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Abstract 
Two different tools to evaluate quantile regression forecasts are proposed: MAD, to summarize 
forecast errors, and a fluctuation test to evaluate in-sample predictions. The scores of the PISA test 
to evaluate students’ proficiency are considered. Growth analysis relates school attainment to 
economic growth. The analysis is complemented by investigating the estimated regression and 
predictions not only at the centre but also in the tails. For out-of-sample forecasts, the estimates in 
one wave are employed to forecast the following waves. The reliability of in-sample forecasts is 
controlled by excluding the part of the sample selected by a specific rule: boys to predict girls, 
public schools to forecast private ones, vocational schools to predict non-vocational, etc. The gra-
dient computed in the subset is compared to its analogue computed in the full sample in order to 
verify the validity of the estimated equation and thus of the in-sample predictions. 
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1. Introduction 
Quantile regression is a robust procedure particularly helpful in dealing with asymmetric and with non-normal 
distributions. It is very useful to evaluate data sets where it is relevant to analyse and estimate a regression 
model not only at the mean/median of the conditional distribution but also in the tails, measuring the impact of 
the regressors on the dependent variable at different quantiles. 

Besides the estimates of the regression coefficients at different quantiles, the predictions of the model at a 
given quantile and their summary measures are the focus of the analysis. As the goodness of fit index, an indi-
cator of quantile regression predictive power is a local measure, relative to the specific quantile under analysis. 
The regression estimates at the selected quantile provide forecasts for that specific quantile, and it may very well 
be the case that the predictive ability of the model changes at a different quantile: a model may predict the me-
dian better than the upper or the lower quantile. The literature on quantile regression predictions is not very ex-
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tensive. Mayr et al. [1], for instance, consider quantile regressions to compute predictive intervals. When a new 
observation for the explanatory variables is available, xn+1, the fitted value computed at the α/2 and 1 ‒ α/2 re- 
gression quantiles provide the prediction interval for the explanatory variable, yn+1. In the wheather forecast, the 
“quantile verification score” (QVS) is implemented, as for instance in Friederichs and Hense, [2]. It is a quan- 
tile-specific approach where the forecaster optimises the performance by predicting the “true” quantiles. In what 
follows a different approach is considered. Different tools to evaluate quantile regression forecasts are proposed 
and their characteristics are explored and compared. The first is a summary statistic measuring forecast errors. 
The second is a fluctuation test, based on the quantile regression gradient, which is here considered to evaluate 
forecasts. 

The math scores at the international OECD-PISA test of 15-year-old Italian students are analysed here. The 
OECD-PISA test has been administered in year 2000, 2003, 2006 and 2009 to verify students’ proficiency. The 
selected model is estimated by OLS and quantile regression. The purpose is to link student performance to 
school efficiency. There is a long lasting debate on the role of school variables on student proficiency. Generally 
speaking, the rate of return to additional years of schooling is large. In addition, growth analysis emphasizes 
school attainment and shows its high relation to differences in economic growth across countries. Analyses of 
the relationship between schooling and economic growth by Barro [3] and Mankiw et al. [4] find a significant 
positive link between quantitative measures of schooling and economic growth. Hanushek [5] relates one stan- 
dard deviation difference of student performance to a one percent difference in the annual growth rate of per 
capita gross domestic product, although higher spending in school resources does not necessarily involve higher 
scores, as discussed in Hanushek and Woessmann [6]. 

Therefore, prediction of student performance is one of the possible indicators of economic growth and 
schooling is one of the elements to improve in order to increase the rate of growth of a country. These analyses 
generally rely on average values, while policy may be more effective when focusing on the tails, away from the 
mean. This would be the case of schemes seeking to improve the low scoring in order to rise the general per- 
formance. But the analysis of the model on average is not very helpful when the target is to improve the lower 
tail. 

The predictive power of the model is considered by analysing both in-sample and out-of-sample forecasts. To 
evaluate out-of-sample forecasts the estimates in one wave are employed to forecast the following waves, under 
the assumption of unchanged model from one wave to the other, that is assuming a fixed coefficient model. The 
comparison of realizations and predictions based on the estimates of the previous wave provides a measure of 
the validity of the out-of-sample forecasts at different quantiles. The validity of in-sample forecasts is analysed 
by comparing the gradient computed in a subset with the gradient computed in the full sample. The following 
procedure is here proposed: 

1) Exclusion of q data from the sample, possibly chosen by a specific selection rule,  
2) Estimation of the model in the selected subset, 
3) Computation of the residuals with respect to this set of estimates for the entire sample,  
4) Comparison of the gradient using these residuals, with the gradient computed in the entire sample.  
The model yields good in-sample predictions when such a difference goes to zero. In this case, the model in 

the subset provides a good approximation for the excluded data, and predictions are good. Vice versa, if the dif- 
ference between the two sets of results is sizable and cannot be neglected, the subset poorly approximates the 
excluded observations and the in-sample forecasts are not reliable. 

Section 2 summarizes the quantile regression estimator whereas the data and the model are discussed in Sec- 
tion 3. Section 4 presents the data set and Section 5 discusses the results. The last section draws the conclusions. 
In the Appendix are the Stata codes used to implement the comparison of partial and total sum of the gradient 
proposed here. 

2. Quantile Regression 
Consider the linear regression model T

t t ty x eβ= + , where yt is the dependent variable, T
tx  is the p-dimensional 

row vector of a single observation for the p explanatory variables, et is the error term having continuous and 
strictly positive density f( ) in a sample of size n. The quantile regression model provides robust estimates of the 
coefficients and does not require distributional assumptions. Its objective function is given by1: 
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( ) ( ) ( )T T
T T1

t t t tt t t t tytt y x xe xV w y x yβ βθ θ β θ βθ
> <

= − −= + −∑∑ ∑               (1) 

where the asymmetric weighting system wt is equal to θ for positive errors and to 1 ‒ θ for negative te . When θ  
= 0.5 the weights are symmetric and the objective function simplifies into ( ) T0.5 t tt yV xθ β= −∑ , which  

provides an estimate of the conditional median regression, or least absolute deviation (LAD). Often the median 
regression estimates do not significantly differ from the conditional mean regression (OLS), and this is the case 
with symmetric conditional distributions. The advantage of quantile regression relies in the possibility of inves-
tigating the dependent variable at many points of the conditional distribution, not only at the centre but also in 
the tails. 

The predictions of the quantile regression model are then analysed. Forecast in quantile regression, just as the 
goodness of fit index, can be considered a local measure, relative to the specific quantile under investigation. In 
the following sections predictions for one wave based on the estimates computed in the previous wave provide 
out-of-sample forecasts, while predictions within each wave provide in-sample forecasts for a given quantile re-
gression. 

A first approach is to compute a summary measure of forecast error and, among the various existing statistics 
on predictions, the mean absolute deviation of forecasts from realizations, MAD, is here considered. Quantile 
regressions are based on the l1 norm, therefore MAD seems the appropriate index to summarise the predictive 
power in quantile regressions, particularly so at the median. The statistic is given by: 

( ) ( ) ( )ˆˆMAD t t ty y n nθ θ ε θ= − =∑ ∑                            (2) 

where ( )ˆty θ  are the fitted values computed at the selected quantile and ( )t̂ε θ  are the prediction errors at the 
quantile θ. 

In addition, to verify the reliability of the in-sample forecasts it is possible to consider the comparison be-
tween partial and total sum of the gradient. This comparison, considered by Qu [12] and by Oka and Qu [13] to 
define a changing coefficient test and by Xiao [14] for a test of cointegration, focuses on the quantile regression 
gradient 

( ) ( )( ) ( )1 2 1 2
1 1, n n

t t t t tt tg n n x y x n x eθ θθ ψ β θ ψ− −
= =

= − =∑ ∑                 (3) 

where ( ) ( )1 0t te eθψ θ= − ≤  is the sign function. In a subset of size n1, the gradient (n1,θ), is: 

( ) ( )11 2
1 1 1, n

t ttg n n x eθθ ψ−
=

= ∑                                   (4) 

and a function of the gradient, considered for both n and n1 sample sizes, is defined as 

( ) ( ) ( )
1 2T

1, n
t ttH n X X x eθθ ψ

−

=
= ∑                              (5) 

( ) ( ) ( )11 2T
1 1, n

t ttH n X X x eθθ ψ
−

=
= ∑                              (6) 

where X is the (n, p) matrix of explanatory variables. The comparison of H(n1,θ) and H(n, θ) is provided by the 
following test function defined in Qu [12]: 

( )( ) ( ) ( )
1

2
1

1
sup 1 , ,n H n H nQθ θ θ θ λ θ

−
−= −                       (7) 

where sup  is the sup norm selecting the maximum difference between H(n1,θ) and H(n,θ) within the entire 
vector of coefficients and λ = n1/n is the proportion of data in the subset. The gradient estimated in the n1 subset, 
yielding H(n1,θ), is compared with the gradient estimated in the full sample H(n,θ). In case, H(n1,θ) is a good 
proxy for H(n,θ), the in-sample predictions are reliable. Vice versa, when the model is inadequate H(n1,θ) and 
H(n,θ) diverge and the in-sample forecasts are unreliable. In addition, the sample of size n can be split into n = 
n1 + q by choosing a specific selection rule related to the variables of the equation: for instance in n1 the public 
funded schools can be selected and compared to the private ones, or the schools located in the southern regions 
compared to all the other schools. A relevant discrepancy would signal poor forecasts due to a statistically sig-
nificant gap between the two subsets. The model is separately estimated in the subset and in the full sample. The 

 

 

1For further details see Koenker and Bassett [7], Koenker [8], Koenker and Machado [9], Davino et al. [10], Hao and Naiman [11]. 
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residuals from the regression estimated in the n1 subset are compared to the residuals estimated in the entire sample 
through the H(n1,θ) and H(n,θ) functions. If they do not significantly differ the in-sample forecasts of the model 
based on that specific selection rule are reliable and there is no gap between the subset and the entire sample. 

Furthermore, the comparison between partial and total sum of the gradients is analyzed separately for each 
regression coefficient and the convergence/divergence between H(n1,θ) and H(n,θ) becomes a diagnostic tool to 
explore the validity of each explanatory variable for predictive purposes. In detail, the equation is estimated 
twice, in the n1 subset and in the full sample. From the two estimated equations two sets of n residuals are com-
puted2. The former, computed in the subset, provides an estimate of H(n1,θ), while the latter allows to evaluate 
H(n,θ). The behavior of this divergence spells out whether the selected subset is fit or unfit to predict the q 
omitted observations. The comparison of the gradients becomes a diagnostic tool to gauge the validity of each 
variable and thus the predictive capability of the selected model. 

3. The Model 
The OECD-PISA test of Italian students has been administered in year 2000, 2003, 2006 and 2009. The different 
waves of the test are taken into account and the score of the test is related to explanatory variables describing 
school characteristics like school size, funding, supplied services, student teacher ratio. The purpose is to link 
student performance to school efficiency. The model is estimated not only at the mean but also in the tails of the 
conditional distribution, considering low and high proficiency students as well. There is a wide-ranging debate 
on the role of school variables on student proficiency. Growth analysis emphasizes school attainment and shows 
its high relation to differences in economic growth across countries. The mathematical skill, in particular, is 
considered a good proxy of labour force quality. Hanushek [5] relates one standard deviation difference of stu-
dent performance to a one percent difference in annual growth rate of per capita gross domestic product. How-
ever, higher spending in school resources does not necessarily involve higher test scores, as discussed in Ha-
nushek and Woessmann [6]. 

The model here considered explains the scores on the math tests as a function of region—a dummy variable 
taking unit value for the southern regions to capture the existing lag in the southern economy; funding—a dummy 
variable taking unit value for private schools, which in Italy are in a small number and mostly remedial; school 
track—which distinguishes academic from technical and from vocational fields by means of dummy variables; 
gender—a dummy taking unit value for boys who, generally speaking, improve upon girls in math while worsen 
in reading proficiency; school size—providing the number of students enrolled; number of computers in the 
school; student-teacher ratio; proportion of certified teachers in the school; shortage of teachers in the school; 
the four categorical variables on poor library facilities, shortage of computers, shortage of textbooks, shortage of 
laboratory equipment. These four variables take the categories of: a lot, some, a little, not at all. They are trans-
formed in numerical variables by assigning decreasing values from 4 to 1, assigned respectively to the category 
“a lot” and “not at all”. The sample comprises n = 52,067 observations. Table 1 presents few summary statistics 
of the dependent variable: sample size, mean, standard deviation, 10th, 50th and 90th quantile in each wave of the  

 
Table 1. Math scores, summary statistics.                                                                     

 n Mean Std. Dev. Median 10th 90th 

2000 2012 469.56 89.76 474.34 341.86 581.15 

2003 10453 499.41 87.75 502.29 383.97 640.78 

2006 16014 481.90 90.47 483.21 364.53 597.36 

2009 23588 495.02 84.43 497.05 384.18 604.15 

all 52067 490.88 87.57 492.76 376.45 602.81 

 

 

2The coefficients estimated in the n1 subs et al. low to compute the residuals for both the n1 included and the q excluded observations, so that 
the comparison between H(n1,θ) and H(n,θ) can be implemented as n1 → n. 
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data set. The mean and the median reach a peak on 2003 then decline to raise again in 2009. The median is al-
ways larger than the mean, signalling skewness. The 10th quantile over time has increased more than the 90th, as 
can be seen by comparing the score in 2000 and 2009 at the selected quantiles: math(0.10)2009 ‒ math(0.10)2000 = 
∆(0.10)2009-00 = 42.32, math(0.50)2009 ‒ math(0.50)2000 = ∆(0.50)2009-00 = 22.71, math(0.90)2009 ‒ math(0.90)2000 = 
∆(0.90)2009-00 = 23. This shows a greater improvement of the lower scoring students over time. However, the 
greatest improvement occurs from wave 2000 to 2003 at the top quantile, with a gain in the scores of highly pro-
ficient students equal to ∆(0.90)2003-00 = 59.63. 

The following analysis compares OLS and quantile regression results, and the comparison is particularly use-
ful with asymmetric distributions since it allows to consider the impact of school resources in the tails that is at 
several levels of student proficiency. The issue of the role and impact of school resources on student proficiency 
is highly debated, and this impact is hardly homogeneous across quantiles. The selected quantiles-proficiency 
levels are the 10th, 50th and the 90th quantile3. 

4. OLS and Quantile Regression Estimates 
Table 2 presents the OLS and the median regression estimates. The regional variable is negative, reflecting the 
lag of southern regions; the school track yield positive estimates, showing that academic and technical schools 
improve upon the vocational schools; the gender variable has a positive sign; the private schools have a negative 
impact, confirming their remedial nature; school size is negative but small; shortage of computers and student 
teacher ratio have a positive sign; the remaining variables are mostly non-statistically different from zero. The 
impact of school resources on students’ performance is highly debated in the literature. These results are in line 
with those works ruling out any effect of school inputs, like class size or student-teacher ratio, on students per-
formance—see for instance Hanushek [5] orHanushek and Woessmann [6]. The comparison of left and right 
hand sides’ results of Table 2 shows that the median provides results mostly inside the ±2σ confidence interval 
of the OLS coefficients, thus the median is not significantly different from the mean regression (OLS). The un-
derlined coefficients, which are those statistically different from their OLS analogues, are the estimates of pri-
vate, regional and school size parameters. 

Table 3 reports the results of the 10th and the 90th quantiles. This table presents many more underlined values 
that are quantile regression estimates laying outside the ±2σ OLS confidence intervals. The implication is that 
both the low and the top scoring students are poorly represented by the conditional mean, the OLS regression. 
There are however differences from one tail to the other, like for instance the negative impact of private schools 
is much stronger at the 10th than at the 90th quantile. The underlined and significant coefficients cluster in the 
upper part of this table, signalling regional variable, gender, school track and funding as the main variables af-
fecting math scores at both ends of the conditional distribution. 

This result is confirmed by the interquantile differences, which compute changes across quantiles and verify if 
a discrepancy between estimated coefficient at two different quantile regressions is statistically significant. The 
differences between the 90th and the 50th quantile together with the difference between the 10thquantile and the 
median are reported in Table 4. It turns out that these differences are mostly explained by the regional varia-
ble—particularly in the 90th - 50th interquantile difference, and by funding, gender, school track in both 90th - 
50th and 50th - 10th interquantile comparisons. The regional variable improves in going from the median to the 
top quantile signalling a reduced regional gap at the higher quantiles. The improvement in math scores granted 
by the non-vocational schools, both academic and technical, is greater at the first quantile with respect to the 
median and greater at the median with respect to the 90th quantile; this causes a negative sign for these coeffi-
cients in the interquantile differences; furthermore the increments are larger at the median versus the 90th quan-
tile than at the 10th versus the median. Gender improves in going from the median to the top 90th quantile with 
improvements occurring in every wave but in 2009. The negative impact of private funded schools improves at 
the median with respect to the first quantile in 2006 and 2009, while is less relevant in explaining the 90th - 50th 
interquantile difference, since it is significant only in year 2009. The remaining variables either do not explain 
any of the changes across quantiles—as occurs for the variables number of computers in the school, school size, 
shortage of teachers and shortage of textbooks—or are significant in explaining the interquantile differences 
only in one wave—as in the case of proportion of certified teachers, poor library facilities, shortage of laboratory 
equipment, shortage of computers, student-teacher ratio. 

 

 

3The estimates computed at additional quantiles are available on request. 
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Table 2. OLS and median regression estimates in each wave and in the entire sample.                                 

   
OLS 

    
MEDIAN 

  

 
2000 2003 2006 2009 all 2000 2003 2006 2009 all 

south −51.35 −64.45 −60.22 −40.10 −52.87 −53.14 −68.28 −60.35 −48.38 −55.57 

 
(11.19) (40.90) (46.31) (40.30) (75.36) (9.55) (26.80) (26.69) (28.24) (32.36) 

academic 73.91 91.56 103.37 88.36 90.93 70.06 92.11 103.80 97.001 92.30 

 
(11.83) (42.50) (52.32) (56.28) (90.22) (7.73) (23.36) (29.42) (34.97) (36.60) 

technical 30.09 56.07 56.13 60.88 53.07 35.61 56.51 59.96 58.75 55.23 

 
(5.85) (26.75) (32.66) (45.72) (57.96) (4.50) (15.88) (19.05) (26.77) (24.12) 

boy 15.57 33.16 20.64 19.80 23.07 15.03 33.02 21.41 24.78 24.22 

 
(4.06) (22.21) (17.19) (20.09) (33.77) (2.51) (12.66) (9.19) (14.67) (14.06) 

stud/teac 4.96 1.80 1.57 3.12 2.21 4.34 2.31 1.03 2.86 2.34 

 
(4.52) (13.90) (4.65) (12.63) (23.57) (2.80) (8.53) (1.78) (6.25) (7.97) 

private −33.96 −47.05 −51.91 −30.82 −41.11 −19.13 −60.45 −43.75 −41.03 −42.79 

 
(5.16) (18.66) (21.74) (15.77) (33.78) (1.50) (8.94) (7.96) (8.23) (9.15) 

short lab equip −2.70 −1.93 −3.28 3.20 −0.93 −2.05 −2.64 −2.87 2.78 −0.76 

 
(1.30) (1.87) (4.52) (5.47) (2.28) (0.70) (1.64) (2.17) (2.74) (0.76) 

short textbk −13.45 −6.51 −5.43 −6.37 −7.12 −14.15 −6.22 −7.64 −4.22 −7.09 

 
(4.81) (5.79) (4.83) (7.47) (13.25) (3.35) (3.33) (4.13) (3.11) (5.18) 

short compu 2.73 5.71 9.91 −1.76 3.54 1.61 6.20 13.73 −4.49 4.15 

 
(1.20) (5.12) (11.81) (2.66) (7.83) (0.45) (3.47) (8.55) (3.94) (3.55) 

poor library 4.75 2.13 0.49 −2.20 1.73 3.29 2.62 0.43 −0.05 1.62 

 
(1.88) (2.03) (0.57) (3.48) (3.90) (1.01) (1.37) (0.27) (0.05) (1.44) 

short teacher 0.19 −0.21 −1.38 4.22 0.67 2.39 −0.29 −1.61 4.52 1.82 

 
(0.10) (0.27) (2.28) (7.00) (1.87) (0.90) (0.19) (1.22) (4.90) (1.84) 

prop cer teac −0.32 −3.72 7.75 2.83 9.52 6.33 −16.11 7.84 5.99 6.19 

 
(0.05) (0.85) (2.19) (1.01) (5.78) (0.71) (1.63) (1.40) (1.21) (1.27) 

school size 0.002 0.003 −0.006 −0.05 −0.007 0.005 0.003 −0.01 −0.06 −0.01 

 
(0.16) (1.24) (2.84) (11.86) (5.12)) (0.57) (0.69) (2.67) (9.71) (3.70) 

computer 0.15 0.13 0.18 0.29 0.13 0.06 0.16 0.16 0.34 0.13 

 
(2.74) (6.96) (13.82) (13.65) (19.40) (0.86) (5.92) (6.62) (11.28) (9.55) 

constant 399.20 418.89 395.45 414.13 402.75 410.56 424.544 397.42 409.07 405.32 

 
(34.45) (83.05) (88.71) (117.16) (193.31) (21.74) (40.84) (51.82) (66.25) (65.58) 

n 2012 10453 16014 23588 52067 2012 10453 16014 23588 52067 

R2 0.23 0.35 0.34 0.28 0.30 0.11 0.10 0.16 0.18 0.18 

scale ω(θ)      88.13 77.55 79.44 75.38 97.38 

Note: Absolute value of t-statistics in parentheses. Underlined are the quantile regression estimates outside the ±2σ OLS confidence intervals. 
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Table 3. First and last quantile regression estimates in each wave and in the entire sample.                              

  first quantile, 10th     last quantile, 90th  

 2000 2003 2006 2009 all 2000 2003 2006 2009 all 

south −58.98 −63.03 −63.01 −42.35 −53.61 −36.77 −65.55 −51.78 −30.09 −46.46 

 (5.63) (18.41) (18.54) (17.77) (21.26) (5.99) (22.41) (16.72) (10.14) (29.57) 

academic 100.92 92.50 95.32 87.95 91.74 69.50 87.42 109.70 91.11 88.57 

 (6.36) (20.26) (18.94) (23.73) (26.08) (5.69) (18.87) (23.38) (18.73) (35.16) 

technical 28.53 48.85 46.87 57.61 48.01 26.676 53.58 59.71 68.81 52.49 

 (1.75) (11.52) (11.98) (18.20) (14.22) (2.97) (12.19) (12.49) (20.92) (24.06) 

boy −0.467 32.17 16.64 18.538 18.80 34.02 35.32 23.98 18.36 25.39 

 (0.04) (10.60) (5.52) (8.20) (7.45) (4.98) (11.36) (6.64) (6.16) (16.01) 

stud/teach 5.48 1.14 2.06 4.08 2.01 3.72 2.46 1.81 3.28 2.01 

 (2.29) (3.05) (1.85) (7.19) (4.76) (2.07) (9.00) (2.36) (7.23) (9.99) 

private −54.14 −44.48 −78.48 −64.91 −54.57 −21.90 −48.20 −40.81 12.13 −27.88 

 (2.01) (4.82) (9.39) (10.66) (7.35) (1.49) (7.41) (5.62) (1.26) (7.51) 

sh lab eq 1.41 −6.42 −3.28 2.63 −1.56 −6.46 −1.06 −4.40 7.59 −1.18 

 (0.26) (3.13) (1.98) (1.74) (1.10) (2.01) (0.63) (2.21) (4.98) (1.26) 

sh text −14.10 −1.81 −7.31 −6.55 −5.85 −13.01 −6.21 −7.36 −13.03 −9.05 

 (1.91) (0.74) (2.88) (3.59) (2.81) (3.22) (3.06) (2.74) (6.67) (7.79) 

sh comp 4.28 −4.702 9.29 −0.48 2.24 3.60 13.09 5.90 0.87 5.15 

 (0.70) (2.24) (4.36) (0.31) (1.20) (1.09) (6.04) (2.43) (0.47) (5.16) 

poor lib 9.05 7.20 1.28 −3.71 −0.40 2.73 −3.34 4.21 1.53 1.26 

 (1.95) (2.90) (0.62) (2.23) (0.24) (0.96) (1.62) (1.81) (1.08) (1.41) 

short teacher 1.40 −0.15 −2.78 4.44 0.40 −1.39 −0.48 0.78 7.26 0.75 

 (0.29) (0.08) (1.53) (3.27) (0.29) (0.47) (0.26) (0.47) (5.39) (0.89) 

prop cert −4.38 −5.68 −2.27 9.96 12.00 13.08 9.70 8.29 −10.35 16.47 

 (0.26) (0.48) (0.29) (1.56) (1.69) (1.34) (0.99) (0.99) (1.93) (4.51) 

school size 0.021 0.008 −0.003 −0.06 −0.008 −0.008 −0.001 −0.008 −0.05 −0.008 

 (1.13) (1.54) (0.69) (5.46) (2.14) (0.81) (0.24) (1.61) (5.22) (3.41) 

computer 0.24 0.08 0.17 0.30 0.14 0.15 0.19 0.18 0.26 0.11 

 (1.47) (2.57) (6.07) (5.37) (7.16) (1.75) (5.44) (4.77) (6.43) (8.84) 

constant 252.8 349.5 321.8 321.1 319.5 502.9 488.8 479.7 496.2 493.1 

 (7.46) (31.46) (28.89) (38.06) (36.44) (23.22) (39.47) (41.37) (71.46) (98.05) 

n 2012 10453 16014 23588 52067 2012 10453 16014 23588 52067 

pseudo R2 0.20 0.16 0.16 0.16 0.13 0.18 0.20 0.13 0.15 
 

scale ω(θ) 98.02 107.77 103.71 135.48 100.37 90.98 119.14 111.58 90.62 
 

Note: Absolute value of t-statistics in parentheses. Underlined are the quantile regression estimates outside the ±2s OLS confidence intervals. 
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Table 4. Interquantile difference between 50th - 10th and 90th - 50th quantiles.                                        

   50th - 10th     90th - 50th   

 2000 2003 2006 2009 all 2000 2003 2006 2009 all 

south 15.95 −1.03 1.15 −2.01 −0.21 16.31 6.88 3.50 10.12 5.91 

 (1.75) (0.44) (0.40) (1.30) (0.16) (2.87) (2.14) (1.42) (6.21) (3.91) 

academic 4.91 −5.33 2.49 0.84 −3.85 −13.98 −5.31 −3.23 −10.82 −11.85 

 (0.31) (1.28) (0.91) (0.23) (2.27) (1.27) (1.12) (0.84) (4.92) (6.07) 

technical 6.56 −5.369 4.36 −5.69 −3.96 −15.17 −8.54 −4.873 −4.83 −6.41 

 (0.60) (1.36) (1.51) (2.51) (2.18) (2.09) (2.85) (1.56) (1.84) (3.92) 

boy −3.38 −1.00 3.00 4.90 4.01 12.85 6.59 5.73 0.76 3.25 

 (0.41) (0.36) (1.71) (2.97) (3.89) (2.38) (3.22) (3.03) (0.33) (3.40) 

stud/teach −1.49 0.11 0.17 −0.94 0.22 1.22 0.42 1.57 −0.07 1.13 

 (0.57) (0.50) (0.33) (2.39) (1.09) (0.80) (0.96) (2.99) (0.23) (4.03) 

private −0.92 7.83 30.11 16.96 14.53 −14.85 11.65 9.92 16.60 11.72 

 (0.05) (1.03) (3.14) (3.32) (5.01) (0.96) (1.48) (1.14) (3.63) (4.21) 

sh lab equ  1.56 2.26 0.77 −1.52 −0.59 −6.457 1.151 0.62 1.36 0.90 

 (0.35) (1.47) (0.95) (1.70) (1.03) (1.98) (0.57) (0.54) (0.97) (1.40) 

sh text 4.97 4.12 1.40 2.12 2.31 −7.61 −0.37 3.67 −0.78 1.27 

 (0.82) (1.79) (0.78) (1.59) (2.46) (1.46) (0.14) (2.81) (0.47) (1.12) 

sh comp −4.19 2.19 0.79 −0.13 0.008 0.41 0.66 −4.33 3.65 0.81 

 (0.97) (1.01) (0.56) (0.16) (0.01) (0.10) (0.38) (3.46) (3.44) (0.97) 

poor libr 1.30 −7.75 0.58 0.03 −0.44 3.96 1.22 −0.88 −1.28 −2.00 

 (0.29) (3.74) (0.38) (0.04) (0.72) (1.18) (0.43) (0.75) (1.20) (2.53) 

sh teacher 1.47 −2.20 2.04 1.49 1.49 1.48 0.43 −1.69 0.11 −0.18 

 (0.36) (1.38) (2.40) (1.22) (2.60) (0.40) (0.31) (1.47) (0.13) (0.45) 

prop cert 0.97 5.73 3.07 −8.46 −5.49 −5.35 −11.55 −17.51 −8.95 −7.79 

 (0.08) (0.79) (0.74) (1.73) (2.10) (0.45) (0.82) (2.65) (1.70) (2.39) 

school size 0.000 −0.004 −0.007 −0.006 −0.004 −0.009 −0.004 −0.008 0.01 −0.001 

 (0.01) (1.09) (2.17) (0.94) (2.70) (0.67) (0.68) (2.95) (1.85) (0.45) 

computer −0.05 0.05 0.020 0.030 0.008 0.01 −0.002 0.04 −0.04 −0.01 

 (0.47) (2.00) (0.84) (1.22) (0.74) (0.21) (0.05) (2.00) (1.58) (1.57) 

constant 107.31 87.67 78.05 104.47 95.60 105.81 97.756 93.70 91.42 91.88 

 (3.72) (9.42) (12.58) (19.55) (27.53) (7.39) (7.11) (14.64) (11.63) (23.18) 

n 2012 10453 16014 23588 52067 2012 10453 16014 23588 52067 

Note: Absolute value of t-statistics in parentheses.  

5. Results 
Table 5 reports the summary statistics of quantile regressions predictive power of the out-of-sample forecasts. 
The first three rows of the table consider year 2000 estimated coefficients at the 10th, 50th and 90th quantile re-
gressions to predict years 2003, 2006 and 2009, that is using first wave to predict the following ones. Rows four 
to six consider year 2003 to predict years 2006 and 2009. In rows seven to nine, the forecast of year 2009 is 
based on the quantile regression estimated coefficients of year 2006. The comparison of observed and predicted  
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Table 5. Assessment of OLS and quantile regression out-of-sample forecasts.                                        

   MAD(q)   MADOLS  
year quantile 2003 2006 2009 2003 2006 2009 

2000 10th 133.58 120.96 115.84    

 50th 62.52 59.36 57.82 63.5 59.8 58.7 

 90th 88.65 98.22 96.73    
        

2003 10th  90.42 91.65    

 50th  63.69 64.54  58.8 57.6 

 90th  112.57 116.70    
        

2006 10th   98.58    

 50th   57.60   58.0 

 90th   96.61    
Note: The first three rows use estimates of year 2000 at the 10th, 50th and 90th quantile regression to compute predictions for wave 2003, 2006 and 
2009. The second group of three rows utilizes estimates of year 2003, while the third group considers estimates of year 2006 to forecast next waves. 
The first group of three columns considers quantile regression estimates while the second group of three columns computes predictions based on the 
OLS estimates. 
 
values in MAD(θ), reported in the first three columns of this table, shows that the forecasts are more precise at 
the median than in the tails, the estimated coefficients for year 2000 yield worse forecasts at the lower quantile 
while the estimates of 2003 worsen at the upper quantile. The second group of three columns of the table report 
the MAD values computed by OLS, MADOLS. These results are quite comparable with the median regression 
values, yielding only minor differences. 

In order to analyse in-sample forecasts, consider the model estimated in the entire sample, pooling together 
year 2000, 2003, 2006, 2009. Last column of Table 2 reports the results for the median regression, where the es-
timated coefficients not statistically different from zero are in italics. These variables—shortage of lab equip-
ment, poor library facilities, shortage of teachers and proportion of certified teachers—are dropped from the 
model, in order to provide a more parsimonious specification. The results for this parsimonious model as esti-
mated at the median regression are reported in the last column of Table 6. The elimination of these four vari-
ables allows to increase the number of available observations to n = 56,856. 

The previous analysis shows that regional variable, gender, school track and funding are the main regressors 
affecting interquantile changes in math scores, and these variables provide the criteria to select the sample. In 
time series it is easy to exclude the final observations, and the sole decision is on the number of excluded obser-
vations q. The data here considered are not time series and, instead of dropping the last observations of the sam-
ple, it is more informative to define a criterion to select the q subset. In principle, any explanatory variable could 
provide a systematic rule to exclude data points, but the analysis is here limited to the four above mentioned 
variables which proved to cause the greater interquantile differences.  

Consider first the regional variable. In this case the score of students of the northern regions, in a sample of 
size n1 = 36,369, are chosen to forecast southern students performance. This means to select 64% of the sample, 
in order to forecast the remaining 36% of the data. Data are sorted so that northern students are at the beginning 
of the sample and the same model is estimated twice: in the full sample and in the subset of northern students. The 
estimates in the entire sample are reported in the first column of Table 6, and the regional variable in this col-
umn is dropped from the model4. From the estimates in the subset, the n residuals are computed and the differ-
ence between total and partial sum of the gradients can be analysed as n1 converges to n. The difference between 
H(n1,θ) and H(n,θ) as n1 approaches n, for each regression coefficient, is reported in Figure 1 which depicts the 
pattern for each regression coefficient. In the figure the n1 subset is to the left of the vertical line, which in the 
graph marks the passage from the n1 subset to the qexcluded observations. The graph shows that partial and total  

 

 

4The model estimated in the subset will automatically drop the regional variable, since in the subset there are only southern students. In case 
the regional variable is not excluded from the full sample model, the number of explanatory variables will differ in the two equations, and 
this would make them unsuitable for the comparison of H(n1,θ) and H(n,θ). The inclusion of the variable clouds the results, since a diver-
gence between the H functions can be due to the different number of coefficients and not, or at least not only, to the predictive capability of 
the model. 
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Table 6. Median regression estimates in the entire sample to evaluate predictions.                                    

 sorted by without sorting 

 region gender track funding  
south ------- −56.22 −57.42 −53.41 −56.46 

  (40.47) (32.33) (37.26) (41.33) 

academic 91.98 86.80 ------- 85.69 90.96 

 (34.83) (42.17)  (39.83) (45.07) 

technical 52.41 55.17 ------- 51.49 53.25 

 (22.61) (30.58)  (27.28) (29.95) 

boy 22.53 ------- 16.37 22.68 23.45 

 (12.68)  (9.24) (15.95) (17.21) 

student/ teacher 1.94 2.49 6.94 1.96 2.71 

 (6.08) (9.98) (24.23) (7.72) (11.07) 

private −23.73 −39.67 −24.55 ------- −39.03 

 (4.90) (10.47) (5.13)  (10.53) 

short textbook −12.52 −4.72 −15.48 −4.15 −5.09 

 (9.70) (4.73) (12.48) (4.08) (5.19) 

school size −0.018 −0.009 0.001 0.003 −0.01 

 (6.66) (4.33) (0.49) (1.58) (4.94) 

computers 0.24 0.154 0.114 0.139 0.14 

 (18.03) (14.39) (8.67) (12.50) (13.36) 

constant 388.55 418.65 432.91 399.97 405.46 

 (91.75) (128.31) (106.89) (111.29) (123.73) 

      n 56856 56856 56856 56856 56856 

R2 0.11 0.16 0.11 0.16 0.17 

Note: Absolute value of t-statistics in parentheses. In italics are the estimates with low t-values. The variable selected to define the n1 subset is 
dropped from the equation. In the subset it is automatically dropped. If it is included in the full sample equation and excluded in the subset equation, 
the difference between total and partial sum of gradients could be due to the different number of regression coefficients and not, or not only, to the 
adequacy of the model. 
 

 
Figure 1. The graph compares partial and total sum of the gradient of each estimated coef-
ficient in case northern student performance is considered to forecast southern student per-
formance for year 2000, 2003 2006, and 2009 pooled together. This leaves out to predict 
about 64% of the sample. The differences to the right of the vertical bar, which signals the q 
predicted observations, converge to zero for all coefficients but those of funding and gender, 
which are not good predictors of math score of southern students, data OECD-PISA.         



M. Furno 
 

 
514 

sum of the gradient for the regression coefficients, after reaching a peak at the end of the n1 subset, converge 
toward zero. The exceptions are gender and funding, which diverge after the vertical bar signalling the begin-
ning of the q subset. This implies that the performance of northern boys does not predict well southern girl 
scores and that northern student are not good predictors for southern student enrolled in private schools. 

Next the gender variable is selected to define the n1 subset. Boys’ scores in math test are used to forecast girls’ 
performance. Gender is a relevant explanatory variable and this criterion splits in half the sample, excluding q = 
28540 observations, which is about 50% of the sample. The second column of Table 6 presents the estimates in 
the entire sample, where with respect to the parsimonious model the gender variable has been excluded5. Boys 
math scores are sorted at the beginning of the sample. The predictions of girl scores based on boys performance 
yield an increasing difference between H(n1,θ) and H(n,θ) up to n1, and then a decreasing difference after the 
vertical bar, as can be seen in Figure 2. This occurs for all gradients but the regional and the funding coeffi-
cients, thus implying that setting aside gender differences in performance, region and funding make a big dif-
ference and cause poor forecasts. 

The third column of Table 6 presents the estimated equation excluding academic and technical track variables, 
where data have been sorted to have scores from the vocational track at the beginning of the sample6. The same 
regression is estimated in a subset of size n1 = 12,387 which considers the vocational schools only. The set of n 
residuals from this equation are computed in order to evaluate predictions for the remaining 78% of the sample, 
which represents students enrolled in non-vocational tracks. Figure 3 presents the comparison of total and par-
tial sum of the gradients as n1 → n. In this graph, the discrepancy between the two sets of gradients goes to zero 
as n1 increases, with the sole exception of the regional and funding coefficients. The scores of students enrolled 
in vocational schools are not good predictors of southern students’ performance and of private schools learners’ 
scores. 

Finally, the same approach is implemented considering the public school sector to forecast the performance of 
students enrolled in private schools. The number of excluded observations in this experiment is quite small, ap-
proximately 3.6% of the sample. The estimates for the entire sample are presented in the last column of the ta-
ble—headed “funding”7. It turns out that students of public schools well predict math scores of both public and  
 

 
Figure 2. The graph depicts the comparison between partial and total sum of the gradient of 
each estimated coefficient in the regression considering only boys to forecast girls perform-
ance in year 2000, 2003, 2006, 2009 pooled together. This leaves out to predict 49.08% of the 
sample. The patterns to the right of the vertical bar, which signals the predicted observations, 
decline toward zero for all the regression coefficients with the exception of the regional and 
private variables, which do not help in predicting math score of girls, data OECD-PISA.       

 

 

5The model estimated in the subset will automatically drop the gender variable, since in the subset there are only boys. Therefore, the gender 
variable is dropped from the full sample equation as well, otherwise the number of explanatory variables in the two models would differ and 
the comparison of H(n1,θ) and H(n,θ) would be inappropriate. 
6Once again the exclusion of the academic and the technical variable from the parsimonious model estimated in the entire sample is needed 
in order to have the same number of variables in the two different estimates of the model, so that H(n1,θ) and H(n,θ) are comparable. 
7The variable private has been excluded from the parsimonious equation estimated in the entire sample, in order to accurately compare 
H(n1,θ) and H(n,θ). 
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Figure 3. The graph depicts the comparison between partial and total sum of the gradient of 
each estimated coefficient in the regression considering vocational schools to forecast per-
formance in academic and technical track schools for the years 2000, 2003, 2006, 2009 pooled 
together. This leaves out to predict 78% of the sample. The patterns to the right of the vertical 
bar, which signals the q predicted observations, decline toward zero for all the regression co-
efficients with the exception of the regional and private variables, data OECD-PISA.           

 
private schools with the exception of the regional and gender variables. That is, math scores of public schools 
students are poor predictors of southern students and of girls performance. The graph in Figure 4 shows the di-
vergence between total and partial sum of the gradient, and the regional and the gender variable diverge after the 
vertical line marking the q excluded observations, while the discrepancy between H(n1,θ) and H(n,θ) in all the 
other coefficients goes to zero after the vertical line.  

Summarizing, Table 6 considers region, gender, track and funding as sample selection rules to evaluate in- 
sample forecasts, since in the interquantile difference analysis these variables cause the greater changes in the 
estimated coefficients at the selected quantiles. The first three variables, region, gender and track, exclude about 
50%, 64% and 78% of the observations, while funding excludes a very small number of data, only 3%. This is to 
say that the results do not depend upon the number of excluded observations. On the overall, the graphs show 
that the coefficients causing the greatest divergence between total and partial sum of the gradient are region, 
gender and funding, and their impact is mutually influenced: when selecting private schools, the regional and the 
gender variables are unreliable predictors; when selecting the northern region, gender and funding are the most 
diverging terms; when gender and school track provide the sample selection rule, both region and funds are poor 
predictors. 

6. Conclusions 
The math scores of the OECD-PISA test have been investigated at different quantiles, to analyse the impact of 
school resources on students’ proficiency. School attainment is related to differences in economic growth, while 
mathematical skill is considered a good proxy of labour force quality. These links are generally discussed in 
terms of average values while quantile regressions also allow to investigate the tails of the conditional distribu-
tion. The estimated coefficients do differ across quantiles, which implies that the tails of the math score distribu-
tion behave quite differently from the central model as computed by OLS. Thus, the analysis of the model on 
average is not very helpful when the aim is to improve one or both tails. 

The forecast ability of the model has been considered. The literature on quantile regression predictions is not 
very extensive. The above analysis considers the median absolute deviation, MAD(θ), computed as the differ-
ence between predicted and observed data to evaluate quantile regression forecasts. The MAD(θ) results show 
that the predictive power of quantile regressions improves at the median for out-of-sample forecasts, and that 
forecasts computed at the median are comparable with OLS predictions. 

To evaluate in-sample forecasts some data points are excluded from the sample. The previous sections con-
sider the exclusion based on a specific selection rule, related to the variables of the model. Four different criteria 
to select the sample have been considered: southern students to predict students living in the rest of the country;  
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Figure 4. The left hand side of this figure depicts the comparison between partial and total 
sum of the gradients of each estimated coefficient in the regression considering public schools 
to forecast private schools for the years 2000, 2003, 2006, 2009 pooled together. This leaves 
out to predict 3.6% of the sample. The patterns to the right of the vertical bar point out the q 
predicted observations, and show a discrepancy for the regional and the gender variables, data 
OECD-PISA.                                                                   

 
boys to predict girls performance; vocational track to forecast performance of students enrolled in the other cur-
ricula; students enrolled in public school to forecast performance of private schools students. Each of the four 
criteria selects a different subset. The data are appropriately sorted locating the selected subset at the beginning 
of the sample. The model is estimated in the full sample and in the subset. The vector of gradients estimated in 
the subset is compared with its analogue in the full sample. The model yields good in-sample predictions when 
such a difference, computed individually for each regression coefficient, goes to zero. Indeed, if the gradients 
are similar, the predictions generated by the selected subset are reliable. Vice versa, when the two gradients are 
far apart, the subset poorly predicts the excluded data, signalling a significant gap between the two subsets. The 
diagnostic tool here implemented to check in-sample forecasts shows that, while for most variables the gradient 
in a subset does not diverge much from its analogue in the full sample, thus granting good predictions, the pre-
dictive capability of the regional, gender and funding variables is quite unreliable. 
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