
 
 
 

∑
 

i.e., 

( )
:

1 1 ˆ

m

i i
i

X
E E

m d
θ=

 
 
  =
 
 
 

∑
                                 (13) 

It is well known that under some regularity conditions (see Lehmann [14] (pp. 440-441)), ( ) 0L θ θ∗∂ ∂ = . We 
can see that expectation of third term of Equation (2) simplifies to 

( )
:

:

:

1

e1 11 1 .
1 e

i i

i i

X
m

i i
X

i

XE i
m d

θ

θ

θ

−

−
=

 
  − = −     − 

∑                            (14) 

Using Equation (13) and Equation (14), the expectation of Equation (2) reduces to 

( )1 1ˆ 1 0.E
d d

θ θ θ  − + − = 
 

                               (15) 

Hence the proof of a). 
Proof b). Since :i iX  is the i-th order statistics of a SRS of size i from the exponential distribution, with pa-

rameter θ , the pdf of :i iX  is given by 

( ) ( ) ( ) ( )
( )1 11

: : :
0

1
, 1 e , 0, 0.

xi ji j
i i i i i i

j

iig x i F x f x x
j

θθ θ
θ

− − +−

=

− 
 = = − > >  

 
∑              (16) 

Now 

( ) ( )
( )

( )
( )

( )
( ) ( )

( )

2
1 11 12

: 0 0
0 0

2
1 1

2
3 2

0 0

1 1
Var 1 e d 1 e d

1 11
2 1 .

1 1

x xi ij jj j
i i

j j

ji i j

j j

i ii iX x x x x
j j

i iii
j jj j

θ θ

θ θ

θ

− −− + − +∞ ∞

= =

− −

= =

 − −   
= − − −    

    
  − −−      = − −     + +     

∑ ∑∫ ∫

∑ ∑
           (17) 

Thus using Equation (17), we obtain Equation (12). 
We compare MMLE based on MRSSU relative to MLE using SRS and MMLE using RSS with the same size. 

From Equation (2.6) of Zheng and Al-Saleh [11] we can obtain MMLE of scale parameter of exponential distri-
bution using RSS and is given by 

( ) ( )
1

MMLE,RSS
1

ˆ 1 ,
m

i
i

d m i x
m

θ
=

= − +∑  

where ( )ix  is as defined in (6) and 
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( )
( )

( )

1

2

1 2
2 0

2
1

11 1 .
2

j

m i

i j

i
m j

d i i
im m i j

−

−

= =

 −  
−      = + −   − + +   

 

∑ ∑  

We can easily derive the variance of MMLE,RSSθ̂  and is given by 

( ) ( )
( )

( )

( )

( )

2

2 2 1 121
MMLE,RSS 2 3 2

1 0 0

1 1
1 1

ˆVar 1 2 .
1 1

j j

m i i

i j j

i i
m mj jd m i i i
i im m i j m i j

θθ
− −

= = =

  −  −      − −             = − + −      − + + − + +            

∑ ∑ ∑  

Let 1e  represents efficiency of MMLE θ̂  based on MRSSU w.r.t. SRSθ̂  based on SRS is given by 

( )
( )

SRS
1

ˆVar
.

ˆVar
e

θ

θ
=  

Similarly, efficiency of θ̂  relative to MMLE based on RSS is given by 

( )
( )

MMLE,RSS
2

ˆVar
.

ˆVar
e

θ

θ
=  

The efficiencies were computed for ( )1 1 10m =  and are presented in Table 2. Note that the efficiency between 
any two of these estimators do not depend on θ  and these values were computed only for 1θ = . From Table 
2 it can be seen that computed efficiencies 1e  increases as the sample size m increases. From 2e  values we 
observed that estimator based on MRSSU are as efficient as estimator based on RSS for sample size 2m ≤ , and 
then decreases for 3m ≥ . 

6. Errors in Ranking 
In this section we study the situation where there are ranking errors. For MRSSU the ranking may not always be 
perfect, i.e., i-th largest observation in the i-th set measured by MRSSU method may not be the actual i-th larg-
est order statistics in the set of size i. The errors in ranking may have an effect on the estimates. 

To gain some insight of the effect of ranking errors on the efficiencies of the estimators, various simulation  
 
Table 2. The efficiency of θ̂  w.r.t. SRSθ̂  and θ̂  w.r.t. MMLE,RSSθ̂ . 

m ( )ˆVar θ  ( )SRS
ˆVar θ  ( )MMLE,RSS

ˆVar θ  e1 e2 

1 1.000 1.000 1.000 1.000 1.000 

2 0.360 0.500 0.360 1.389 1.000 

3 0.192 0.333 0.188 1.733 0.977 

4 0.122 0.250 0.116 2.044 0.948 

5 0.086 0.200 0.079 2.328 0.917 

6 0.064 0.167 0.057 2.592 0.888 

7 0.050 0.143 0.043 2.840 0.861 

8 0.041 0.125 0.034 3.071 0.835 

9 0.034 0.111 0.027 2.870 0.706 

10 0.029 0.100 0.023 3.497 0.790 
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trails were conducted. We use the simulation method considered by David and Lavine [15] and Dell and Clutter 
[2]. In the first stage we generate m sets of simple random samples { }1 2, , ,i i iiX X X , 1, 2, ,i m=   from the 
exponential distribution with scale parameter 1θ = . The corresponding m sets of random error variables 
{ }1 2, , ,i i iie e e , 1, 2, ,i m=   were generated from normal distribution with mean zero and variance 2σ . De-
fine 

, 1, 2, , 1, 2, , ,ij ij ijZ X e i m j i= + = = 
 

where Xij and eij are independent. Then we can obtain MRSSU’s of Xij’s and Zij’s ( 1, 2, ,i m=  , 1, 2, ,j i= 
). 

The sets of ( ),ij ijZ X  1, 2, ,i m=  , 1, 2, ,j i= 
 are ranked with respect to the first components of ( ) [ ]( ): :,i i i iZ X . 

The second components are taken as judgment ranked order statistics and they constitute MRSSU’s with judg-
ment error unless 0ije = , 1, 2, ,i m=  , 1, 2, ,j i= 

. We compute estimators θ̂ ∗  based on judgment ranked 
MRSSU’s [ ] [ ] [ ]{ }1 :1 2 :2 :, , , m mX X X . 

We repeat this procedure for 10,000 times. The estimate for θ  is the average of the estimates from these 
replications, and variance of the estimate is the sample variance. Similarly using 10,000 simulated samples the 
RSS and SRS procedures were used to obtain the values of estimators of θ  and their sampling variances. The 
simulated estimators based on RSS with imperfect ranking and SRS are denoted by MMLE,RSSθ̂ ∗  and SRSθ̂ ∗ . The 
efficiency and the expected value of the modified MLE θ̂ ∗  have been computed by using R-software, version 
3.0.2. The results are presented in Tables 3-5. 

It is observed from Table 3 that bias in the modified ML estimator θ̂ ∗  ranges from 0.0002 to 0.1065, i.e., 
estimator based on θ̂ ∗

 
is very close to true parameter. Based on Table 4 we can easily observe that the effi-

ciency of the estimator based on θ̂ ∗  w.r.t. estimator based on SRSθ̂ ∗  is larger than 1 and increases with m and  
 
Table 3. The expectation values of θ̂ ∗  (when 1θ = ). 

m 2 0σ =  2 0.10σ =  2 0.25σ =  2 0.50σ =  2 0.75σ =  

2 0.999 0.986 0.973 0.958 0.947 

3 1.000 0.983 0.965 0.907 0.925 

4 0.999 0.981 0.959 0.931 0.910 

5 1.001 0.981 0.958 0.927 0.904 

6 1.003 0.983 0.960 0.926 0.902 

7 1.003 0.983 0.958 0.925 0.897 

8 1.003 0.984 0.959 0.93 0.897 

9 1.002 0.984 0.958 0.923 0.894 

10 1.003 0.984 0.959 0.923 0.894 

 
Table 4. The efficiencies of θ̂ ∗  w.r.t. SRSθ̂ ∗  (when 1θ = ). 

m 2 0σ =  2 0.10σ =  2 0.25σ =  2 0.50σ =  2 0.75σ =  

2 1.374 1.318 1.296 1.286 1.275 

3 1.793 1.731 1.670 1.615 1.573 

4 2.050 1.953 1.860 1.752 1.677 

5 2.300 2.172 2.050 1.889 1.773 

6 2.563 2.399 2.241 2.052 1.910 

7 2.728 2.634 2.434 2.171 1.966 

8 2.973 2.861 2.629 2.301 2.058 

9 3.199 2.955 2.686 2.294 1.996 

10 3.571 3.231 2.902 2.434 2.093 
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Table 5. The efficiencies of θ̂ ∗  w.r.t. MMLE,RSSθ̂ ∗  (when 1θ = ). 

m 2 0σ =  2 0.10σ =  2 0.25σ =  2 0.50σ =  2 0.75σ =  
2 0.964 1.017 1.051 1.107 1.145 

3 1.005 1.087 1.160 1.263 1.366 

4 0.997 1.105 1.241 1.417 1.517 

5 0.932 1.058 1.244 1.455 1.590 

6 0.844 1.101 1.345 1.577 1.817 

7 0.822 1.175 1.470 1.802 2.033 

8 0.806 1.196 1.554 1.877 2.077 

9 0.802 1.258 1.696 2.092 2.345 

10 0.798 1.311 1.794 2.300 2.491 

 
decreases with 2σ  in the presence of ranking error. From Table 5 it can be seen that modified MLE based on 
θ̂ ∗  w.r.t. MMLE,RSSθ̂ ∗  is larger than 1 and increases with m and 2σ  in the presence of ranking error. This indi-
cates that modified MLE θ̂ ∗  based on MRSSU is better than modified MLE MMLE,RSSθ̂ ∗  in the presence of 
ranking error. 
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