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Abstract 
We propose a procedure to obtain accurate confidence intervals for the stress-strength reliability 
R = P (X > Y) when (X, Y) is a bivariate normal distribution with unknown means and covariance 
matrix. Our method is more accurate than standard methods as it possesses a third-order distri-
butional accuracy. Simulations studies are provided to show the performance of the proposed 
method relative to existing ones in terms of coverage probability and average length. An empirical 
example is given to illustrate its usefulness in practice. 
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1. Introduction 
Let ( ), 1, ,i ix y i n= 

, be a sample from a bivariate normal distribution with mean ( ),x yµ µ  and covariance 
matrix 

2

2 .x x y

x y y

σ ρσ σ
ρσ σ σ

 
  
 

 

where , 0x yσ σ > , and 1ρ < . The stress-strength reliability of a system where X is the strength and Y is the 
stress is defined by 
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( ) ( ) ,R P X Y ψ= > = Φ                                    (1) 
with 

( )
2 22

x y x y

x x y y

µ µ µ µ
ψ ψ θ

σσ ρσ σ σ

− −
= = =

− +
                          (2) 

where ( )Φ ⋅  is the cumulative distribution function of the standard normal distribution; 2 2 22x x y yσ σ ρσ σ σ= − +  
is the variance of the difference of the two variables; and ( )2 2, , , ,x y x yθ µ µ σ σ ρ ′=  denotes the parameter vector 
of the model. 

Nguimkeu et al. [1] recently proposed a third-order method for inference about R for the case where the nor-
mal variables X and Y are independents; that is, 0ρ = . However, in many empirical applications, the variables 
of interest are correlated, either directly or through their dependence over a common auxiliary variable. For ex-
ample, in financial risk-management one may want to compare the stock returns from two companies. If these 
companies operate in the same industry the prices of these stocks are likely to be correlated. In welfare econom-
ics, comparing households’ income to households’ expenditures can be useful to test households saving capacity 
or their financial vulnerability. Applying the Nguimkeu et al. [1] test in such context could be misleading. 

In this paper, we modify the procedure proposed by Nguimkeu et al. [1] to account for possible correlation 
between the stress and the strength variables when they are sampled from normal populations. Simulations are 
used to compute coverage properties of the statistic and compare its performance with existing alternative me-
thods. An empirical example is provided to illustrate the usefulness of the method in practice. 

2. The Procedure 
From a sample of observations ( ), , 1, ,i ix y i n= 

 the log-likelihood function of ( )2 2, , , ,x y x yθ µ µ σ σ ρ ′=  is 
given by 

( ) ( ) ( )
( ) ( ) ( )( )22

2 2 2
2 22

1

1log log log 1 2 .
2 2 2 2 1

n i y i x i yi x
x y

i x yx y

y x yxn n nl
µ µ µµ

θ σ σ ρ ρ
σ σσ σρ =

 − − −− = − − − − − + −
 −
 

∑  

The maximum likelihood estimate (MLE) of R can then be obtained by 

( )
2 2

ˆ ˆˆ ˆ ,
ˆˆ ˆ ˆ ˆ2

x y

x x y y

R
µ µ

ψ
σ ρσ σ σ

 − = Φ = Φ
 − + 

                            (3) 

where the MLE of the parameter vector, ( )2 2ˆ ˆˆ ˆ ˆ ˆ, , , ,x y x yθ µ µ σ σ ρ ′=  is given by 

( )

( )

22

1 1

22

1 1

1 1ˆ ˆ ˆ

1 1ˆ ˆ ˆ

n n

x i x i x
i i
n n

y i y i y
i i

x x
n n

y y
n n

µ σ µ

µ σ µ

= =

= =

= = −

= = −

∑ ∑

∑ ∑
                            (4) 

( )( )

( ) ( )
1

22

1 1

ˆ ˆ
ˆ .

ˆ ˆ

n

i x i y
i

n n

i x i y
i i

x y

x y

µ µ
ρ

µ µ

=

= =

− −
=

− −

∑

∑ ∑
                              (5) 

From the above log-likelihood function and MLEs, two standard methods for confidence interval estimation 
of the parameter ψ  (and hence R) can be derived: the standardized maximum likelihood estimate method (also 
known as the Wald method) and the signed log-likelihood ratio method. The Wald method is based on the statis-
tic (q) defined by 

( ) ( ) ( ) 1 2ˆ ˆVar ,q q ψ ψ ψ ψ
−

= = −                                 (6) 

where the delta method can be applied to estimate the variance of ψ̂  by 
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 ( )
( )

 ( ) ( )ˆ ˆ
ˆˆVar Var .

ψ θ ψ θ
ψ θ

θ θ

∂ ∂
=

′∂ ∂
                             (7) 

An estimated variance of the maximum likelihood estimator is 

 ( ) ( ) ( )
12

1
ˆ

ˆ ˆVar ,
l

jθθθ θ

θ
θ θ

θθ

−

−
′=

 ∂
= − =  ′∂ 

 

where 

( ) ( )

( )
( )
( )

2 2 2

2 2 2

2 2 2

2 4 4 2 22

2 2 2

2 2 2 4 42
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ρ
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σ σ ρ σ σρ

ρ

ρ
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 − − −

−

− −


 + −  −= −  
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
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 
 
 
 
 
 
  



  (8) 

is the observed information matrix evaluated at θ̂ . 
With the regularity condition stated in Cox and Hinkley [2] (Chapter 9), q is asymptotically distributed as 

standard normal, and a ( )1 100%α−  confidence interval for ψ  can be approximated by 

 ( )( )2 2ˆ ˆ ˆVar , Var ,z zα αψ ψ ψ− +                              (9) 

where zα  is the ( )1 100thα−  percentile of the standard normal. Although the Wald method is simple, it is not 
invariant to parameterization. 

The signed log-likelihood ratio method is based on the statistic (r) defined by 

( ) ( ) ( ) ( ){ } 1 2
ˆ ˆˆsgn 2 ,r r l l ψψ ψ ψ θ θ = = − −  

                        (10) 

where ( )2 2ˆ , , , ,x y x yψθ µ µ σ σ ρ ′=      is the constrained MLE of θ  under the constraint that ( )ψ θ ψ= . In contrast 
to the Wald method, the signed log-likelihood ratio method is invariant to parametrization. 

To obtain ( )ˆl ψθ , we maximize ( )l θ  subject to the constraint ( )ψ θ ψ= . The Lagrange multiplier method 
is applied for this purpose. Let λ  denotes the Lagrange multiplier. The Lagrangian function can be written as 

( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )( )

2 2 2

22

2 22
1

2 2

, log log log 1
2 2 2

1 2
2 1

.
2

x y

n i y i x i yi x

i x yx y

x y

x x y y

n n nH l

y x yx

θ λ θ λ ψ θ ψ σ σ ρ

µ µ µµ
ρ

σ σσ σρ

µ µ
λ ψ

σ ρσ σ σ

=

= + − = − − − −

 − − −− − + −
 −
 

 − + −
 − + 

∑            (11) 

The constrained MLE ψ̂θ  and the estimated Lagrange multiplier λ  can then be obtained by numerically 
solving the first-order conditions: 
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( ) ( ) ( )
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32 2
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0
2

,
0.

2

x y

x x y y
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x x y y

H

σ

σ ρσ σ σ

µ µθ λ
ψ

λ σ ρσ σ σ

=
− +

−∂
= − =

∂ − +
     (12) 

The tilted log-likelihood function is defined by ( ) ( ) ( )l lθ θ λ ψ θ ψ= + −  
   and is the same as the log-like-  

lihood function when evaluated at the constrained MLE of ψ , i.e. ( ) ( )ˆ ˆl lψ ψθ θ=  . The observed information  

matrix of the tilted log-likelihood function evaluated at ψ̂θ , denoted ( )ˆJθθ ψθ′
  is then defined by 

( ) ( ) ( ) ( ) ( )
2

ˆ 3
ˆ ˆ ˆJ ,x yl

j k
ψθθ ψ θθ ψ θθ ψθ

λ µ µθ
θ θ θ

θ θ σ′ ′ ′

−∂
= − = −

′∂ ∂





 





                   (13) 

where 2 2 22x x y yσ σ ρσ σ σ= − +      and 
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3 2 2
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1 1
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kθθ ψθ

σ σρρ σ σ σσ
µ µ µ µ µ µ

σ σρρ σ σ σσ
µ µ µ µ µ µ

σ σ
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 (14) 
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Again, with the regularity conditions stated in Cox and Hinkley [2] (Chapter 9), ( )r ψ  is asymptotically dis-
tributed as standard normal. Hence, a ( )1 100%α−  confidence interval for ψ  based on ( )r ψ  is given by 

( ){ }2: .r zαψ ψ ≤                                     (15) 

It is well known that both the Wald method and the signed log-likelihood ratio method are first-order methods; 
that is, both ( )q ψ  and ( )r ψ  converge in distribution to the standard normal distribution with rate of conver-
gence ( )1 2O n− . Note that, computationally, confidence intervals for ψ  can easily be obtained from (9) but 
the methodology is not invariant to reparameterization. While confidence intervals for ψ  obtained from (15) 
generally require the use of numerical methods, the method is parameterization invariant. Doganaksoy and 
Schmee [3] showed that confidence intervals obtained from (15) have better coverage properties than those ob-
tained from (9). 

To improve the accuracy of the first-order methods, Barndorff-Nielsen [4] [5] introduced the modified signed 
log-likelihood ratio statistic 

( ) ( ) ( )
( )
( )

* 1 log ,
Q

r r
r r

ψ
ψ ψ

ψ ψ
 

= +   
 

                            (16) 

where ( )r ψ  is the signed log-likelihood ratio statistic defined in (10), and ( )Q ψ  is a statistic that is based on 
the log-likelihood function and an ancillary statistic. Barndorff-Nielsen [4] [5] showed that ( )*r ψ  is asymp-
totically distributed as standard normal with third-order accuracy. Fraser and Reid [6] showed that for the expo-
nential family model, ( )Q ψ  is the standardized maximum likelihood estimate calculated in the canonical pa-
rameter scale. Reid [7] and Severeni [8] provide a detailed overview of this development. 

The stress-strength reliability with dependent normal random variables correspond to an exponential family 
model with canonical parameter given by 

( ) 2 2 2 2

1 1, , , , .y yx x

x y x y x yx y x y

ρµ µµ ρµ ρϕ θ
σ σ σ σ σ σσ σ σ σ

 
= − −  
 

                     (17) 

To re-express our parameter of interest on this canonical parameter scale, we require ( )θϕ θ  and ( )θψ θ  
which denote the derivatives of ( )ϕ θ  and ( )ψ θ  with respect to θ . The ( )5 5×  matrix of derivatives for 
( )ϕ θ  is 

( )

2 4 3 3

2 3 4 3

4

4

3 3

1
2 2

1
2 2

1 .0 0 0 0

10 0 0 0

10 0
2 2

y y yx

x y x yx x x y x y

yx x x

x y x yy x y y x y

x

y

x yx y x y

θ

ρµ ρµ µµρ
σ σ σ σσ σ σ σ σ σ

µρµ ρµ µρ
σ σ σ σσ σ σ σ σ σ

ϕ θ
σ

σ

ρ ρ
σ σσ σ σ σ

 
− − + − 

 
 
 − − − + −
 
 
 = − 
 
 − 
 
 

− −  
 

               (18) 

For the parameter of interest ( )ψ θ  we have 

( )
( ) ( ) ( )

3 3 3

1 1, , 1 , 1 , .
2 2
x y x y x y x yy x

x y
θ

µ µ µ µ µ µ σ σσ σ
ψ θ ρ ρ

σ σ σ σσ σ σ

 − − −  
 = − − − − − −         

          (19) 

By change-of-basis then, ( ) ( )ˆψ̂ ψ ψ θ ψ θ− = −  calculated in the scale of the canonical parameter, ( )ϕ θ , is 

( ) ( ) ( )ˆ ˆˆsgn ,ψψ ψ χ θ χ θ− −  
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where 

( ) ( ) ( ) ( )1ˆ ˆ .θ ψ θ ψχ θ ψ θ ϕ θ ϕ θ−=                               (20) 

Now, notice that ( ) ( )( )l lθ ϕ θ=  and ( ) ( )( )l lθ ϕ θ=  , so that the determinant of the observed information 
matrix based on the log-likelihood function ( )l θ  and the titled log-likelihood function ( )l θ  calculated in 
( )ϕ θ  scale can be obtained by using chain-rule in differentiation. We thus have: 

( ) ( ) ( ) 2ˆ ˆ ˆˆ ˆj jϕϕ θθ θθ θ ϕ θ
−

′ ′=  

( ) ( ) ( ) 2ˆ ˆ ˆ .j jϕϕ ψ θθ ψ θ ψθ θ ϕ θ
−

′ ′=   

The asymptotic variance of ( ) ( )ˆ
ψ̂χ θ χ θ−  calculated in ( )ϕ θ  scale is then 

 ( ) ( )( ) ( )
( ) ( ) ( ) ( )1
ˆ

ˆ ˆ ˆ ˆ ˆVar .
ˆˆ

j
j

j

ϕϕ ψ

ψ θ ψ θθ ψ θ ψ

ϕϕ

θ
χ θ χ θ ψ θ θ ψ θ

θ

′
−
′

′

 
  ′− =  
  



                  (21) 

The standardized MLE of ψ̂  calculated in the ( )ϕ θ  scale is therefore 

( ) ( )
( ) ( )

 ( ) ( )( )
ˆ ˆ

ˆsgn .
ˆ ˆVar

Q
ψ

ψ

χ θ χ θ
ψ ψ ψ

χ θ χ θ

−
= −

−
                        (22) 

The modified signed log-likelihood ratio statistic can then be obtained from (16). It is asymptotically distri-
buted as standard normal with a ( )3 2O n−  distributional accuracy. The ( )1 100%α−  confidence interval for 
ψ  is given by 

( ){ }1 *
2: .I r zα

ψ αψ ψ− = ≤                               (23) 

Practically, this confidence interval is obtained by numerically solving for ψ  in the inequality ( )*
2r zαψ ≤  

using a sufficient number of grid points of ψ  chosen in an appropriate range. It follows that the ( )1 100%α−  
confidence interval for R is then given by ( )1 1

RI Iα α
ψ

− −= Φ , where ( )Φ ⋅  is the cumulative density function of 
the standard normal distribution. 

3. Numerical Studies 
An empirical example and Monte Carlo simulation studies are considered in this section. The aim of the empiri-
cal example is to illustrate how the various methods considered in this paper can produce quite different confi-
dence intervals for ψ . Simulation studies are then performed to examine the statistical properties of the pro-
posed method in terms of central coverage and average confidence interval length at the nominal size of 95%. 
To illustrate the accuracy of our proposed method (Proposed), we compare it with the commonly used asymp-
totic methods, i.e., the signed log-likelihood ratio test (r) and the Wald test (Q). We also compare it with ap-
proximations that were recently discussed in Barbiero [9]. Specifically, Barbiero [9] proposed results based on 
approximate confidence intervals from the asymptotic variance of ψ̂  (denoted AN2), approximate confidence 
intervals based on a logit transformation of R (denoted LOGIT) and a bootstrap bias-corrected and accelerated 
percentile confidence interval for R (denoted BCAPB). Since AN2 and LOGIT yield very similar results, only the 
AN2 and BCAPB procedures of Barbiero [9] are reported here. 

3.1. An Example 
Table 1 is a data set from Azen and Reed [10] which shows absorbance values of substances analyzed in 19 
runs of a laboratory test for serum concentration level of an enzyme, leucine amino peptidase. Controls 1 and 2 
are two control samples from the same pool analyzed in the same run. We estimate the confidence interval of the 
probability that Control 1 (X) is more than Control 2 (Y), assuming a bivariate normal distribution for the data. 

For these data, ˆ 70.42xµ = , ˆ 69.74yµ = , 2ˆ 2.52xσ = , 2ˆ 2.40yσ = , ˆ 0.7480ρ =  and ˆ 0.652R = . Using the  
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methods developed in the previous sections, the 90%, 95% and 99% CIs for R are computed and reported in Ta-
ble 2. The confidence intervals obtained from the five methods are quite different. Hence, simulation studies are 
performed to examine the accuracy of the five methods. 

3.2. Design of the Monte Carlo Simulation Studies 
The simulation set up is similar to Barbiero [9] [11]. An array of eight different scenarios has been considered, 
each corresponding to a different combination of distribution parameters (and thus different reliabilities). These 
scenarios have been coded with a progressive number which is reported in Table 3. Without any loss in general-
ity, the mean and standard deviation for Y has been set to 0yµ =  and 2 1yσ =  while the parameters xµ , 2

xσ  
and ρ  vary. The correlation coefficient ρ  takes two values, 0.5 and 0.8. The five parameters have been 
jointly set in order to assure values higher than 0.5 for the reliability in effort to reflect real practice where there 
is concern for high reliability for the study component. The analyzed scenarios however cover a large range of  
 
Table 1. Sample data for the empirical example. 

Run X Y Run X Y Run X Y 

1 73 72 7 73 71 13 71 71 

2 68 66 8 71 71 14 71 69 

3 73 68 9 70 70 15 73 71 

4 69 69 10 71 71 16 66 63 

5 63 66 11 72 72 17 70 71 

6 71 71 12 70 72 18 73 72 

      19 70 69 

 
Table 2. Confidence intervals and lengths for the example. 

Method 
90% 95% 99% 

Lower Upper Length Lower Upper Length Lower Upper Length 

AN2 0.500 0.783 0.283 0.470 0.804 0.335 0.412 0.842 0.430 

BCAPB 0.467 0.782 0.315 0.436 0.805 0.369 0.341 0.851 0.510 

r 0.493 0.782 0.289 0.460 0.806 0.346 0.390 0.851 0.461 

Q 0.638 0.807 0.169 0.619 0.820 0.201 0.583 0.8443 0.262 

Proposed 0.640 0.752 0.112 0.628 0.766 0.138 0.581 0.858 0.277 

 
Table 3. Parameter values for the Monte Carlo simulation. 

Parameters Values 

xµ  0.5 0.5 1 1 0.5 0.5 1 1 

yµ  0 0 0 0 0 0 0 0 
2
xσ  4 1 4 1 4 1 4 1 
2
yσ  1 1 1 1 1 1 1 1 

ρ  0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8 

R  0.614 0.692 0.718 0.841 0.646 0.786 0.772 0.943 

Scenario 1 2 3 4 5 6 7 8 
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reliability, since R goes from 0.614 to 0.943. Different sample sizes (n = 10, 20, 30, 50) are used in order to ex-
amine the reliance of the procedure on small samples. The number of Monte Carlo replications has been fixed at 
N = 10,000. The simulation study for the comparison of interval estimators proceeds as follows: 

1) Set the parameters ( )2 2, , , ,x y x yθ µ µ σ σ ρ ′=  for the bivariate random variable ( ),X Y  and compute the 
corresponding R from Equation (1) (see Table 3); 

2) Draw a random sample of size n from ( ),X Y ; 
3) Estimate R and a CI for R, using each of the listed procedures; 
4) Check if this CI contains R; compute its length; 
5) Repeat the two precedent steps N = 10,000 times and compute the overall CI coverage (proportion of the 

CIs containing R) and average length (computed over the 10,000 replications) for each interval estimator. 

3.3. Results of the Monte Carlo Simulation Studies 
The results of the simulation studies are reported in Table 4 and Table 5. Table 4 records the coverage proba-
bility produced by each method and Table 5 records the average CI length produced by each method. The accu-
racy of the proposed method is striking. Inspecting Table 4 reveals how accurate the coverage probability of the 
proposed method is across all sample sizes and scenarios. Figure 1 presents a graphical illustration of the cov-
erage probabilities of each method graphed against the various scenarios. This figure provides visual confirma-
tion of the accuracy of the proposed method. These findings are consistent with the fact that the proposed me-
thod has theoretically a third-order distributional accuracy. Close to our method in terms of accuracy is the bi-
as-corrected and accelerated percentile bootstrap (BCAPB). The approximate estimator (AN2) also performs  
 

 
Figure 1. Monte Carlo coverage for various methods. 



P. Nguimkeu et al. 
 

 
638 

Table 4. Monte Carlo simulation results: coverage probability.  

n = 10 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.930 0.918 0.939 0.928 0.932 0.922 0.939 0.932 

BCAPB 0.960 0.955 0.954 0.938 0.957 0.942 0.946 0.916 

r 0.947 0.931 0.933 0.885 0.942 0.908 0.925 0.820 

Q 0.928 0.914 0.912 0.924 0.920 0.906 0.876 0.878 

Proposed 0.945 0.948 0.946 0.943 0.947 0.949 0.951 0.941 

n = 20 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.935 0.931 0.941 0.937 0.937 0.933 0.945 0.935 

BCAPB 0.961 0.953 0.956 0.944 0.960 0.946 0.951 0.930 

r 0.943 0.920 0.922 0.892 0.939 0.915 0.914 0.820 

Q 0.923 0.939 0.909 0.943 0.925 0.923 0.885 0.904 

Proposed 0.947 0.948 0.945 0.949 0.952 0.951 0.950 0.947 

n = 30 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.955 0.949 0.958 0.957 0.956 0.961 0.959 0.954 

BCAPB 0.966 0.963 0.969 0.966 0.965 0.964 0.964 0.953 

r 0.960 0.939 0.945 0.906 0.952 0.922 0.931 0.831 

Q 0.920 0.944 0.916 0.962 0.948 0.936 0.888 0.922 

Proposed 0.952 0.950 0.949 0.952 0.948 0.949 0.951 0.947 

n = 50 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.941 0.953 0.944 0.960 0.945 0.952 0.947 0.952 

BCAPB 0.953 0.961 0.953 0.967 0.957 0.954 0.953 0.953 

r 0.945 0.945 0.933 0.917 0.939 0.927 0.918 0.824 

Q 0.954 0.938 0.940 0.966 0.938 0.940 0.914 0.958 

Proposed 0.949 0.951 0.948 0.953 0.948 0.949 0.947 0.952 
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Table 5. Monte Carlo simulation results: average CI length.    

n = 10 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.439 0.417 0.408 0.334 0.432 0.371 0.383 0.221 

BCAPB 0.517 0.486 0.474 0.372 0.507 0.422 0.439 0.227 

r 0.482 0.445 0.432 0.322 0.470 0.376 0.393 0.176 

Q 0.429 0.415 0.381 0.335 0.415 0.354 0.333 0.199 

Proposed 0.415 0.385 0.378 0.305 0.402 0.310 0.302 0.158 

n = 20 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.326 0.310 0.302 0.246 0.320 0.277 0.281 0.154 

BCAPB 0.354 0.336 0.326 0.261 0.348 0.297 0.302 0.159 

r 0.336 0.310 0.297 0.217 0.327 0.260 0.266 0.112 

Q 0.318 0.309 0.282 0.254 0.312 0.269 0.252 0.149 

Proposed 0.295 0.298 0.235 0.199 0.288 0.187 0.251 0.118 

n = 30 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.271 0.258 0.252 0.204 0.267 0.230 0.236 0.123 

BCAPB 0.287 0.272 0.266 0.213 0.282 0.241 0.248 0.126 

r 0.275 0.253 0.244 0.175 0.268 0.210 0.219 0.086 

Q 0.265 0.262 0.231 0.214 0.259 0.222 0.214 0.126 

Proposed 0.285 0.254 0.250 0.197 0.218 0.201 0.204 0.113 

n = 50 Scenario 

Method 1 2 3 4 5 6 7 8 

AN2 0.213 0.203 0.198 0.162 0.209 0.182 0.186 0.097 

BCAPB 0.220 0.210 0.205 0.166 0.217 0.188 0.192 0.099 

r 0.213 0.197 0.189 0.137 0.207 0.164 0.169 0.067 

Q 0.209 0.205 0.185 0.168 0.203 0.185 0.168 0.098 

Proposed 0.199 0.203 0.195 0.151 0.190 0.168 0.162 0.071 
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reasonably well. The traditional asymptotic methods, r and q, however, perform the worst, especially when the 
values of the reliability are closer to unity (see scenarios 4 and 8). The Table 4 reveals that our proposed method 
generally produces the shortest average confidence interval length. From these presented simulation results, the 
proposed method gives the best coverage probability and it also has the shortest average CI length. 

4. Conclusion 
In this paper, the modified signed log-likelihood ratio statistic method is proposed to obtain confidence intervals 
for the stress-strength reliability when stress and strength are distributed as a bivariate normal distribution. An 
empirical example illustrates that the proposed method gives quite different results from those obtained by the 
existing methods. Simulation studies illustrate that the proposed method has the best coverage probability and 
also produces the shortest average length of confidence intervals. The calculations are done in Matlab and the 
programs are available upon request from the authors. 

References 
[1] Nguimkeu, P., Rekkas, M. and Wong, A. (2013) Interval Estimation of the Stress-Strength Reliability with Indepen-

dent Normal Random Variables. Communications in Statistics: Theory and Methods. 
http://dx.doi.org/10.1080/03610926.2012.762399 

[2] Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. Chapman and Hall, New York. 
http://dx.doi.org/10.1007/978-1-4899-2887-0 

[3] Doganaksoy, N. and Schmee, J. (1993) Comparisons of Approximate Confidence Intervals for Distributions Used in 
Life-Data Analysis. Technometrics, 35, 175-184. http://dx.doi.org/10.1080/00401706.1993.10485039 

[4] Barndorff-Nielsen, O.E. (1986) Inference on Full and Partial Parameters Based on the Standardized Signed Log-Like- 
lihood Ratio. Biometrika, 73, 307-322. 

[5] Barndorff-Nielsen, O.E. (1991) Modified Signed Log-Likelihood Ratio. Biometrika, 78, 557-563. 
[6] Fraser, D.A.S. and Reid, N. (1995) Ancillaries and Third Order Significance. Utilitas Mathematica, 47, 33-53. 
[7] Reid, N. (1996) Likelihood and Higher-Order Approximations to Tail Areas: A Review and Annotated Bibliography. 

Canadian Journal of Statistics, 24, 141-166. http://dx.doi.org/10.2307/3315622 
[8] Severeni, T. (2000) Likelihood Methods in Statistics. Oxford University Press, New York. 
[9] Barbier, A. (2012) Interval Estimators for Reliability: The Bivariate Normal Case. Journal of Applied Statistics, 39, 

501-512. http://dx.doi.org/10.1080/02664763.2011.602055 
[10] Azen, S.P. and Reed, A.H. (1973) Maximum Likelihood Estimation of Correlation between Variates Having Equal 

Coefficients of Variation. Technometrics, 15, 457-462. http://dx.doi.org/10.1080/00401706.1973.10489072 
[11] Barbiero, A. (2010) Comparing Interval Estimators for Reliability in a Dependent Set-Up. World Academy of Science, 

Engineering and Technology, 48, 82. 

http://dx.doi.org/10.1080/03610926.2012.762399
http://dx.doi.org/10.1007/978-1-4899-2887-0
http://dx.doi.org/10.1080/00401706.1993.10485039
http://dx.doi.org/10.2307/3315622
http://dx.doi.org/10.1080/02664763.2011.602055
http://dx.doi.org/10.1080/00401706.1973.10489072


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Interval Estimation for the Stress-Strength Reliability with Bivariate Normal Variables
	Abstract
	Keywords
	1. Introduction
	2. The Procedure
	3. Numerical Studies
	3.1. An Example
	3.2. Design of the Monte Carlo Simulation Studies
	3.3. Results of the Monte Carlo Simulation Studies

	4. Conclusion
	References

