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Abstract 
The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous 
Poisson Process, is one of the earliest software reliability models to be proposed. From literature, 
it is evident that most of the study that has been done on the Goel-Okumoto software reliability 
model is parameter estimation using the MLE method and model fit. It is widely known that pre-
dictive analysis is very useful for modifying, debugging and determining when to terminate soft-
ware development testing process. However, there is a conspicuous absence of literature on both 
the classical and Bayesian predictive analyses on the model. This paper presents some results 
about predictive analyses for the Goel-Okumoto software reliability model. Driven by the re-
quirement of highly reliable software used in computers embedded in automotive, mechanical 
and safety control systems, industrial and quality process control, real-time sensor networks, air-
crafts, nuclear reactors among others, we address four issues in single-sample prediction asso-
ciated closely with software development process. We have adopted Bayesian methods based on 
non-informative priors to develop explicit solutions to these problems. An example with real data 
in the form of time between software failures will be used to illustrate the developed methodologies. 
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1. Introduction 
Over the last decade of the 20th century and the first few years of the 21st century, the demand for complex soft-
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ware systems has gone high as it is seen that today, computers are embedded in automotive mechanical and 
safety control systems, industrial and quality process control, real-time sensor networks, aircrafts, nuclear reac-
tors, hospital healthcare and air traffic control systems among others; computer systems have become an indis-
pensable component of our modern society today. Consequently, the reliability of software used in these systems 
has been a major concern and a requirement in the modern generation. Software reliability is defined as the 
probability of failure-free software operations for a specified period of time in a specified environment [1]. A 
single software defect can cause system failure and to avoid these failures, reliable software is required. Soft-
ware reliability is achieved through testing during the software development testing stage [2]. The usual criteria 
of removing bugs in software are by running test cases in a manner that exercises the software similar to the way 
that users will operate in their particular environment. However, emulating end-user environment during the test 
interval is difficult and time-consuming especially when there are multiple types of end-users and also, business 
pressure to release a software system within a tight market window puts a constraint on the amount of time that 
can be spent testing the software. Software reliability modeling comes in handy to address this dilemma. As in-
dicated by [3], software reliability modeling can provide the basis for planning reliability growth tests, monitor-
ing progress and estimating current reliability and forecasting and predicting future reliability improvements. 
Forecasting and prediction are achieved through predictive analyses. In particular, predictive analyses are useful 
in determining when to terminate the development process of software or hardware. Often, a prediction interval 
is constructed to provide the time frame when the ( )th 0k k >  future failure observation will occur with a 
pre-determined confidence level [4]. 

Many software reliability models have been developed by various authors and researchers in the past three 
decades. Amongst, an Exponential Nonhomogeneous Poisson Process with intensity function 

( ) e tt βλ αβ −=                                      (1) 

is the earliest software reliability model to be developed by Goel and Okumoto in 1979. In various literatures, 
this NHPP is called the Goel-Okumoto (1979) model. 

As noted by [5], the Goel-Okumoto (1979) model has been applied to a number of software testing environ-
ments and its application on assessing and detecting software failures has been investigated by various authors. 
For instance, the Goel-Okumoto model has been used to develop a statistical control mechanism that could be 
used to detect whether a software process is statistically under control or not. ML estimation of the parameters 
of the Goel-Okumoto (1979) model has been conducted and in particular, it has been shown that the ML esti-
mates of the parameters of the model are not consistent as the testing period extends to infinity. [6] presented an 
empirical method for selecting software reliability growth models for release decision-making where they ap-
plied iteratively various software reliability models namely Goel-Okumoto (1979), Delayed S-shaped, Gompertz 
and Yamada exponential software reliability growth models to weekly cumulative software failure data during 
system test to determine the number of remaining failures expected in software after release. [7] also performed 
parameter estimation of the Goel-Okumoto, Yamada S-shaped and Inflection S-shaped software reliability 
growth models where they also established a necessary and sufficient condition with respect to the software 
failure data, of which, if satisfied, will ensure that the MLE method returns a unique positive and finite estima-
tion of the unknown parameters of the Goel-Okumoto and the Yamada S-shaped models. [8] presented software 
failure data which, after study, depicted that the failure rate, i.e. the number of failures per hour, seemed to be 
decreasing with time, an indication that a Nonhomogeneous Poisson Process with mean value function ( )m t =  
( )1 e tβα −− , a mean value function corresponding to that of the Goel-Okumoto software reliability model, was a 

reasonable model to describe the failure process. From the literature, it is evident that most of the study that has 
been done on the Goel-Okumoto software reliability model is parameter estimation using, especially, the MLE 
method and model fit. There is a conspicuous absence of literature on both the classical and Bayesian predictive 
analyses on the model. 

This paper focuses on single-sample predictive inference for the Goel-Okumoto (1979) software reliability 
model using Bayesian approach. We first identify four issues in the single-sample prediction associated closely 
with the development testing process of software and proceed to develop and derive the corresponding predic-
tive distributions in Section 2. The main results for single-sample prediction are presented in Section 3. A real 
example in the form of secondary software failure data in the form of execution times between successive soft-
ware failures is used to illustrate the proposed and developed methodologies in Section 4. A discussion is given 
in Section 5 and thereafter, mathematical proofs are given in the Appendix. 
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2. Predictive Issues and Bayesian Method 
During the development testing stage of a software, statisticians and engineers are overly interested in various 
predictive problems whose solutions are believed to be very important in modifying, debugging and determining 
when to terminate software development testing process. In this section, we present four issues associated 
closely with software development testing process and derive the predictive distributions using Bayesian ap-
proach. For the purposes of the four predictive issues, we assume that a reliability growth testing is performed 
on a software and the cumulative number of failures of the software in the time interval ( ]0, t , denoted by 

( )N t  is observed. We further assume that ( ) , 0N t t >    follows the NHPP with intensity function given in 
Equation (1). Let 1 20 t t< < <  be the observed failure times. Failure data is said to be failure-truncated when 
testing stops after a predetermined n number of failures occur. We denote the n failure times by [ ] 1

nf
obs i i

Y t
=

=  
where 1 20 nt t t< < < < . Failure data is said to be time truncated if testing stops at a predetermined time t. We 
denote the corresponding observed failure data by [ ]1, , , ;t

obs nY n t t t=  , where 1 20 nt t t t< < < < ≤ . 
Prediction interval is a confidence interval for a future observation or a function of some future observations. 

Specifically, a double-sided (bilateral) prediction interval for n kt +  with confidence level γ  is defined by 
( ) ( ), ,,n k l n k uT Tγ γ+ +

 
   such that ( ) ( ), ,Pr n kn k l n k uT t Tγ γ γ++ +

 ≤ ≤ =  . Similarly, a single-sided (unilateral) lower or 
upper prediction limit for n kt +  with level γ  is defined by ( ),n k LT γ+  (or ( ),n k UT γ+ ) which satisfies  

( ),Pr n kn k LT tγ γ++
 ≤ =   (or ( ),Pr n k n k Ut T γ γ+ +

 ≤ =  ). Both ( ),n k LT γ+  and ( ),n k UT γ+  depends only on a single 
sample (or a single software) and are called single-sample prediction limits. Prediction limits involving two 
samples (or two softwares) can be defined similarly and are called two-sample prediction limits. 

2.1. Issues in Single-Sample Software Reliability Prediction 
Here, we consider one software and assume that its cumulative inter-failure times obey the Goel-Okumoto (1979) 
software reliability model with observed data being either f

obsY  or t
obsY . Based on f

obsY  or t
obsY , we are inter-

ested in the following problems: 
Issue A: what is the probability that at most k software failures will occur in the future time period ( ],T τ  

with Tτ > ? 
Issue B: suppose that the pre-determined target value tvλ  for the failure rate of the software undergoing de-

velopment testing is not achieved at time T, what is the probability that the target value tvλ  will be achieved at 
time , Tτ τ > ? 

Issue C: suppose that the target value tvλ  for the software failure rate is not achieved at time T, how long 
will it take so that the software failure rate will be attained at tvλ ? 

Issue D: what is the upper prediction limit (UPL) of eβτ
τλ αβ=  with level γ , τ  being a predetermined 

value greater than T? 

2.2. Posterior and Predictive Distributions 
Let obsY  represent f

obsY  or t
obsY . The joint density of obsY  is therefore 

( ) ( )1
1 e

, e e
n

Ti
i

t
n n

obsf Y
ββ α

α β α β
−

=
− − −∑

=                              (2) 

Case 1: When the shape parameter β  is known, we adopt the following non-informative prior distribution of 
α : 

( ) 1 , 0π α α
α

∝ > .                                    (3) 

The posterior distribution of α  is thus given by 

( ) ( ) ( ) ( )1 e1 1e 1 e
T nn T

obsh Y n
βα βα α

−− −− − −= Γ −                            (4) 

Let y+  be the random variable being predicted. Then the posterior predictive distribution of y+  is give as 

( ) ( ) ( )
0

, dobs obs obsf y Y f y Y h Yα α α
∞

+ += ∫                           (5) 



A. O. Akuno et al. 
 

 
405 

Hence the Bayesian UPL of y+  with level γ  denoted as ( )
Uy β  must satisfy 

( )
( )

d
Uy

obsf y Y y
β

γ + +

−∞

= ∫ .                                  (6) 

Case 2: When the shape parameter β  is unknown, we consider the following non-informative joint prior 
density for α  and β  (we assume that α  and β  are independent). 

( ) 1, , , 0.π α β α β
αβ

∝ >                                  (7) 

Hence the corresponding joint posterior density is given as 

( ) ( ) ( )1
1 e1 1 1, e e

n
Ti

i
t

n n
obsh Y k n

ββ α
α β α β

−
=

− − −− − −
∑

= Γ                          (8) 

where  

( )
11

0

e d
1 e

n
i

i
t

n

nT
k

β

β

β β
=

−
∞ −

−

∑

=
−

∫ .                                   (9) 

Similar to Equation (5) and Equation (6), let yU  denote the Bayesian UPL of y  with level γ , then 

( ) ( ) ( )
0 0

, , , d dobs obs obsf y Y f y Y h Yα β α β α β
∞ ∞

+ += ∫ ∫                      (10) 

and 

( )d
yU

obsf y Y yγ + +

−∞

= ∫                                  (11) 

3. Main Results for the Prediction Problems 
In this section, we address the four single-sample prediction issues raised in Section 2.1 using Bayesian ap-
proach. The following propositions are considered as the main results with proofs being given in the Appendix. 
In the subsequent results, we use ( )2 ;nχ γ  to represent the γ  percentage point of the chi-square distribution 
with n degrees of freedom and we also assume the priors to be Equation (3) and Equation (7). 

Proposition 1 (for issue A): The probability that at most k software failures will occur in the future time pe-
riod ( ],T τ  with Tτ >  is 

( )
( ) ( )

( )
( )

11

0

11 e e e ,      when  is known
1e e 1 e

e e
e d ,  when  is unknown

! 1 e

n
i

i

n jT Tn k

T
j n

j nk Tn k t
n

j
j n

j
n

n
d j n n

β β βτ

β βτ βτ

β βτ
β

βτ

β

γ

β β β=

− − −+

− − −
=

−− −∞+ −
−

−=

∑

 −    − −    −− −     = 
−Γ

 − Γ −

∑

∑ ∫
          (12) 

Proposition 2 (for issue B): Suppose that the pre-determined target value tvλ  for the failure rate of the 
software undergoing development testing is not achieved at time T, the probability that the target value tvλ  
will be achieved at time , Tτ τ >  is 

( )

( )
1

1 e
1

0

1 e
11

e

0 0

1 e
e

1 e                                   if  is known
!

1 e
e1 e1 e d   if  is unknown

! 1 e

T
tv

nT
i

itv

hT

tvn
e

h
hT

ttv nn

nTh

h

k h

β

βτ

β

βτ

β

βτ λ
β

β

β
βτ λ

β

β

λ
β

β

γ
λ

β β β β

−

−

−

=−

−

−− −−

=

−

− −
−∞ −−−

−=

∑

  −  
  −
= 

 −    −
−

∑

∑∫


            (13) 
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Remark 1: Let ( ){ }
1

L
β

=





 be i.i.d. sample from 
1

Gamma ,
n

i
i

n t
=

 
 
 
∑ , we can approximate the second part of (13) 

via MCMC method. 
Proposition 3 (for issue C): For given level γ , the time *τ  required to attain tvλ  is 

(i)

 

( )
( )
2

* 2 ;1 ln      if  is known
2 1 e T

tv

n
T

β

βχ γ
τ β

β λ −

 
 = −
 − 

                       (14) 

(ii) 
*      if  is unknownTτ τ β= −                              (15) 

where τ  is the solution to the following equation: 

( )

( )
1

1 e
11

e

0 0

1 e
e1 e1 e d   

! 1 e

nT
i

itv

hT

ttv nn

nThk h

β

βτ

β

β
βτ λ

β

β

λ
β βγ β

−

=−

−

− −
−∞ −−−

−=

∑
 −
 
 = −

−
∑ ∫                      (16) 

Proposition 4 (for issue D): The Bayesian UPL of eβτ
τλ αβ=  with level γ  is 

(i) ( ) ( )
( )

2 2 ; e
    if  is known

2 1 eU T

n βτ
β

β

χ γ β
λ β

−

−
=

−
                          (17) 

(ii) (β  unknown) tvλ  such that                              (18) 

( )

( )
1

1 e
11

e

0 0

1 e
e1 e1 e d

! 1 e

nT
i

itv

hT

ttv nn

nThk h

β

βτ

β

β
βτ λ

β

β

λ
β βγ β

−

=−

−

− −
−∞ −−−

−=

∑
 −
 
 = −

−
∑ ∫                      (19) 

4. Example 
In this section, a real example from the time between failure data given by [9] is used to illustrate the developed 
methodologies for the single-sample Bayesian predictive analysis. The Table 1 gives the Time Between Fail-
ure. 

The study has used the cumulative time between failures as failure times 1 2 300 t t t< < < <  where 30n = . 
These data obey the Goel-Okumoto (1979) software reliability model [10]. The MLEs of the parameters of the 
software reliability model based on the data are ˆ 31.698171α =  and ˆ 0.003962β = . In the illustration of the 
developed methodologies, the study has used these MLEs. 

1) Suppose that we are interested in the probability kγ  that at most k failures will occur in the future time 
period ( ] ( ], 180,250 .Tτ =  a) When β  is known (say 0.003969β = ), using the first formula in Equation (12), 
we have 0 0.0039γ = , 1 0.0235γ = , 2 0.0750γ = , 3 0.1677γ = , 4 0.2970γ = , 5 0.4456γ = , 6 0.5920γ = , 7γ = 
0.7193, 8 0.8188γ = , 9 0.8898γ = , 10 0.9366γ = , 11 0.9653γ = , 12 0.9819γ = , 13 0.9910γ = , 14 0.9957,γ =  
and 15 0.9980.γ =  b) When β  is unknown, from the second formula in Equation (12) we obtain, 0 0.0010γ = , 

1 0.0087γ = , 2 0.0292γ = , 3 0.0721γ = , 4 0.1575γ = , 5 0.2566γ = , 6 0.3920γ = , 7 0.5099γ = , 8 0.6344γ = , 
9 0.7534γ = , 10 0.8350γ = , 11 0.9062γ = , 12 0.9462γ = , 13 0.9621γ = , 14 0.9831γ = , 15 0.9944γ = . 
Figure 1 shows the graph of the desired probabilities for the case when β  is known and when β  is un-

known. 
2) Suppose that the target value is given by 0.03tvλ = . At time 182.21T = , the MLE of the achieved failure 

rate for this software is ( ) ˆ182.21ˆ ˆˆ182.21 e 0.061βλ αβ −= =  which is greater than tvλ  i.e. it cannot be achieved at 
time 182.21T = . Thus the development testing will continue. Suppose we want to predict the probability that 
the target value tvλ  will be achieved at time 277.83τ = . a) When β  is known, say 0.003962β = , from the 
first formula in Equation (13) we obtain 0γ = . Thus we can conclude that the target value (failure rate) will not 
be achieved. b) When β  is unknown, from the second formula in Equation (13) and Remark 1, we obtain 

0.0576γ =  where the Monte Carlo sample size is 1000L = . 
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Table 1. Time between failures data. 

Failure No. Time between failures Cumulative time  
between failures Failure No. Time between failures Cumulative time  

between failures 

1 30.02 30.02 16 15.53 151.78 

2 1.44 31.46 17 25.72 177.50 

3 22.47 53.93 18 2.79 180.29 

4 1.36 55.29 19 1.92 182.21 

5 3.43 58.72 20 4.13 186.34 

6 13.2 71.92 21 70.47 256.81 

7 5.15 77.07 22 17.07 273.88 

8 3.83 80.90 23 3.99 277.83 

9 21 101.90 24 176.06 453.93 

10 12.97 114.87 25 81.07 535.00 

11 0.47 115.34 26 2.27 537.27 

12 6.23 121.57 27 15.63 552.90 

13 3.39 124.96 28 120.78 673.68 

14 9.11 134.07 29 30.81 704.49 

15 2.18 136.25 30 34.19 738.68 

 

 
Figure 1. Comparison of the probabilities γk that at most k failures will occur 
in the time interval (180, 240] for the cases of known and unknown β. 

 
3) Since the target value tvλ  was not achieved at time 182.21T = , we want to know how long it will require 

in order to attain tvλ . a) When β  is known (i.e. 0.003962β = ), let 0.90γ = , from Equation (14) we obtain 
* 268.6116hτ = . In other words, it will take another 268.6116h in order to achieve the desired failure rate. b) 

When β  is unknown, from Equation (15) and Equation (16), we obtain * 770.79 hτ = . In other words, it will 
take another 770.79 h in order to achieve the desired failure rate when β  is unknown. 

4) Given 900 hτ = , a) when β  is known, from Equation (17), the Bayesian Upper Prediction Limit of 
e βτ

τλ αβ −=  with level 0.90 is given by ( ) ( ) 0.0051.u
βλ τ =  b) When β  is unknown, from Equation (18) and 

Equation (19), the Bayesian UPL of e βτ
τλ αβ −=  with level 0.90 is given by ( ) ( ) 0.131952u

βλ τ = . 
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5. Discussion 
Several prediction problems arise during the development of any software especially when the Goel-Okumoto 
(1979) software reliability model is used to model the failure process. We have used Bayesian approach with 
non-informative priors to address some of the prediction problems that may arise during software development 
testing stage. We have obtained explicit solutions to these problems, which may prove useful for the modifica-
tion, debugging and for the decision to terminate the development testing process of the software. 

The adoption of Bayesian approach for the derivation of the solutions is advantageous in that the approach is 
available for cases of small sample sizes [11] [12]. Another advantage of the Bayesian approach is that it allows 
the input of prior information about the reliability growth process and provides full posterior and predictive dis-
tributions. 

In this paper, we have used non-informative priors to derive the methodologies to address the said prediction 
problems. However, informative priors can similarly be used in place of non-informative priors. The same pro-
cedures presented in this paper can also be applied to other NHPPs such as the delayed S-shaped process and the 
Cox-Lewis process. 
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Appendix (Proofs of Propositions 1 - 4) 
In order to prove the propositions, we first give an identity without proof. The identity is 

( ) ( ) ( ) ( )
( )

1
; ,

d d !
m

m
D m a b

F t F t F b F a m= −  ∫                         (A.1) 

where m is any positive integer, a and b are two real numbers a b< , ( )F t  is an increasing and differentiable 
function, and ( ) ( )1 1; , , , : .m mD m a b t t a t t b = < < < <  

 
Proof of Proposition 1: The probability that at most k failures will occur in the interval ( ),T τ  is 
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Hence (A.3) becomes 
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            (A.6) 

Equation (A.6) implies the first formula of Equation (12). 
When β  is unknown, noting that ( )Pr , ,obsN n k Yτ α β ≤ +   and ( ), obsh Yα β  are given by Equation 

(A.3) and Equation (8) respectively, we have 
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Equation (A.7) implies the second formula of Equation (12). 
Proof of Proposition 2: Let ( )obsf Yτλ  denote the posterior density of e βτ

τλ αβ −= . Hence the probability 

that the target value tvλ  will be achieved at time τ  ( )Tτ >  is given by 
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When β  is known, making the transformation e βτ
τλ αβ −= , we have 

e
τ
βτ

λ
α

β −=  and d 1
d e βτ

τ

α
λ β −= . 

Consequently, the posterior density of τλ  is ( ) ( ) d
dobs obsf Y h Yτ

τ

αλ α
λ

= . This implies that  

( ) ( )
( )

( )
1 1 e

e1 e 1 e .
e

Tn
nT

obsf Y
n

βτ
βτ

λ
ββτ

τ βτ

λλ
β

−
−

− − −
−

−

 
= −  Γ 

 1
e βτβ −  which after simplification reduces to 

( ) ( )

1 e
e1

1 e
e

e

T

nT

n
obsf Y

n

β
τ βτ

β

βτ λ
β

τ τ

β
λ λ

−

−

−

 −−  −  −  

 −
 
 =

Γ
                       (A.9) 

We note that τλ  from Equation (A.9) follows a gamma distribution with parameters n and 
1 e .

e

Tβ

βτβ

−

−

−
 Not-

ing the relationship between gamma and Poisson distributions as 

( )
( )1

1

00

e d 1 e
!

h
x

h
x x

h

λα α
α β βλβλβ

α

−
− − −

=

= −
Γ ∑∫                        (A.10) 

and from Equations (A.8), (A.9) and (A.10), we obtain the first formula of Equation (13). 

When β  is unknown, making the transformation e βτ
τλ αβ −=  and β β= , we obtain 
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From Equation (A.8), Equation (A.10) and Equation (A.11) we obtain 
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Equation (A.12) implies the second formula of Equation (13). 
Proof of Proposition 3: For given level γ , the time required to attain the target value tvλ  is * Tτ τ= −  

where τ  satisfies Equation (A.8). When β  is known, from Equation (A.9), it can easily be seen that  
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and Equation (14) follows immediately. We can obtain (ii) by following similar arguments given in the proof for 
the second part of Proposition 2. 

Proof of Proposition 4: For a pre-determined τ  ( )Tτ > , the Bayesian Upper Prediction Limit (UPL) for 
τλ  with level γ  is ( ) ( )U
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Making ( ) ( )U
βλ τ  the subject from Equation (A.14) we arrive at 
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Equation (A.15) is the exact formula in Equation (17). 
The formula in Equation (18) can be obtained by similar arguments. 
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