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Abstract 
Adaptive cluster sampling (ACS) has been a very important tool in estimation of population para-
meters of rare and clustered population. The fundamental idea behind this sampling plan is to de-
cide on an initial sample from a defined population and to keep on sampling within the vicinity of 
the units that satisfy the condition that at least one characteristic of interest exists in a unit se-
lected in the initial sample. Despite being an important tool for sampling rare and clustered pop-
ulation, adaptive cluster sampling design is unable to control the final sample size when no prior 
knowledge of the population is available. Thus adaptive cluster sampling with data-driven stop-
ping rule (ACS’) was proposed to control the final sample size when prior knowledge of population 
structure is not available. This study examined the behavior of the HT, and HH estimator under 
the ACS design and ACS’ design using artificial population that is designed to have all the characte-
ristics of a rare and clustered population. The efficiencies of the HT and HH estimator were used to 
determine the most efficient design in estimation of population mean in rare and clustered popu-
lation. Results of both the simulated data and the real data show that the adaptive cluster sam-
pling with stopping rule is more efficient for estimation of rare and clustered population than or-
dinary adaptive cluster sampling. 
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1. Introduction 
In ecology, most of the species are sparse and they tend to be found in clusters. In geology, most of the minerals 
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are found in clusters. Thus there is a need for a good estimation design for all characteristics of interest of these 
minerals for commercial purpose. Adaptive cluster sampling is a sampling design that can be used to estimate 
the population parameters of interest for rare, clustered and endangered populations [1]. The sampling design is 
termed as adaptive if the sampling procedure depends on the selection rather than the assumption of the popula-
tion. The basic idea behind this sampling plan is to decide on an initial sample from a defined population by 
some probability sampling methods such as simple random sampling and to keep on sampling within the vicini-
ty of the units that satisfy the conditions that are defined previously. The requisites of adaptive cluster sampling 
design comprise of an initial selection of units, a condition that determines when additional units should be 
added to the sample from the neighborhood of that unit and a clear definition of the neighborhood of every unit. 

There is an increase in sampling efficiency under ACS resulting in more precise estimates of the population 
parameter, that is, the ACS leads to an increase in the number of observation of the target species that may result 
in more reliable estimates of other population parameters such as species richness in information, population 
composition and relative abundance [2]. These advantages are more evident in rare and clustered populations [3]. 

The major disadvantage of adaptive cluster sampling in estimation of population parameters is the uncertainty 
of the final sample size. Much attention has been focused to limit the size of the final sample in ACS [4]. How-
ever, prior knowledge of the population is required to limit the final sample [5]. 

Adaptive Cluster Sampling Designs 
Adaptive cluster was initiated by [1] for sampling the population that exhibits rare and clustering characteristics. 
We consider a study region divided into M  units (networks). Let 1 2, , , My y y  be the values of the variables 
observed, that is iy , is the number of observed offspring or children in every network. The mean  
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= ∑  is the parameter of the observed offspring in every unit. 

The adaptive design usually starts by an initial sample of unit 1n  selected by some convectional design such 
as simple random sampling and to continue sampling within the neighborhood of the units that satisfy the condi-
tions that are defined previously. The basic essentials of adaptive cluster sampling design consist of an initial 
selection of units, a condition that determines when additional units should be added to the sample from the 
neighborhood of that unit and a clear definition of the neighborhood of every unit. This design was introduced 
by Thompson (1990) for estimation of population parameter of rare and clustered populations. Since the intro-
duction of this design many researchers have had a lot of interest in the use of this design in estimation of para-
meters of highly clustered and rare populations [6]. 

Two design-unbiased estimators were introduced by [4] based on the Horvitz-Thompson (HT) and the Han-
sen-Hurwitz (HH) estimators. Since the study area is divided into networks, the HT estimator uses the inclusion 
probability while the HH estimator uses the draw by draw probability. 

Because controlling the final sample size in ACS design is a big challenge, a variant to the original ACS de-
sign was proposed by introducing a stopping rule at each aggregative step and for each unit in the initial sample 
[7]. Once the thK  step of the aggregative procedure has been completed, further units will be sampled if and 
only if 
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where ( )2 K
is  is the within-network variance estimate for the thK  step for the thi  initial unit and ( )k

im  is the 
cardinality of the set of units adaptively sampled after the thk  step. The condition shows how the with-
in-network variance and the final sample size determine the efficiency of the adaptive design. 

2. Estimators 
In this section, the design based estimators will be reviewed. These estimators are design based, that is, their bi-
asedness depends on the selection rather than the assumption of the population. 
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2.1. The Hansen-Hurwitz Estimator 
The Hansen-Hurwitz estimator is based on draw-by-draw selection probability of selecting a primary sampling 
unit on any given draw. Since draw-by-draw selection probability cannot be known for all primary units in the 
sample but can be established for the networks, the HH estimator can be modified to use the unit that do not sa-
tisfy the condition when they are selected in the initial sample. The modified Hansen-Hurwitz estimator is ex-
pressed as 

1

HH
11

1 n

i
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n

µ
=

= ∑                                      (2.1.1) 

where iv  is the average of the iy  values in the network ( )iA  that include the thi  unit of the initial sample 
of size 1n . If im is the number of units in the network iA , then. 
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The sampling variance of the Hansen-Hurwitz estimator is expressed as 
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2.2. Horvitz-Thompson Estimator 
The Horvitz-Thompson estimator is based on inclusion probabilities ( )iπ , but on application of ACS the inclu-
sion probabilities for every sampling unit selected in the sample cannot be established. Nevertheless, it is possi-
ble to establish the probability of including a network in the sample selected. A network is a subset of distinct 
units within a cluster, such that selection of any unit within the network would lead to the inclusion of all other 
units in the network. Units that fail to satisfy C but are in the neighborhood of one that satisfy are referred to as 
edge units. Thus, all units selected in the initial sample and fail to satisfy C will be considered to be networks of 
size one. On partitioning the adaptive cluster sample into distinct networks rather than basic sampling units, the 
HT estimators for the population mean can be expressed as 

HH
1

1 N

k
k

y
N

µ
=

= ∑                                      (2.2.1) 

where ky∗  is total number of individuals in the thk  network, k  is the number of distinct networks in the 
sample, and the kπ  is the probability of including any unit in the network k . If there are km  units in the thk  
network, then the inclusion probability can be expressed as 
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The sampling variance of the estimator is expressed as 
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where khπ  is the probability of including both network k  and h  in the adaptive sample and is expressed as 
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3. Methods 
The simulated population had a Poisson clustered population as given by [8]. In this simulation the parent was 
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simulated on a relatively larger area while the offspring were simulated on a smaller study area to avoid the edge 
effect. The position of the offspring relative to their parents was independently distributed. Only the offspring 
was retained in the final population pattern. The study area was divided into 40 40 N× =  units. For control of 
the edge effect of Poisson cluster process a 20 20×  unit was selected as the study area. Each population was 
sampled 100 times with SRS, ordinary ACS and ACS with data driven stopping rule. 

The efficiency of the designs was determined using relative efficiency, that is, 
( )
( )HT

var HT
va

.E
S

R
r SR

= , and  

( )
( )HH

var HH
va

.E
S

R
r SR

= , under both the adaptive cluster sampling designs. 

4. Results and Discussion 
For the two populations examined for Figure 1 and Figure 2 in this study there were multiple conditions under 
which one or both design based estimators were relatively more efficient than the classical estimator given an 
equal final sample size. The Hansen-Hurwitz estimator performed uniformly worse than the Horvitz-Thompson 
estimator and rarely better than the SRS mean. Complete tables of the relative efficiencies of both the HT and 
HH estimators under all conditions are presented in Table 1 and Table 2. 

Some interesting characteristics were observed across increasing final sample size. The efficiency of both 
adaptive cluster sampling estimators in ACS and ACS’ increased as the initial sample size increased. Interes-
tingly, the HT estimators showed intense increase in efficiency with only modest increase in the sample size. For 
example the efficiency of the HT estimator at sampling of the population 1, that is Figure 1, from results in  
Table 1 increases by 0.1413 folds for ACS and by 0.0505 for ACS’ as the final sample size increases from 20 to 
90. The above results are caused by the increase of the final sample size as the probability of including the large 
networks increases and hence resulting into low variances. 

As the rarity and the clustering of the population decreases, the efficiency of design based estimators (HT and 
HH estimators) relative to classical estimator (SRS mean) reduces. The results of the efficiency of the HT and 
HH estimators from population 2 that is for Figure 1 as show in Table 2 indicate a reduction in efficiency. This 
indicates that the design based estimators are only efficient for population that is rare and clustered. The classic-
al estimator perform better than the design base estimators (HT and HH estimators) for population 2 which was 
not rare and clustered. 

Example of Fridge Oryx (A Species of Gazelle in Amboseli National Park) 
The fridge-eared Oryx is a species of the gazelle. It is mostly found in the Amboseli National Park reserve in  

 

 
Figure 1. The spatial point pattern for a rare population.            
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Figure 2. The spatial point pattern for general population.         

 
Table 1. Relative efficiency for rare and clustered population.                                                    

N  
ACS ACS’ 

HTR.E HT
SRS

=  HHR.E HH
SRS

=  HTR.E HT
SRS

=  HHR.E HH
SRS

=  

20 0.2780 0.8034 0.0963 0.3635 

30 0.2683 0.5435 0.1642 0.3246 

40 0.2242 0.4206 0.1478 0.2412 

50 0.2163 0.2946 0.1326 0.1466 

60 0.1733 0.1509 0.0867 0.1211 

70 0.1633 0.1372 0.0739 0.1088 

80 0.1592 0.1093 0.0604 0.0662 

90 0.1367 0.0851 0.0458 0.0838 

 
Table 2. Relative efficiency for a general population that is not rare and clustered.                                    

N  
ACS ACS’ 

HTR.E HT
SRS

=  HHR.E HH
SRS

=  HTR.E HT
SRS

=  HHR.E HH
SRS

=  

20 2.1604 1.6723 2.781 2.6636 

30 2.7464 1.9659 2.4570 2.4736 

40 2.3546 2.0001 2.3622 2.3339 

50 3.6010 3.5232 2.1110 2.1954 

60 3.9401 2.4648 2.2970 2.2682 

70 3.6765 3.7524 1.948 1.9059 

80 3.4817 3.9153 1.8689 1.7907 
90 4.8170 4.1216 1.6294 1.7907 

 
Kenya. The fridge-eared Oryx live in clusters that vary in different sizes. According to the Amboseli National 
park the species are sparsely distributed in the study of Amboseli National park. The study area was Amboseli- 
West Kilimanjaro/Magadi-Natorn Landscape covers portions of Southern Kenya and Northern Tanzania be-
tween 1˚37' and 3˚13' South and 35˚49' and 38˚00' East. This ecosystem comprises Amboseli and Namanga-  
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Table 3. Relative efficiency of the fridged-eared Oryx.                                                           

N  
ACS ACS’ 

HTR.E HT
SRS

=  HHR.E HH
SRS

=  HTR.E HT
SRS

=  HHR.E HH
SRS

=  

20 1.2238 1.3613 0.4322 0.7059 

30 0.8657 0.8985 0.2538 0.5256 

40 0.7124 0.8100 0.3109 0.6251 

50 0.5917 0.652 0.1718 0.3254 

 
Magadi area in southern Kenya, and West Kilimanjaro and Natron in northern Tanzania. The survey covered 
approximately 24,000 km2 and extended from the foot of Chyulu hills to the east, Arusha National Park to the 
south, Lake Natron to the west and Lake Magadi to the north. Mt. Kilimanjaro lies to the south eastern boundary 
of the survey area. For purposes of this census, the survey area has been divided into four broad areas namely: 
Namanga-Magadi area, Amboseli area, Natron area and West Kilimanjaro area. 

The number of initial sample plots was 5. Many of the initial units fell into damage class zero and no adaptive 
units were added from their neighborhood; however, a total of 56 units were added to the sample. The mean size 
of the adaptively sampled networks was 11 units of which the largest network had a total of 35 units. The HT, 
HH and SRS estimators for population mean and variance were calculated for the samples obtained under ACS 
and ACS’. The relative efficiency of the HT and HH estimators under the ACS and ACS’ designs were obtained 
and recorded in the Table 3. With the ACS’ there is higher efficiency that the ACS estimators under the same 
final sample. The HT estimator has higher efficiency by approximately 0.3 than the HH estimator under the 
ACS’ design. Under the ACS the HT estimator report an efficiency of less than 0.4322 when the final sample is 
20 to a relative efficiency of 0.1718 when the final sample is 50. The HH estimator also reports a relative effi-
ciency of 0.7059 when the final sample is 20 to 0.3254 when the final sample is 50. This clearly indicates that 
the relative efficiency of the estimator under the ACS’ increases as the final sample increases. It also indicates 
that the HT estimator is better in estimation of the rare and clustered population. 

5. Conclusions 
The efficiency of the adaptive cluster sampling depends on a number of factors. According to [6] it was argued 
that the efficiency of an adaptive cluster sample is a function of the interaction between the within-network va-
riance and final sample size and ultimately depends upon the spatial distribution of the target population. 

This study shows that, for different populations, at appropriate sample size and any given condition for adap-
tive cluster sample designs, the populations can be sampled more efficiently with both ACS and ACS’. The most 
importance is to be able to determine what the sample size is, and the condition to adaptively add units to the 
sample is suitable. The results of this study also indicate that there should be no question that the HT estimator is 
superior to the HH estimator for use in both ACS and ACS’ settings. Although the HH estimator uses the adap-
tively added units to adjust the values of the initially sampled units to network means, it does not explicitly in-
corporate any of these additional unit values directly into the estimate. 

The choice of condition C is very important. A highly restrictive condition will result in lower final sample 
sizes and less empty edge units being sampled, but for some populations it may result in little additional infor-
mation being added to the sample and the full benefit of an adaptive cluster design may be lost. However, for 
populations that seem not to exhibit the appropriate level of geographical rarity for the practical implementation 
of ACS, the choice of a restrictive condition can result in geographically rare networks that will add information 
and precision to the sample without the danger of an exorbitant final sample size. This study showed that even 
the smallest change in the condition to adaptively add units to the sample can have strong effects on both the ef-
ficiency of ACS and the final size of the sample. A less restrictive condition results in sampling of higher pro-
portion of population, but results in final sample size that is much higher and costly to implement. Hence, the 
choice of the condition C must be made in reference to sampling time, and cost of implementing the study. 
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