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Abstract 
Proposed by the Swedish engineer and mathematician Ernst Hjalmar Waloddi Weibull (1887- 
1979), the Weibull distribution is a probability distribution that is widely used to model lifetime 
data. Because of its flexibility, some modifications of the Weibull distribution have been made 
from several researches in order to best adjust the non-monotonic shapes. This paper gives a 
study on the performance of two specific modifications of the Weibull distribution which are the 
exponentiated Weibull distribution and the additive Weibull distribution. 
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1. Introduction 
The Weibull distribution [1] is the most life-time probability distribution used in the reliability engineering dis-
cipline. Due to its wide applications [2], many researchers have developed various extensions and modified 
forms of the Weibull distribution with a number of parameters ranging from 2 to 5. These distributions have 
several desirable properties and nice physical interpretations. The literature that studies the various modifica-
tions of the Weibull distributions is extensive, for example: the two-parameter flexible Weibull extension of 
Bebbington et al. [3]. Zhang and Xie [4] studied the characteristics and application of the truncated Weibull dis-
tribution which has a bathtub shaped hazard function. 

A three-parameter model, called exponentiated Weibull distribution, was introduced by Mudholkar and Sri-
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vastave [5]. The modified Weibull distribution of Sarhan and Zaindin [6] was studied by Gasmi and Berzig [7] 
in the case of type I censored data. Another three-parameter model was developed by Marshall and Olkin [8] 
and is called the extended Weibull distribution. Xie et al. [9] proposed a three-parameter modified Weibull ex-
tension with a bathtub shaped hazard function. Lai et al. [10] have described the modified Weibull (MW) dis-
tribution. A four-parameter additive Weibull distribution (AddW) was proposed by Xie and Lai [11]. A second 
four-parameter beta Weibull distribution was proposed by Famoye et al. [12]. Cordeiro et al. [13] introduced 
another four-parameter distribution called the Kumaraswamy Weibull distribution. A five-parameter modified 
Weibull distribution was introduced by Phani [14]. The beta modified Weibull distribution was introduced by 
Silva et al. [15] and further studied by Cordeiro et al. [16]. Recently, an extensive review of some discrete and 
continuous versions of the modifications of the Weibull distribution was introduced by Almalki and Nadarajah 
[17]. The main objective of this article is in first step to estimate the three unknown parameters of the exponen-
tiated Weibull distribution and the four unknown parameters of the additive Weibull distribution. Therefore, we 
use the maximum likelihood method to derive such estimates. In the second step, we study whether these distri-
butions fit a set of real data of Aarset [18] better than other distributions. Two criteria are used for this purpose: 
the first one is the mean square distance MSD and the next one is the Kolmogorov-Smirnov test statistic. A real 
data set is analyzed and it is observed that the present distributions provide better fit than many existing 
well-known distributions. This paper will be organized as follows. In Section 2 we present the exponentiated 
Weibull distribution and the additive Weibull distribution. In Section 3, an application to real data is provided 
and different types of goodness-of-fit are applied to test the compatibility of the exponentiated Weibull distribu-
tion and the additive Weibull distribution in comparison to some other models. Mainly we use the mean square 
distance MSD and the Kolmogorov-Smirnov (K-S) test as a non-parametric test to illustrate how one can com-
pare the exponentiated Weibull distribution and the additive Weibull distribution with some sub-models. Finally 
we conclude the paper in Section 4. 

2. Parameter Estimates of EW and AddW Distributions 
2.1. Exponentiated Weibull Distribution 
The exponentiated Weibull (EW) distribution is proposed by Mudholkar and Srivastava [5] and studied first by 
Mudholkar et al. [19] and further by Mudholkar and Hutson [20]. 

The cumulative distribution function (CDF) and the survival function of the EW distribution, denoted by 
( )EW , ,α θ λ  are respectively: 

( ) ( )( )EW ; 1 expF t t
λθαΘ = − − , where ( ), ,α θ λΘ =  and , , 0α θ λ >                 (1) 

and 

( ) ( )( )EW ; 1 1 expS t t
λθαΘ = − − −                                (2) 

The ( )EW , ,α θ λ  distribution generalizes the following distributions: 1) exponential distribution ( )ED α  
by setting 1θ = , 1λ = , 2) Rayleigh distribution ( )RD α  by setting 2θ = , 1λ = , 3) generalized exponen-
tial distribution ( )GED ,α λ  [21] by setting 1θ =  and 4) Weibull distribution ( )WD ,α θ  [22] [23] by set-
ting 1λ = . 

Figure 1 represents the cumulative distribution function and the survival function of the ( )EW , ,α θ λ  for 
different values of α , θ  and λ . 

The probability density function of the ( )EW , ,α θ λ  distribution is given by: 

( ) ( ) ( )( ) 11; exp 1 exp ,   0.f t t t t t
λθ θ θλαθ α α
−

−Θ = − − − >                      (3) 

The corresponding hazard function has the form: 

( )
( ) ( )( )

( )( )

11 exp 1 exp
; .

1 1 exp

t t t
h t

t

λθ θ θ

θ

λαθ α α

α

−
− − − −

Θ =
− − −

                       (4) 

Figure 2 shows respectively the probability density function and the hazard rate function of the ( )EW , ,α θ λ   
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Figure 1. Plots of cumulative distribution function and survival function of ( )EW , ,α θ λ . 

 

 
Figure 2. Plots of probability density function and hazard rate function of the ( )EW , ,α θ λ . 

 
distribution for different values of α , θ  and λ . 

2.1.1. Data Simulations of the ( ), ,α θ λEW  Distribution 
By setting the three parameters α , θ  and λ  as follows: 1α = , 3θ =  and 1λ = , we obtain simulation data 
of a ( )EW , ,α θ λ  distribution. We remark that the ( )EW , ,α θ λ  distribution has the advantage that it pos-
sessed a closed form of cdf, therefore we can generate random values from it by using the explicit formula: 

( ) 11log 1
i

U
t

θλ

α

 − −
 =
 
 

, 

where 1, ,i n=  , n  is the sample size and U is a uniformly distributed random variable on the interval (0, 1). 
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Figure 3 illustrate the empirical cdf, the cdf and the 95% lower and upper confidence bounds for the cdf of 
100 simulated data by setting 1α = , 3θ =  and 1λ = . 

2.1.2. Parameter Estimation 
To estimate the parameters of the ( )EW , ,α θ λ  distribution we use the maximum-likelihood method which is a 
traditional parametric method to estimate the parameters and has good properties such as asymptotic normality 
and consistency. Suppose now that we have a random sample, ( )1 2, , , nt t t

 of a ( )EW , ,α θ λ  distribution 
with unknown parameter vector ( ),  ,  α θ λΘ = . The likelihood function of Θ  is given by: 

( ) ( ) ( )( ) 11

1
; exp 1 exp  .

n

i i i i
i

L t t t t
λθ θ θλαθ α α
−

−

=

Θ = − − −∏                       (5) 

The log-likelihood function has the following form: 

( ) ( ) ( )( ) -11
1 1 1

1
; exp 1 exp .

n

i
i

L t t t t
λθ θ θλαθ α α−

=

Θ = − − −∏                        (6) 

After calculating the first partial derivatives of ( )1ln ;L t Θ  and setting the results to zero, we get the follow-
ing score functions: 

( )
1 1

e0 1
1 e

i

i

tn n
i

i t
i i

tn t
θ

θ

αθ
θ

α
λ

α

−

−
= =

= − + −
−

∑ ∑                                (7) 

( ) ( ) ( ) ( )
1 1 1

log e
0 log log 1

1 e

i

i

tn n n
i i

i i i t
i i i

t tn t t t
θ

θ

αθ
θ

α
α α λ

θ

−

−
= = =

= + − + −
−

∑ ∑ ∑                   (8) 

( )
1

0 log 1 e i
n

t

i

n θα

λ
−

=

= + −∑                                   (9) 

To get the MLE of the parameters α , θ  and λ  we have to solve the above system of three non-linear eq-
uations with respect to α , θ  and λ . The solution of this system of equations is not possible in closed form, 
so numerical technique such as the trust region method, which requires the second derivatives of the ( )1ln ;L t Θ
function is needed to get the MLE. We note that in order to accelerate the resolution of the system (7), (8), (9) 
by using the software MATLAB, we have introduced the following second partial derivatives of ( )1ln ;L t Θ : 
 

 
Figure 3. Cdf and empirical cdf of the ( )EW , ,α θ λ  distribution. 
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( )
( )

22

2 2 2
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1 e
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θ

θ

αθ

α
λ

α α

−
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∂ −
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2
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−

−
=
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( )2

1

log eln .
1 e
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i i

t
i

t tL
θ

θ
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−

−
=
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Table 1 gives the estimated parameters of 10N =  simulations and the mean square error of each parameter, 
where: 

( ) ( )2

1

1ˆ ˆMSE
N

i
iN =

Θ = Θ−Θ∑  

2.2. Additive Weibull Distribution 
The additive Weibull (AddW) distribution has four parameters α , β , θ  and γ . This distribution is first in-
troduced by Xie and Lai [11] and is denoted by ( )AddW , , ,α β θ γ . We remark, that this distribution has a 
bathtub shaped hazard function and it was obtained as the sum of two hazard functions of Weibull distributions. 

The cumulative distribution function of the ( )AddW , , ,α β θ γ  is defined as follows: 
 

Table 1. Parameter estimates of 1α = , 3θ =  and 1λ = . 

 ML 

 α̂   θ̂  λ̂  

 1.1002 2.9859 1.0415 

 1.0217 3.0602 1.0954 

 1.0930 3.0329 0.9756 

 1.0293 3.0174 1.0183 

 1.0724 3.0286 0.9842 

 1.0903 3.0802 0.9988 

 0.9929 3.0472 0.9904 

 1.0081 2.9723 1.0480 

 0.9905 2.9729 0.9863 

 0.9897 3.0126 1.0208 

MSE 0.0026 0.0016 0.0015 
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( ) ( )AddW ; 1 exp ,F t t tθ γα βΘ = − − −  where ( ), , , ,α β θ γΘ =  , , 0α β θ >  and 1.γ <       (10) 

The corresponding survival function is: 

( ) ( )AddW ; exp .S t t tθ γα βΘ = − −                             (11) 

The ( )AddW , , ,α β θ γ  distribution generalizes the following distributions: 1) linear failure rate distribution 
( )LRFD ,α β  [7] by setting 2γ =  and 1θ = , 2) Weibull distribution ( )WD ,α θ  by setting 0β =  and 3) 

modified Weibull distribution ( )MWD , ,α β γ  [10] by setting 1θ = . 
Figure 4 shows respectively the cumulative distribution function and the survival function of the additive 

Weibull distribution for different values of α , β , θ  and γ . 
The probability density function of the ( )AddW , , ,α β θ γ  distribution is given by: 

( ) ( ) ( )1 1; exp ,   0f t t t t t tθ γ θ γα β α β− −Θ = − − − − >                     (12) 

The corresponding hazard function has the form: 

( ) 1 1;h t t tθ γαθ βγ− −Θ = +                               (13) 

Figure 5 shows the probability density function and the hazard rate function of the ( )AddW , , ,α β θ γ  dis-
tribution for different values of α , β , θ  and γ . 

2.2.1. Data Simulations of the ( )AddW , , ,α β θ γ  Distribution 
By setting the four parameters α , β , θ  and γ  as follows: 1.5α = , 0.5β = , 3θ =  and 0.8γ = , we 
obtain simulation data of the ( )AddW , , ,α β θ γ  distribution. We generate random values from it by solving the 
following equation: 

( )log 1 0,i iU t tθ γα β− + + =  

where 1, ,i n=  , n  is the sample size and U is a uniformly distributed random variable on the interval (0, 1). 
Figure 6 illustrates the empirical cdf, the cdf and the 95% lower and upper confidence bounds for the cdf of 

the 100 simulated data by setting 1.5α = , 0.5β = , 3θ =  and 0.8γ = . 

2.2.2. Parameter Estimation 
Now, we introduce the estimation of the model parameters by using the method of maximum likelihood. Let  
 

 
Figure 4. Plots of cumulative distribution function and survival function of the ( )AddW , , ,α β θ γ . 
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Figure 5. Plots of probability density function and hazard rate function of the ( )AddW , , ,α β θ γ . 

 

 
Figure 6. Cdf and empirical cdf of the ( )AddW , , ,α β θ γ . 

 
( )1 2, , , nt t t

 be a random sample of the AddW distribution with unknown parameters α , β , θ  and γ . By 
setting ( ), , ,α β θ γΘ = , the likelihood function of this sample is given by: 

( ) ( ) ( )1 1

1
; exp .

n

i i i i i
i

L t t t t tθ γ θ γαθ βγ α β− −

=

Θ = + − −∏                        (14) 

The log-likelihood function has the following form: 

( ) ( ) ( )1 1

1
ln ; log .

n

i i i i i
i

L t t t t tθ γ θ γαθ βγ α β− −

=

Θ = + − +∑                       (15) 

After calculating the first partial derivatives of ( )ln ;iL t Θ  and setting the obtained expressions equal to zero, 
we get the following score functions: 

1

1 1
1 1

0
n n

i
i

i ii i

t t
t t

θ
θ

θ γ

θ
αθ βγ

−

− −
= =

= −
+∑ ∑                               (16) 
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1

1 1
1 1

0
n n

i
i

i ii i

t t
t t

γ
γ

θ γ

γ
αθ βγ

−

− −
= =

= −
+∑ ∑                               (17) 

( ) ( )
1 1

1 1
1 1

log
0 log

n n
i i i

i i
i ii i

t t t
t t

t t

θ θ
θ

θ γ

α αθ
α

αθ βγ

− −

− −
= =

+
= −

+∑ ∑                         (18) 

( ) ( )
1 1

1 1
1 1

log
0 log

n n
i i i

i i
i ii i

t t t
t t

t t

γ γ
γ

θ γ

β βγ
β

αθ βγ

− −

− −
= =

+
= −

+∑ ∑                         (19) 

To get out the MLE of the unknown parameters, we have to solve the above system of four non-linear equa-
tions with respect to α , β , θ  and γ . The solution of this system of equations is not possible in closed form, 
so numerical technique such as the trust region method is needed to get the MLE. 

We obtain the second partial derivatives of ( )ln ;iL t Θ  as follows: 

( )
( )

212

2 21 11

ln n i

i
i i

tL

t t

θ

θ γ

θ

α αθ βγ

−

− −=

−∂
=

∂ +
∑  

( )
( )

212

2 21 11

ln n i

i
i i

tL

t t

γ

θ γ

γ

β αθ βγ

−

− −=

−∂
=

∂ +
∑  

( ) ( ) ( )
( )

( )
21 1 2 1 1 12

2
2 21 11 1

2 log logln log
n ni i i i i i i

i i
i i

i i

t t t t t t tL t t
t t

θ γ θ γ θ
θ

θ γ

αβγ αβθγ α
α

θ αθ βγ

− − − − −

− −= =

+ −∂
= −

∂ +
∑ ∑  

( ) ( ) ( )
( )

( )
21 1 2 1 1 -12

2
2 21 11 1

2 log logln log
n ni i i i i i i

i i
i i

i i

t t t t t t tL t t
t t

θ γ θ γ γ
γ

θ γ

αβθ αβθγ β
β

γ αθ βγ

− − − −

− −= =

+ −∂
= −

∂ +
∑ ∑  

( )
1 12

21 11

ln n
i i

i
i i

t tL

t t

θ γ

θ γ

θγ
α β αθ βγ

− −

− −=

−∂
=

∂ ∂ +
∑  

( )
( )

( )
1 1 1 12

21 11 1

logln log
n n

i i i i i
i i

i i
i i

t t t t tL t t
t t

θ γ θ γ
θ

θ γ

βγ βθγ
α θ αθ βγ

− − − −

− −= =

+∂
= −

∂ ∂ +
∑ ∑  

( )
( )
1 1 1 12

21 11

logln n
i i i i i

i
i i

t t t t tL

t t

θ γ θ γ

θ γ

βθ βθγ
α γ αθ βγ

− − − −

− −=

− −∂
=

∂ ∂ +
∑  

( )
( )
1 1 1 12

21 11

logln n
i i i i i

i
i i

t t t t tL

t t

θ γ θ γ

θ γ

αγ αθγ
β θ αθ βγ

− − − −

− −=

− −∂
=

∂ ∂ +
∑  

( )
( )

( )
1 1 1 12

21 11 1

logln log
n n

i i i i i
i i

i i
i i

t t t t tL t t
t t

θ γ θ γ
γ

θ γ

αθ αθγ
β γ αθ βγ

− − − −

− −= =

+∂
= −

∂ ∂ +
∑ ∑  

( )( ) ( )( )
( )

1 1 1 12

21 11

log logln n i i i i i i

i
i i

t t t t t tL

t t

θ θ γ γ

θ γ

α αθ β βγ

θ γ αθ βγ

− − − −

− −=

− + −∂
=

∂ ∂ +
∑  

Table 2 gives the estimated parameters of 10 simulations and the mean square error of each parameter. 

3. Analysis of a Real Data Set 
In this section, we analyze a real data set to demonstrate the performance of the EW and AddW distributions in 
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practice. A sample of 50 components taken from Aarset [18] has been studied. For this data set, we compare at 
first the results of the fits of the EW distribution (EWD) against ED, GED, RD and WD which are sub-models 
of the EW distribution. In the second step the fits of the AddW distribution (AddWD) will be compared against 
WD, MWD, and LRFD which are sub-models of the AddW distribution. Table 3 gives the often used lifetimes 
of 50 devices introduced by Aarset. Table 4 and Table 5 show the MLE of the parameters, the log-likelihood 
function values and the MSD on the one hand for the ED, RD, GED, WD, EWD and on the other hand for the 
WD, MWD, LRFD, and the AddW models. Table 6 and Table 7 show the observed K-S test statistic values for 
each models EWD and AddWD and their correspondent sub-models and the p-value for each one. Figure 7 and 
Figure 8 show the plots of the empirical and fitted scaled TTT-Transforms, the empirical and parametric cumu-
lative density functions, the empirical and fitted hazard and probability density functions for the models EWD, 
AddWD and their correspondent submodels. 

However in Figure 9 we have a comparison between the two models EW and AddW. We note that for com-
parison purpose, we use the mean square difference between the empirical cdf and the fitted cdf, denoted by 
MSD. The MSD is computed by the following relation: 

( )2

1

1 ˆMSD
r

i i
i

F F
r =

= −∑ , 

where îF  and iF  are the estimated and the empirical cdf computed at the cumulative failure times it  and r is 
the size of the data set. 

Based on the results shown in Table 4 and Table 5, we could deduce that: 
• compared with the MSD of the ED and the WD, the EWD is not the best fit of the Aarset data; 
• the MSD of the AddWD has the lowest value compared with each sub-models, so the AddWD is the best in 

fitting the Aarset data; 
• the MSD of the AddWD is smaller than the MSD of the EWD which indicates that the AddWD fits the given 

data better than the EWD. 
 

Table 2. Parameter estimates of 1.5α = , 0.5β = , 3θ =  and 0.8γ = . 

 ML 

 α̂  β̂  θ̂  γ̂  

 1.5457 0.5406 3.0174 0.8607 

 1.5305 0.5294 3.0610 0.8008 

 1.5989 0.5090 2.9544 0.8543 

 1.5923 0.4939 2.9261 0.8389 

 1.4958 0.4909 3.0615 0.8300 

 1.4336 0.5443 3.0996 0.8297 

 1.4493 0.5754 3.0863 0.8433 

 1.4821 0.5702 3.1001 0.8461 

 1.4579 0.5419 2.9718 0.8142 

 1.4308 0.4620 3.0760 0.8101 

MSE 0.0034 0.0018 0.0050 0.0014 

 
Table 3. Lifetimes of 50 devices, Aarset. 

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 

21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 72 75 

79 82 82 83 84 84 84 85 85 85 85 85 86 86     
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Table 4. MLE of the parameter(s), log-likelihood function values and the MSD of sub-mod- 
els of the EWD. 

The Model Parameter estimates ln L  MSD 

RD 4ˆ 3.1809 10α −= ×  −264.052 0.0153 

GED ˆ 0.01870α = , ˆ 0.7798λ =  −239.995 0.0152 

EWD 10ˆ 6.4800 10α −= × , ˆ 4.6900θ = , ˆ 0.1460λ =  −229.114 0.0151 

WD ˆ 0.0270α = , ˆ 0.9490θ =  −241.002 0.0139 

ED ˆ 0.0219α =  −241.089 0.0136 

 
Table 5. MLE of the parameter(s), log-likelihood function values and the MSD of sub-mod- 
els of the AddWD. 

The model Parameter estimates ln L  MSD 

LRFD ˆ 0.0140α = , 4ˆ 2.4000 10β −= ×  −238.064 0.0282 

WD ˆ 0.0270α = , ˆ  0.9490θ =  −241.002 0.0139 

MWD ˆ 0.0120α = , 8ˆ 2.1590 10β −= × , ˆ 4.0140γ =  −230.510 0.0072 

AddWD 5ˆ  3.9345 10α −= × , ˆ 0.0860β = , ˆ 2.3760θ = , ˆ 0.4114γ =  −228.102 0.0058 

 
Table 6. The MLE of the parameter(s), K-S values and the associated p-values. 

The model Parameter estimates K-S p-value 

RD 4ˆ 3.1809 10α −= ×  0.2552 0.0328 

GED ˆ 0.0187α = , ˆ 0.7798λ =  0.1775 0.2678 

WD ˆ 0.0270α = , ˆ 0.9490θ =  0.1657 0.3440 

ED ˆ 0.0219α =  0.1601 0.3846 

EWD 10ˆ 6.48 10α −= × , ˆ 4.69θ = , ˆ 0.146λ =  0.1490 0.4732 

 
Table 7. The MLE of the parameter(s), K-S values and the associated p-values. 

The model Parameter estimates K-S p-value 

LRFD ˆ 0.0140α = , 4ˆ 2.4000 10β −= ×  0.2057 0.1366 

WD ˆ 0.0270α = , ˆ 0.9490θ =  0.1657 0.3440 

MWD ˆ 0.0120α = , 8ˆ 2.159 10β −= × , ˆ  4.0140λ =  0.1655 0.3453 

AddWD 5ˆ 3.9345 10α −= × , ˆ 0.0860β = , ˆ 2.3760θ = , ˆ 0.4114λ =  0.1230 0.7089 
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Figure 7. (a) The empirical and estimated scaled TTT-Transform plots of the ED, RD, GED, WD and EWD 
models; (b) The empirical and estimated cumulative density function of the ED, RD, GED, WD and EWD 
models; (c) Empirical and estimated hazard rate functions of the ED, RD, GED, WD and EWD models; (d) 
Empirical and estimated PDF of the ED, RD, GED, WD and EWD models, for Aarset data. 

 

 
Figure 8. (a) The empirical and estimated scaled TTT-Transform plots of the WD, LRFD, MWD and 
AddWD models; (b) The empirical and estimated cumulative density function of the WD, LRFD, MWD and 
AddWD models; (c) Empirical and estimated hazard rate functions of the WD, LRFD, MWD and AddWD 
models; (d) Empirical and estimated pdf of the WD, LRFD, MWD and AddWD models, for Aarset data. 
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Figure 9. (a) The empirical and estimated scaled TTT-Transform plots of the EWD and AddWD models; (b) 
The empirical and estimated cumulative density function of the EWD and AddWD models; (c) Empirical 
and estimated hazard rate functions of the EWD and AddWD models; (d) Empirical and estimated PDF of 
the EWD and AddWD models, for Aarset data. 

 
We perform in the next step at first the test of the following null hypotheses: 
1) H0: 1α = , 1λ = , the data follow ED “Exponential distribution”, 
2) H0: 2θ = , 1λ = , the data follow RD “Rayleigh distribution”, 
3) H0: 1θ = , the data follow GED “Generalized exponential distribution”, 
4) H0: 1λ = , the data follow WD “Weibull distribution”, 

in favor of the alternative hypothesis Ha: the data follow the EWD “Exponentiated Weibull distribution”. 
And on the other hand the test of the following null hypotheses. 
1) H0: 0β = , the data follow WD “Weibull distribution”, 
2) H0: 1θ = , 0γ > , the data follow MWD “Modified Weibull distribution”, 
3) H0: 1θ = , 2γ = , the data follow LRFD “Linear failure rate distribution”, 

in favor of the alternative hypothesis Ha: the data follow the AddWD “Additive Weibull distribution”. 
In the following, we use a non parametric test statistics, Kolmogorov-Smirnov (K-S) test with a level of signi-

ficance equal to 0.05, to test the null hypothesis mentioned below against Ha. We accept H0 with the p-value 
under the condition p-value > 0.05. 

If we compare the EWD model with the sub-models ED, RD, GED and WD, we can conclude from Table 6 
that: 
• only the RD is rejected at level 0.033ν ≥ ; 
• all H0’s excepted the RD are not rejected at 0.26ν ≤ ; 
• the EWD is the best model among those discussed here, to fit the current data set because it has the biggest 

p-value (0.4732) and the lowest K-S value (0.1490). 
Similarly, when we compare the AddWD model with the sub-models WD, LRFD and MWD, we can con-

clude from Table 7 that: 
• none of H0’s is rejected at level 0.13ν ≤ ; 
• the AddWD is the best model among those discussed here, to fit the current data set because it has the big-

gest p-value (0.7089) and the lowest K-S value (0.1230); 
• the AddWD is the best model among the EWD model to fit the current data set because it has the lowest K-S 
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value (0.1230). 
We can immediately observe from Figure 7, Figure 8 and Figure 9 that: 1) the data set has a bathtub shaped 

hazard rate, 2) one can see the closeness of the fitted pdf using the AddWD model, 3) the AddWD fits the data 
set better than all other distributions used here, because its fitted curve is closer to the empirical curve. 

4. Conclusion 
In this paper, we show the performance of two models called the exponentiated Weibull distribution and the ad-
ditive Weibull distribution by using an empirical comparison with the sub-models of each one such as the expo-
nential distribution, the Rayleigh distribution, the generalized Weibull distribution, the linear failure rate distri-
bution, the Weibull distribution and the modified Weibull distribution. The maximum likelihood estimations of 
the unknown parameters for these distributions are discussed. A real data set of Aarset is studied by using the 
EW and the AddW distributions. The results of the comparisons showed that the additive Weibull distribution 
provided a better fit for the Aarset data set than some of the often-used distributions. 
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