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Abstract 
In this paper, we have proposed a class of mixture regression-cum-ratio estimator for estimating 
population mean by using information on multiple auxiliary variables and attributes simulta-
neously in single-phase sampling and analyzed the properties of the estimator. An empirical was 
carried out to compare the performance of the proposed estimator with the existing estimators of 
finite population mean using simulated population. It was found that the mixture regression-cum- 
ratio estimator was more efficient than ratio and regression estimators using one auxiliary varia-
ble and attribute, ratio and regression estimators using multiple auxiliary variables and attributes 
and regression-cum-ratio estimators using multiple auxiliary variables and attributes in single- 
phase sampling for finite population. 
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1. Introduction 
The work of Neyman [1] may be referred to as the initial works where auxiliary information has been used. 
Watson [2] used the regression estimator of leaf area on leaf weight to estimate the average area of the leaves on a 
plant. Cochran [3] used auxiliary information in single-phase sampling to develop the ratio estimator for estima-
tion of population mean. In the ratio estimator, the study variable and the auxiliary variable had a high positive 
correlation and the regression line was passing through the origin. Hansen and Hurwitz [4] also suggested the use 
of auxiliary information in selecting the sample with varying probabilities. 
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Olkin [5] was the first person to use information on more than one supplementary character, which is positively 
correlated with the variable under study, using a linear combination of ratio estimator based on each auxiliary 
variable. Shukla [6] proposed that regression estimator using multiple auxiliary was more efficient than regression 
estimator using single auxiliary variable. Raj [7] suggested a method of using multi-auxiliary information in 
sample survey. Singh [8] proposed a ratio-cum-product estimator and its multi-variable expression which were 
more efficient than ratio, product and mean per unit estimators. 

Jhajj, Sharma and Grover [9] proposed a family of estimators using information on auxiliary attribute. They 
used known information of population proportion possessing an attribute that is highly correlated with study va-
riable Y. The attribute is normally used when the auxiliary variable is not available e.g. an amount of milk pro-
duced and a particular breed of cow or an amount of yield of wheat and a particular variety of wheat. Rajesh, 
Pankaj, Nirmala and Florentins [10] used the information on auxiliary attribute in ratio estimator in estimating 
population mean of the variable of interest using known attributes such as coefficient of variation, coefficient 
kurtosis and point bi-serial correlation coefficient. The estimator performed better than the usual sample mean and 
Naik and Gupta [11] estimator. Rajesh, Pankaj, Nirmala and Florentins [10] also used the auxiliary attribute in 
regression, product and ratio type exponential estimator following the work of Bahl and Tuteja [12]. 

Hanif, Haq and Shahbaz [13] [14] proposed a general family of estimators using multiple auxiliary attribute in 
single and double phase sampling. The estimator had a smaller MSE compared to that of Jhajj, Sharma and Grover 
[9]. They also extended their work to ratio estimator which was generalization of Naik and Gupta [11] estimator in 
single and double phase sampling with full information, partial information and no information. 

The concept of double sampling was first proposed by Neyman [1] in sampling human populations when the 
mean of auxiliary variable was unknown. It was later extended to multiphase by Robson [15]. In most surveys the 
auxiliary information is always available and every form of auxiliary information should be used in developing 
sampling strategies. Samiuddin and Hanif [16] introduced the following approach using auxiliary variable. 

1) Full information case: information for all auxiliary variables is available. 
2) No information case: information for all auxiliary variables is not available. 
3) Partial information case: information for some auxiliary variable is available for all population units. 
Ahmad [17] generalized multivariate ratio and regression estimators for multi-phase sampling. Zahoor, Muh-

hamad and Munir [18] suggested a generalized regression-cum-ratio estimator for two-phase sampling using 
multiple auxiliary variables in full, partial and no information case. Kung’u and Odongo [19] and [20] proposed 
ratio-cum-product estimators using multiple auxiliary attributes in single phase sampling and two-phase sampling 
using multiple auxiliary attributes in full, partial and no information case. Moeen, Shahbaz and HanIf [21] pro-
posed a class of mixture ratio and regression estimators for single-phase sampling for estimating population mean 
by using information on auxiliary variables and attributes simultaneously. 

In this paper, we will incorporate both multiple auxiliary variables and attributes in regression-cum-ratio es-
timator to form mixture regression-cum-ratio estimator in single-phase sampling and also incorporate Arora and 
Bansi [22] approach in writing down the mean squared error. 

2. Preliminaries 
2.1. Notation and Assumption 
The following notation will be used in this project. Consider a population of N  units. Let Y  be the study va-
riable for which we want to estimate the population mean and 1 2, , , kX X X  are k  auxiliary variables and 

1 2, , , tτ τ τ  are t  auxiliary attributes. For single-phase sampling design let n  be sample sizes for first phase 
while jx  and jr  denote the thj  auxiliary variables and auxiliary attribute, and y  denote the variable of 
interest from first phase. Let  

1 1
n N

θ  = − 
 

 and ,  
jy j j xy Y e x X e= + = +  and ( )  1, 2, ,

jj jp P e j pτ= + =             (1.0) 

where ye , 
jxe  and 

j
eτ  are sampling error and are very small. We assume that 

( ) ( ) ( ) 0
j jy x xE e E e E e= = =                                (1.1) 

In defining the attributes we assume complete dichotomy so that; 
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1,    if   unit of population possess   auxiliary attribute
0,   otherwise

th th

ij
i j

τ


= 


                  (1.2) 

Let 
1

N

j ij
i

A τ
=

= ∑  and 
1

n

j ij
i

a τ
=

= ∑  be the total number of units in the population and sample respectively pos-

sessing attribute jτ . Let j
j

A
P

N
=  and j

j

a
p

n
=  be the corresponding proportion of units possessing a specif-  

ic attributes jτ  and y  is the mean of the main variable at second phase. 

The coefficient of variations are given by 
2

2
2 ,y

y

S
C

Y
=  1

1

2
2

2
1

,x
x

S
C

X
=  

2
2

2
j

j
j

S
C

P
τ

τ =  while 
j

yx
yx

y x

S
S S

ρ =  is the cor-

relation coefficient between study variable and auxiliary variables and j

j
j

y
Pb

y

S

S S
τ

τ

ρ =  is the bi-serial correlation  

coefficient between study variable and auxiliary variables. Then for simple random sampling without replacement 
for both first and second phases we write by using phase wise operation of expectations as: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

22 2 2

2 2 2
1 1

2

 

 

j j

j j j

j i j j j

j j j i j i j i j

j

y y y x j y x yx

x x i j x x x x j

y j y Pb i j

E e Y C E e e YX C C

E e e X X C C i j E e P C

E e e YP C C E e e PP C C i j

τ τ

τ τ τ τ τ τ τ τ

θ θ ρ

θ ρ θ

θ ρ θ ρ

= =

= ≠ =

= = ≠

             (1.3) 

( ) ( )1 T d1
ij

A j A
A C

A A
− = =                                 (1.4) 

( )21   Arora and Laip

p

p

yx
y x

x

R

R
ρ ⋅= −



 [22]                           (1.5) 

The following notations will be used in deriving the mean square errors of proposed estimators 

pyxR


 Determinant of population correlation matrix of variables 1 2 1,  ,  , ,   and .p py x x x x−  

i p
yx yx

R


 Determinant of thi  minor of 
pyxR


 corresponding to the thi  element of .
iyxρ  

2
ryxρ  Denotes the multiple coefficient of determination of y  on 1 2 1,  , ,   and r rx x x x− . 

2
pyxρ


 Denotes the multiple coefficient of determination of y  on 1 2 1,  ,  , ,   and p py x x x x− . 

rxR


 Determinant of population correlation matrix of variables 1 2 1,  , ,   and r rx x x x− . 

pxR


 Determinant of population correlation matrix of variables 1 2 1,  , ,   and p px x x x−  

i ry xR


 Determinant of the correlation matrix of 1 2 1,  ,  , ,   and i r ry x x x x− . 

i py xR
⋅


 Determinant of the correlation matrix of 1 2 1,  ,  , ,   and i p py x x x x− . 

i j ry y xR
⋅ ⋅



 Determinant of the minor corresponding to 
i jy yρ  of the correlation matrix of 1 2 1, , , , ,i j ry y x x x −   

and ( )r i jx ≠ . 

i j py y xR
⋅ ⋅



 Determinant of the minor corresponding to 
i jy yρ  of the correlation matrix of 1 2 1, , , , ,i j py y x x x −  

and ( )p i jx ≠ . 

2.2. Mean per Unit in Single-Phase Sampling 
The sample mean y  using simple random sampling without replacement is given by, 
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1

1 n

i
j

y y
n =

= ∑                                      (1.6) 

While its variance is given, 

( ) 2 2
yV y Y Cθ=                                    (1.7) 

2.3. Ratio and Regression Estimator Using Auxiliary Variable 

Let 
1

1 n

i
j

y y
n =

= ∑  and 
1

1 n

i
i

x x
n =

= ∑  be the unbiased estimator of population means Y  and X  respectively.  

Then the classical ratio estimator by Cochran [3] and regression estimator by Watson [2] are defined respective-
ly by, 

( )
1

1 0R
Xt y x
x

α
 

= ≠ 
 

                                (1.8) 

( )Re1 2t y X xα= + −                                 (1.9) 

where X , the population mean of the auxiliary variable X  is known where 
2

1
y yx

x

C
C
ρ

α =  and 
1

2
1

y yx

x

YC
C X

ρ
α =  

are optimum values of ratio and regression estimator respectively. 
The minimum MSE of 1Rt  and Re1t  up to the first order of approximation are, 

( ) ( )2 2 2 2
1 1 1MSE 2R y x x y yxt Y C C C Cθ α α ρ= + −                        (1.9) 

( ) ( )2 2 2
Re1MSE 1y yxt Y Cθ ρ= −                             (1.10) 

2.4. Ratio and Regression Estimator Using Multiple Auxiliary Variables 
In case of multiple auxiliary variables, the ratio and regression estimators Ahmad [17] are given by, 

2
1

jk
j

R
j j

X
t y

x

α

=

 
=   

 
∏                                 (1.11) 

( )Re 2
1

k

j j j
j

t y X xβ
=

= + −∑                              (1.12) 

where ( )
( )

.

,

11 t

t

j

j

yx y x

x

j
j

y

x

RC
C R

τ

α += −  are the optimum values ( )
( )

.1

,

1
j

t

t

jj yx

j
j

y xy

x x

RYC
X C R

τ

β += − . The minimum mean 

squared error of 2Rt  and Re 2t  up to the first order of approximation are, 

( ) ( )2 2 2
2MSE 1

kR y yxt Y Cθ ρ= −                             (1.13) 

( ) ( )2 2 2
Re 2MSE 1

ky yxt Y Cθ ρ= −                             (1.14) 

2.5. Regression-Cum-Ratio Estimator Using Multiple Auxiliary Variables 
The regression-cum-ratio estimator by Zahoor [18] using multiple auxiliary variables is given by, 

( )Re1
1 1

jr s kr
j

R j j j
j j r j

X
t y X x

x

α

β
+ =

= = +

  
= + −        

∑ ∏                        (1.15) 
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The ( ) 11
j

q

q

jyx y xy

x

j
j

x

RC
C R

α + ⋅
= − 



 and ( ) 11 q

q

j

j

yx y xy

x x

j
j

j

RYC
X C R

β + ⋅
= − 



 are the optimum values. The minimum 

MSE of Re1Rt  up to the first order of approximation are, 

( ) ( )( )2 2 2
Re1 . ,MSE 1

r sR y y xt Y C τθ ρ= −
 

                          (1.16) 

2.6. Ratio and Regression Estimator Using Auxiliary Attribute 
In order to have an estimate of the population mean Y  the study variable y, assuming the knowledge of the 
population proportion P, Naik and Gupta [11] defined ratio and regression estimators of population when the 
prior information of population proportion of units, possessing the same attribute is variable. Using (1.8) and 
(1.9) Naik and Gupta [11] proposed following estimators: 

1

11R
Pt y
p

α
 

=  
 

                                  (1.17) 

( )Re11 1 1 1t y P pβ= + −                                (1.18) 

The minimum MSE of Rt  and Ret  up to the first order of approximation are 
( ) ( )2 2 2 2

11 1 1 1MSE 2R y R R y Pbt f Y C C C Cα α ρ= + −                      (1.19) 

( )
1 1 1

2 2 2 2 2
Re11 1 1 1 1MSE 2y r r y Pbt Y C P C C PYCβ β ρ= + −                     (1.20) 

where 
2

1
y Pb

r

C
C
ρ

α =  and 1

1

1
1

y b

r

YC
C P

ρρβ =  are optimum values of ratio and regression estimator respectively. 

2.7. Ratio and Regression Estimator Using Multiple Auxiliary Attributes. 
The ratio and regression estimators by Hanif, Haq and Shahbaz [14] for single-phase sampling using information 
on multiple auxiliary attributes are given by, 

1 2
1 2

22
1 2

q
q

R
q

PP Pt y
p p p

αα α     
=            

                           (1.21) 

( ) ( ) ( )Re 22 1 1 1 2 2 2 k k kt y P p P p P pβ β β= + − + − + + −                  (1.22) 

The MSE of the ( )2Rt  and ( )Re 2t  up to the first order of approximation are, 

( ) 2 2 2
22

1 1 1
MSE 2 2

j j j j

q q q

R y r y r pb y r j
j j j

t Y C C C C C C Q ψ
ψ

θ ρ
= = ≠ =

 
= + − + 

 
∑ ∑ ∑              (1.23) 

( ) 2 2 2 2 2
Re 22 1

1 1 1
MSE 2 2

j j j

k k k

y j j j j r y j pb j r r j j
j j j

t Y C C P C C P Y C C P Pϕ ϕ ϕ ϕ
ϕ

θ α α ρ α α θ
= = ≠ =

 
= + − + 

 
∑ ∑ ∑      (1.24) 

2.8. Regression-Cum-Ratio Estimator Using Multiple Auxiliary Attributes 
The regression-cum-ratio estimator using multiple auxiliary attributes is given by, 

( )Re 2
1 1

jr s kr
j

R j j j
j j r j

P
t y P p

p

α

β
+ =

= = +

  
= + −        

∑ ∏                        (1.25) 

The ( ) 11
j

j

k

k

yx yyj

x
j

RC
C R

τ

τ

α ⋅+= − 



 and ( ) 11
j

j

k

k

yx yy

x

j
j

j

RYC
X C R

τ

τ

β + ⋅= − 



 are the optimum values to the first order 
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of approximation. The minimum MSE of Re 2Rt  up to the first order of approximation are, 

( ) ( )( )2 2 2
Re 2 . ,MSE 1

r sR y y xt Y C τθ ρ= −
 

                          (1.26) 

2.9. Mixture Ratio and Regression Using Multiple Auxiliary Variables and Attributes 
The mixture ratio estimator based on multiple auxiliary variables and attributes by Moeen, Shahbaz and HanIf 
[21] is given by: 

MR(3)
1 1

j jqk
j j

j j kj j

X P
t y

x p

β α

= = +

   
=       

   
∏ ∏                             (1.27) 

( ) ( )Re(3)
1 1

qk

M j j j j j j
j j

t y X x P pβ α
= =

= + − + −∑ ∑                        (1.28) 

The minimum MSE of RMt  and Re Mt  up to the first order of approximation are 

( ) ( )( )2 2 2
RM(3) . ,MSE 1

k sy y xt Y C τθ ρ= −
 

                          (1.29) 

( ) ( )( )2 2 2
Re(4) . ,MSE 1

k sM y y xt Y C τθ ρ= −
 

                         (1.30) 

In general these estimators have a bias of order 1n− . Since the standard error of the estimates is of order 1
n

, 

the quantity bias/s.e is of order 1
n

 and becomes negligible as n  becomes large. In practice, this quantity is 

usually unimportant in samples of moderate and large sizes. 
In this paper, we have combined mixture ratio and mixture regression estimator to form mixture regression- 

cum-ratio estimator under single-phase sampling and studied the properties of the proposed estimator. 

3. Methodology 
3.1. Mixture Regression-Cum-Ratio Estimator Using Multi-Auxiliary Variables and 

Attributes in Single-Phase Sampling 
If we estimate a study variable when information on all auxiliary variables is available from population, it is uti-
lized in the form of their means. By taking the advantage of mixture regression-cum-ratio estimator technique 
for single-phase sampling, a generalized estimator for estimating population mean of study variable Y with the 
use of multi auxiliary variables and attributes is suggested as: 

( ) ( ) ( ) ( ) ( )(

( ))
1 1 1 2

MRR 1 1 1 2 2 2 1 1 1 2 2 2

1 2 1 2

1 2 1 2

           
q q tr r r

k k k k k k k k k

q q tr r r
q q q

q q r r r t

t y X x X x X x P p P p

X X PX P PP p
x x x p p p

λ λ γλ γ γ

α α α β β

β
+ + + +

+ + + + + +

+ + + +

+ + + +

= + − + − + + − + − + −

          
+ + −                         



  

    (2.0) 

Using (1.0) in (2.0), we get, 

MRR
1 1 1 1

1 1
j j

j j

j j

q r tk x
j x j

j j k j q j rj j

e e
t y e e

X P

λ γ
τ

τα β
− −

= = + = + = +

    
= − − + +             

∑ ∑ ∏ ∏                  (2.1) 

Ignoring the second and higher terms for each expansion of product and after simplification, we write, 

MRR
1 1 1 1

j j

j j

qk r tx
y j x j r j j

j j k j j rj j

e e
t e Y e e Y Y

X P
τ

α β λ γ
= = + = = +

= + − − − −∑ ∑ ∑ ∑                   (2.2) 

The mean squared error of MRRt  is given by, 

( ) ( )
2

2
MRR MRR

1 1 1 1
MSE j j

j j

qk r tx
y j x j r j j

j j k j j rj j

e e
t E t Y E e e e Y Y

X P
τ

α β λ γ
= = + = = +

 
= − = − − − −  

 
∑ ∑ ∑ ∑         (2.3) 
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We differentiate the Equation (2.3) partially with respect to ( )1,2, , ,j j kα =   ( )1, 2, ,j j k k qβ = + +  , 
( )1 2, ,j j q q rλ = + + +   and ( )1, 2, ,j j r r tγ = + +   and equate to zero. The optimum value age given by,

 
( ) ( )

( )

1 ,

,

     1, 2,1 ,
j

j

t

t

yx y xy

x

j
j

xj

RYC
X C

j k
R

τ

τ

α + ⋅
== −  

                          (2.4) 

( ) ( )

( )

,

,

1      1, 2,1 ,
j

j

t

t

y y xy

j x

j
j j k k q

RYC
P C R

τ
τ

τ τ

β
⋅+ = += +−  

                       (2.5) 

( ) ( )

( )

,

,

1      11 , 2, ,t

t

j

j

j
yx y x

j
y

x x

j
RC

C R
q q r

τ

τ

λ + ⋅
= + += −  

                        (2.6) 

( ) ( )

( )

,

,

1      11 , 2, ,t

t

j

j

j
yx y x

j
y

x x

j
RC

C R
r r t

τ

τ

γ + ⋅
= + += −  

                        (2.7) 

Using normal equation that is used to find the optimum values given (3.8) we can write, 

( )MRR
1 1 1 1

MSE j j

j j

qk r tx
y y j x j r j j

j j k j j rj j

e e
t E e e e e Y Y

X P
τ

α β λ γ
= = + = = +

  
 = − − − −     

∑ ∑ ∑ ∑             (2.8) 

Or 

( ) ( ) ( ) ( ) ( ) ( )2
MRR

1 1 1 1
MSE j j

j j

qk r ty x y

y j y x j y r j j
j j k j j rj j

E e e E e e
t E e E e e E e e Y Y

X P
τ

α β λ γ
= = + = = +

= − − − −∑ ∑ ∑ ∑    (2.9) 

Taking expectation of (3.49), we get, 

( ) 2 2
MRR 1

1 1

2 2

1 1

MSE
j j j j

j j j j

qk

y j j y x yx j j y Pb
j j k

r t

j y x yx j y Pb
j q j r

t Y C YX C C YP C C

Y C C Y C C

τ

τ

θ α ρ β ρ

λ ρ γ ρ

= = +

= + = +


= − −




− − 


∑ ∑

∑ ∑
              (2.10) 

Substituting the optimum (2.4) to (2.7) in (2.10) and after simplification we get, 

( )
( )

( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

, ,2 2
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Using (1.8) in (2.14), we get,
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R
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                             (2.15) 

Using (1.5) in (2.15), we get,

 ( ) ( )2 2
MRR .( , )MSE 1

ty y xt Y C τθ ρ= −
 

                            (2.16)

 3.2. Bias and Consistency of Mixture Regression-Cum-Ratio Estimator

 These mixture regression-cum-ratio estimator using multiple auxiliary variables and attributes in single-phase 
sampling are biased. However, these biases are negligible for moderate and large samples. 

It’s easily shown that the mixture regression-cum-ratio estimator using multiple auxiliary variables and 
attributes is a consistent estimator since it is a linear combination of consistent estimators it follows that it is also 
consistent. 

4. Simulation, Result and Discussion 
In this section, we carried out data analysis to compare the performance of mixture regression-cum-ratio esti-
mator using multiple auxiliary variables and attributes with already existing estimator namely mean per unit, ra-
tio and regression estimators using one auxiliary variable and attribute, ratio and regression estimators using two 
auxiliary variables and attributes and regression-cum-ratio estimators using four auxiliary variables and attributes 
in single-phase sampling for finite population. In the simulated population, the study variable is normally distri-
buted while auxiliary variables and attributes are also normally distributed and strongly positively correlated 
with the study variable. 

Study variable 350,   50  mean 50  standard deviation 10N n= = = =  

For ratio estimator the auxiliary variable and attributes are positively correlated with the study variable and 
the line passes through the origin. 

1 2 1 2
350,   50  0.7514  0.7213  0.6713  0.5781yx yx y yN n τ τρ ρ ρ ρ= = = = = =  

For regression estimator the auxiliary variable and attributes are positively correlated with the study variable 
and the line passes does not pass in the neighborhood of the origin. 

1 2 1 2
350,   50  7622  0.5849  0.6836  0.5543yx yx y yN n τ τρ ρ ρ ρ= = = = = =  
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All the results were obtained after carrying out several random sample and taking the average. 
In order to evaluate the efficiency gain we could achieve by using the proposed estimators, we have calcu-

lated the variance of mean per unit and the mean squared error of all estimators we have considered. We have 
then calculated percent relative efficiency of each estimator in relation to variance of mean per unit. We have 
then compared the percent relative efficiency of each estimator, the estimator with the highest percent relative 
efficiency is considered to be the most efficient than the other estimator. The percent relative efficiency is cal-
culated using the following formulae. 

( ) ( )
( )
ˆVarˆeff 100
ˆMSE

y
Y

Y
= ∗                                (3.0) 

The Table 1 shows percent relative efficiency of mean per unit, ratio and regression estimators using one 
auxiliary variable and attribute, ratio and regression estimators using two auxiliary variables and attributes and 
regression-cum-ratio estimators using four auxiliary variables and attributes and mixture regression-cum-ratio 
estimator using multiple auxiliary variables and attributes with respect to mean per unit estimator for single- 
phase sampling. It is observed that our proposed mixture regression-cum-ratio estimator using multiple auxiliary 
variables and attributes using multiple auxiliary variables and attributes is the most efficient of the twelve esti-
mators since it has the highest percent relative efficiency. 

5. Conclusion 
According to Table 1, the proposed mixture regression-cum-ratio estimator using multiple auxiliary variables 
and attributes using multiple auxiliary variables and attributes has the highest percent relative efficiency com-
pared to mean per unit, ratio and regression estimators using one auxiliary variable and attribute, ratio and re-
gression estimators using two auxiliary variables and attributes and regression-cum-ratio estimators using four 
auxiliary variables and attributes in single-phase sampling for finite population. This means that the mixture  
 

Table 1. Relative efficiency of existing and proposed estima-
tors with respect to mean per unit estimator for single-phase 
sampling. 

Estimators Percent relative efficiency with  
respect to mean per unit 

y  100 

1Rt  190 

Re1t  129 

11Rt  206 

Re11t  166 

R 2t
 

374 

Re 2t  151 

R 22t
 

245 

Re 22t  234 

Re1Rt
 

419 

Re 2Rt
 

240 

( )Re 3Mt
 

490 

( )Re 3Mt
 

354 

MRRt  (proposed)
 

630 
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regression-cum-ratio estimator using multiple auxiliary variables and attributes using multiple auxiliary va-
riables and attributes is the most efficient estimator compared to the estimators that utilize auxiliary variables 
and attributes. The proposed mixture regression-cum-ratio estimator using multiple auxiliary variables and 
attributes using multiple auxiliary variables and attributes in single-phase sampling is recommended to estimate 
the finite population mean as it outperforms all the other namely mean per unit, ratio and regression estimators 
using one auxiliary variable and attribute, ratio and regression estimators using two auxiliary variables and 
attributes and regression-cum-ratio estimators using four auxiliary variables and attributes in single-phase sam-
pling. 
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