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Abstract 
The general functional form of composite likelihoods is derived by minimizing the Kullback-Leib- 
ler distance under structural constraints associated with low dimensional densities. Connections 
with the I-projection and the maximum entropy distributions are shown. Asymptotic properties of 
composite likelihood inference under the proposed information-theoretical framework are estab-
lished. 
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1. Introduction 
The composite likelihood has been increasingly used when the full likelihood is computationally intractable or 
difficult to specify due to either high dimensionality or complex dependence structures. Consider a random vec-
tor X with probability density ( );f x θ , where ( )T

1, , p
px x R= ∈x  and dR∈θ . Denote the component like-

lihoods by ( );kL θ x , where 1, 2, ,k K=  , and the composite likelihood proposed in [1] is defined by 

( ) ( )
1

; ; ,k
K

C k
k

L L λ

=

=∏θ x θ x  

where kλ ’s are non-negative weights to be chosen. 
As discussed in [2], there are two general types of composite likelihood: marginal and conditional composite 

likelihood. The simplest composite likelihood is the one constructed under the independence assumption: 

( ) ( )indep
1

; ; .
p

r
r

L f x
=

=∏θ x θ  
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If the inferential interest is also on parameters prescribing a dependence structure, a pairwise composite like-
lihood [2] [3] is defined as the following: 

( ) ( )pairwise-indep
1 1

; , ; .
p p

r s
r s

L f x x
= =

=∏∏θ x θ  

Conditional composite likelihood [4] [5] can be constructed by multiplying all pairwise conditional densities: 

( ) ( )conditional
1 1

; ; .
p p

r s
r s

L f x x
= =

=∏∏θ x θ  

There are other important variations and applications of the composite likelihoods designed for various infe-
rential purposes such as composite likelihood BIC for model selection in high-dimensional data in [6]. Detailed 
discussions and review of composite likelihoods were provided in [2]. 

Since there are various composite likelihoods with different functional forms, it might be desirable to consider 
a unifying theme based on information-theoretic justifications. Under an information-theoretic framework, 
composite likelihoods can then be viewed as a class of inferential functions based on optimal probability density 
under structural constraints imposed on low dimensional densities when the complete joint density is either un-
known or untractable. We show that the optimal densities associated with the composite likelihood are also 
connected with the I-projection density well-known in probability theory and the maximum entropy distributions 
in information theory. Although likelihood weights are employed in the original formulation of composite like-
lihood in [1], equal weights are often adopted due to convenience. We show that adaptive likelihood weights can 
indeed improve the performance of composite likelihood inference using equal weights. 

This paper is organized as follows. In Section 2, we derive the composite likelihood as the optimal inferential 
device by minimizing the relative entropy or Kullbak-Leilber distance under structural constraints. Asymptotic 
properties are established in Section 3. Discussions are given in Section 4. 

2. Derivation of Composite Likelihood with Weights 
2.1. I-Projection and Maximum Entropy Distribution 
Suppose that ( )g x  and ( )f x  are generalized densities of a dominated set of probability measures on the 
measurable space ( ),Ω  . The relative entropy is defined as 

( ) ( ) ( )
( ) ( ), log d .

g
I g f g

f
λ

 
=  

  
∫

x
x x

x
 

The relative entropy is widely used in information theory and also known as I-divergence in probability. In 
[7], Cover and Thomas provide an excellent account on its properties and applications in information theory and 
coding theory. As demonstrated in [8], the relative entropy can play an important role in statistical inference. 
The relative entropy is also called I-divergence and its geometric properties are studied in [9]. Although the rela-
tive entropy or I-divergence is not a metric and in general does not define a topology, Csiszár in [9] shows that 
certain analogies exist between properties of probability distributions and Euclidean geometry, where 
I-divergence plays the role of squared distance. It is a measure of discrepancy between the probability densities 
g and f. 

For any probability density function (pdf) 0f , Csiszár in [9] defines an I-sphere centered around 0f  with a 
radius ρ  as the following: 

( ) ( ){ }0 0, : , ,0 ,S f g I g fρ ρ ρ= < < ≤ ∞  

where g is a probability density function. 
In statistical inference, the pdf 0f  is the model of choice when the true pdf is unknown. In high dimensional 

or complex cases, it is high unlikely that the assumed model 0f  is correct. When no other information on the 
dependence structure is available, the best model might be the one based on the independent assumption. 

When significant characteristics associated with the low dimensional projections of the joint probability den-
sity function, it is then desirable to incorporate this information formally into the statistical inference. To im-
prove the chosen model, one might utilize constraints associated with known features under an information 
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theoretic framework to be described in the following. As in [8], one might consider minimizing ( )0,I g f  with 
respect to g subject to 

( ) ( ) ( )d ,g λ =∫t x x x d                                   (1.1) 

where d is a constant vector and ( )t x  a measurable multivariate statistic. 
If   is a convex set of pdf intersecting ( )0 ,S f ρ , an optimal pdf g∗  satisfying 

( ) ( )0 0, min ,
g

I g f I g f∗

∈
=


                                  (1.2) 

is defined as the I-projection of 0f  on   in [9]. If such a projection exists, the convexity of   guarantees its 
uniqueness since ( )0,I g f  is strictly convex in g. 

The following theorem follows immediately from the above theorem in [9]. 
Theorem 1. Given pdf’s 0 1 2, , , , mf f f f , define 

( ) ( )
1

,
m

I
i i

i
a

=

=


   

where, for 1,2, ,i m=  , 
( ) ( ) ( ) ( ){ }: log d .I
i i i ia g g f a= =  ∫ x x x  

Then the optimal probability density function (the I-projection of 0f ) ( )*
1 0 ,g S f∈ ∞  takes the form 

( ) ( ) ( ) ( ) ( )1 2*
1 1 0 1 2 ,m

mg D f f f f
α α α

=           x x x x x  

where ( )1 1 1 2, , , mD D a a a=   is the normalizing constant. 
Similar to the I-projection, the maximum entropy distribution is also an optimal density under constraints. It is 

also known as the Maxwell-Boltzmann distribution, the optimal probability density function under temperature 
constraints. Consider the following maximization problem: 

( ) ( ) ( )( )max max log d
g g

H g g g= −   ∫ x x x  

in which ( )g x  satisfying 

( ) ( )
( ) ( )

d 1, 0,

d , 0,1, , .i i

g g

g r b i m

= ≥

= =

∫
∫ 

x x x

x x x
                          (1.3) 

By applying the maximum entropy theorem in [7] with the constraints set as the logarithm of certain density 
functions, we then have the following result. 

Theorem 2. Let 0 1, , , mf f f  be a set of probability density functions. If we set ( )logi ir f= , 0,1,2, ,i m=  , 
then there exists one unique maximum entropy density function that takes the form: 

( ) ( ) ( )0*
3 0

1
,i

m

i
i

g D f f
β β

=

=       ∏x x x  

where ( )3 0 1, , , mD β β β  is the normalizing constant. 
It is clear that the I-projection and the maximum entropy distribution could belong to the same functional 

class when a set of pdf’s are used to formulate the constraints. 

2.2. Derivation of Composite Likelihood Using Pseudo-Metric 
If we consider the functional space of all probability density functions satisfying certain conditions and adopt 
the relative entropy as a pseudo-metric, then a more natural view of point is to seek an optimal density minimiz-
ing the relative entropy with constraints characterized by the pseudo distance between the optimal density and a 
collection of candidate models, 0 1 2, , , , mf f f f . 

In the context of composite likelihoods, the statistical model 0f  is the joint statistical model assumed while 
other pdf’s are low dimensional densities to be used to complete the construction of a refined model which may 
or may not coincides with 0f . For example, one could assume a statistical model under an independence struc-  



X. G. Wang, Y. Wu 
 

 
191 

ture, i.e., 0
1

m

i
i

f f
=

=∏  where 1 2, , , mf f f  are low dimensional probability density functions. The composite li-  

kelihood framework, however, is capable of going beyond this often over-simplified model. 
To ensure that the optimal density reflects some known key characteristics in the low dimensional densities of 

the true pdf, one can apply the idea of I-projection or maximum entropy distribution by considering the follow-
ing minimization problem: 

( ) ( )
( ) [ ]log d , 1,2, , ,i

i

g
g c f i m

f
 

= = 
  

∫ 

x
x x

x
                       (1.4) 

where [ ] [ ] [ ]1 2, , , mc f c f c f  are functions of the true joint pdf f. The constraints employed here are different 
and more natural than those in the I-projection and maximum entropy formulation. In the original setup of the 
I-projection and maximum entropy distribution, the constraints are expectations of some certain statistics. The 
theorems of I projection and maximum entropy, however, are no longer applicable as the current set of con-
straints involves ( )log g x . 

We now present our main theorem of this section. 
Theorem 3. Given probability density functions 0 1, , , mf f f , define 

( ) ( ) [ ]( )2 2

1
,

m

i i
i

c f
=

=


   

where, for 1, ,i m=  , 

( ) ( ) ( ) ( )
( ) [ ]2 : log d .i i i

i

g
c g g c f

f
   = =  

    
∫

x
x x

x
  

Then the optimal probability density function satisfying 

( ) ( ) ( )
( )

2
0

0 0
,

, min ,
g S f

I g f I g f∗

∈ ∞
=


 

takes the form 

( ) ( ) ( ) ( ) ( )0 1 2
0 1 2 ,m

mg Df f f fλ λ λ λ∗ = x x x x x  

where ( )1 2, , , mD λ λ λ  is a normalizing constant and 
0

1
m

i
i
λ

=

=∑ . 

The assertion of this theorem implies that the constraints in the original I-projection can be further generalized 
such that they are also a functionals of the probability density we seek as well. It can also be seen that  

( ) [ ]( ) [ ]( )2 ,i i ic f S g c f= , the sphere in the functional space of all probability functions as in the context of I- 
projection. 

The optimal pdf under the current constraints belongs to the following functional class: 

( ) ( ) ( )
0

,i
m

i
i

g g f λ

=

 = ∝ 
 

∏x x x                             (1.5) 

where 1 2, , , mf f f  are low dimensional density functions. 
We now consider four special cases: 

1) (INDEPENDENT CASE) For example, if we assume that ( ) [ ] ( )
1

p

i j iji
i

f f x
=

=∏x , the marginals. Note that 

we use [ ]if  to denote the marginals in order to distinguish them from the probability density if  used in the 

construction. If we set ( ) [ ] ( )0
1 1

pn

iji
j i

f f x
= =

=∏∏x , it then implies that the constraints, which are based on the mar-  

ginals only, do not bring in any additional structural information than 0f . Therefore, it follows that the optimal 
functional density is of the form 
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( ) [ ] ( )*

1 1
.

pn

iji
j i

f f x
= =

∝∏∏x  

if all the weights equal to 1. 

2) (CORRELATION CASE) If the constraints are defined by [ ] ( ),i i jijf f x x=  and [ ] ( )0
1 1

( )
pn

iji
j i

f f x
= =

=∏∏x , it 

then follows that 

( ) [ ] ( ) [ ] ( )
1 1 1 1 1

, .ij
p p pn n

ij ij iti ij
j i j i t

f f x f x x
α∗

= = = = =

∝∏∏ ∏∏∏x  

The optimal density is then constructed by the marginals and all pairwise bivariate densities. A simplified 
form is given by 

( ) [ ] ( ) [ ] ( )*

1 1 1 1 1
, .

p p pn n

ij ij iti ij
j i j i t

f f x f x x
α

= = = = =

∝∏∏ ∏∏∏x  

if ijα α= . 
3) (CONDITIONAL CASE) If the constraints are defined by ( ) ( )1 2 3 1,i i i if x f x x x , we can then derive the 

conditional composite likelihood. 
4) (SPATIAL AND TEMPORAL CASE) The weights might be most appropriate for the spatial or temporal 

settings. Consider ijts ij tsy x x= −  for some given t and i. The composite likelihood can also be derived if the Ja-
cobian for transformation is ignored due to its complexity. This would allow spatial and temporal correlation 
structure to be incorporated. 

3. Asymptotic Properties of Composite Likelihood 
In this section, we establish the asymptotic properties associated with the composite likelihood inference under 
the proposed information-theoretic framework. The consistency of the estimators is proved by following the ar-
gument in [10]. 

For clear presentation, we first define the following notations: 
• Denote the true density function by ( )truef ⋅ . Let ( ) ( ){ }1 , , , ,Kf f⋅ ⋅θ θ  be the set of density function com-

ponents under consideration. 
• Denote ( )1, , Kλ λ= λ . The set of probability density functions 

( ),
1

, , 0,1k
K

k k
k

c f k K
λ

λ
=

 = ⋅ ≥ ≤ ≤    
∏θ λ θ  

with dR∈Ω ⊂θ  and ( )0, K∈Ξ ⊂ ∞λ  may not contain the true density function ( )truef ⋅ . Put ( )TT T,= θ λϑ   
and ( ) ( ), 1 , ,ˆkK

kkc f f
λ

=
⋅ = ⋅  ∏θ λ θ ϑ . 

• Let ( ),⋅ ⋅D  be the distance function defined over the space of all density functions. Assume that there is a 
unique ( ),f ∗⋅ ∈ϑ  such that ( )( ) ( )true true, , min ,ff f f f∗

∈⋅ =D Dϑ . We further assume that  
( )( )*

true , , > 0f f ⋅D ϑ  if truef ∈/  . For demonstration, ( ),⋅ ⋅D  is chosen as the K-L divergence in this pa-

per. 
• Let ϑ̂  be the estimate of ϑ  such that 

( )
1

ˆ arg , .sup
n

i
i

f
=

= ∏ x
ϑ

ϑ ϑ  

Define 
( ) ( ), , , , 1, , ;supk kf f k K− ≤= =





θ θx θ x θ  

( ) ( ), , , , 1, 1, , ;k kf f k K∗ = ∨ = x θ x θ   

( ) ( ), , , 1, , ;supk kg f k Kττ − >= =




θ θx x θ  



X. G. Wang, Y. Wu 
 

 
193 

( ) ( ), , 1, 1, , ;k kg g k Kτ τ∗ = ∨ = x x  

( ) ( )ˆ
ˆ, , , ;supf f xρρ − ≤=x ϑ ϑϑ ϑ  

( ) ( ), , , , 1;f fρ ρ∗ = ∨x xϑ ϑ  

( ) ( )>, , ;supg fκκ =x xϑ ϑ  

( ) ( ), , 1g gκ κ∗ = ∨x x . 

We make the following assumptions. 
Assumption 1. 1, , Kf f  are measurable, and linearly independent in probability. 
Assumption 2. For 1, ,k K=  , ( )*log , , <kE f  ∞ X θ   for sufficiently small   and ( )*log , <kE g τ  ∞ X  

for sufficiently large τ . 
Assumption 3. If ( )j →θ θ  as j →∞ , then for 1, ,k K=  , 

( )( ) ( )lim , , , a.s.j
k ki

f f
→∞

=x θ x θ  

Assumption 4. If ( )lim j
j→∞ = ∞θ , then for 1, ,k K=  , 

( )( )lim , 0,a.s.j
kj

f
→∞

=x θ  

Assumption 5. ( ) ( )1 2, , 0P f f⋅ ≠ ⋅ >  ϑ ϑ  if 1 2≠ϑ ϑ . 
Assumption 6. Ξ  is a closed set. 
Assumption 7. Ω  is a closed set. 
We first give four lemmas in the following before we present the theorems regarding the limiting behavior of 

the weighted composite likelihood estimators. 
Lemma 1. The following hold true: 
(L1) Under Assumption 1, ( ),f x ϑ  is measurable, and hence for any > 0 , ( ),f x ϑ,  is measurable. 
(L2) Under Assumption 2, ( ){ }*log ,E f  x ϑ,  is finite for sufficiently small κ  and ( ){ }*log ,E g κ  x  

is finite for sufficiently large κ . 
(L3) Assume that Assumption 3 holds. If ( )j →ϑ ϑ  as j →∞ , then 

( )( ) ( )lim , , ,a.s.j

i
f f

→∞
=x xϑ ϑ  

(L4) Assume that Assumptions 4 and 7 holds. If ( )lim j
j→∞ = ∞ϑ , then 
( )( )lim , 0,a.s.j

j
f

→∞
=x ϑ  

Lemma 2. Assume that Assumptions 1, 2, 6 hold. For any ∗≠ϑ ϑ , 

( ){ } ( ){ }log , < log , .E f E f ∗     x xϑ ϑ  

Lemma 3. Assume that Assumptions 1 - 3 hold. Then 

( ){ } ( ){ }
0

lim log , , log , .E f E f
ρ

ρ
→

=      X Xϑ ϑ  

Lemma 4. Assume that Assumptions 1, 2, 4, 7 hold. Then 

( ){ }lim log , .E g
κ

κ
→∞

= −∞  X  

The four theorems describing the limiting behavior of the weighted composite likelihood estimators are given 
below. 

Theorem 4. Assume that Assumptions 1 - 6 hold. Let ϖ  be any closed subset of Ω×Ξ  that does not 
contain ∗ϑ . Then 
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( )
( )

1

1

sup ,
lim 0 1.

,

n
ii

nn
ii

f
P

f
ϖ∈ =

∗→∞
=

  = = 
  

∏
∏

x

x
ϑ ϑ

ϑ
                           (1.6) 

Theorem 5. Assume that Assumptions 1 - 7 hold. Let n
ϑ  be a function of the random samples 1, , nx x  

such that 

( )
( )

1

1

,
0

,

n
i ni

n
ii

f

f
δ=

∗
=

≥ >
∏
∏

x

x

ϑ

ϑ
 

for any n and for all observations. Then 

( )*lim 1.nn
P

→∞
= =ϑ ϑ  

Theorem 6. Assume that Assumptions 1 - 7 hold. Then ˆ ∗→ϑ ϑ , a.s. 
Remark 1. Note that in the proof of Theorem 4, the strong law of large numbers is used. If we prove it using 

the method given in [11], the consistency of ϑ  may be extended to a large class of dependent observations. 
Remark 2. For simple presentation, we have assumed that { }1, , kf f  are parametric. This restriction is not 

necessary. 
In the following we assume that λ is a constant vector. For easy presentation, define ( ) ( )1, , kK

kkf f
λ

=
⋅ = ⋅  ∏



θ θ . 
Let θ  be a solution of the following equations: 

( )
1

log ,
.

K
k

k
k

f
λ

=

∂
=

∂∑ 0
x θ

θ
 

For convenience, denote 

( ) ( )

0

0log ,,
;

ll

=

∂∂
=

∂ ∂
θ θ

x θx θ
θ θ

 

and 

( ) ( )

0

22
0

T T

,,
,

ll

=

∂∂
=

∂ ∂ ∂ ∂
θ θ

x θx θ
θ θ θ θ

 

for a twice differentiable function ( ),l x θ . To investigate the limiting distribution of the composite likelihood 
estimator, we make the following three more assumptions. 

Assumption 8. For each { }1, ,k K∈  , ( ),kf x θ  is twice continuously differentiable in θ , and satisfies 

( ) ( ),,
,kk E

E
ψψ ∂  ∂   = ∂ ∂ 

x θx θ
θ θ

 

where ( ) ( ), ,k kfψ =x θ x θ  and ( ),kf= ∂ ∂x θ θ . 

Assumption 9. ( ) ( ){ }T
log , log ,k kE f f∂ ∂ ∂ ∂  x θ θ x θ θ  is positive definite, for 1, ,k K=  . 

Assumption 10. There exist a positive number τθ  and a positive function ( ),ζ x θ  such that  
( ),E ζ < ∞  X θ  and 

( )
( )

2

T

log ,
,sup kf

τ
ζ

− <

∂
≤

∂ ∂



 

θθ θ

x θ
x θ

θ θ
 

for all x  in the range of 1X . 
Define 

( ) ( ) ( ) T

1

log , log ,K
k k

k
k

f f
H Eλ

=

 ∂ ∂  =   ∂ ∂   
∑

X θ X θ
θ

θ θ
, 
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and 

( ) ( ) ( )
1 2

1 2
1 2

T

1 1

log , log ,K K
k k

k k
k k

f f
G Eλ λ

= =

 ∂ ∂  = ×   ∂ ∂    
∑∑

X θ X θ
θ

θ θ
 

We have the following theorem. 
Theorem 7. Assume that Assumptions 1 - 10 hold. Then 

( ) ( ) ( ) ( ){ }1 1* * * *, .dn N H G H
− −

   − →    θ θ θ θ θ


0  

Remark 3. In light of [12], the assumptions 1 - 8 made in Theorem 7 may be replaced by the assumptions 
similar to those assumed in Theorem 4.17 of Shao (2003). 

Remark 4. Let θ̂  be the solution of 

( ) ( ),

1

log log ,
.

K
k

k
k

c f
n λ

=

∂ ∂
+ =

∂ ∂∑ 0θ λ X θ
θ θ

 

By modifying the proof of Theorem 7, θ̂  can also be shown to be asymptotically normal distributed. 

4. Concluding Remarks 
The proposed information-theoretic framework provides theoretical justifications for the use of composite like-
lihood. It also serves as a unifying theme for various seemingly different composite likelihoods and connects 
them with I-projection and maximum entropy distribution. Significant characteristics of low dimensional models 
are incorporated into the constraints associated with component likelihoods. Asymptotic properties established 
in this article could be useful for further theoretical analysis of the properties of the composite likelihoods. The 
findings presented in this article will lead to more in-depth investigations on the theoretical properties of com-
posite likelihoods and establish some possible connections with information theory. 
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Appendix  
Proof of Theorem 1: Let ( ) ( )log , 1, , .i if i mψ = =  x x   The I-projection is of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )*
1 0 1 0 1 0

1 1 1
exp log .i i

m mm

i i i i
i i i

g c f f c f f c f f
α α

α
= = =

 = = =            
∑ ∏ ∏x x x x x x x  

This completes the proof. ◊  
Proof of Theorem 3: By the Lagrange method, we seek to minimize the following objective function 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )0
10

log d log d d 1 ,
m

i i
i i

g g
W g g g c g

f f=

    
= + − + −         

∑∫ ∫ ∫ 

x x
x x x x x x

x x
 

where 0 1, , , m     are Lagrange multipliers. 
The objective function can then be rearranged so that 

( ) ( )( ) 0
1

d ,
m

i i
i

W g U g c
=

= − −∑∫  x x  

where 

( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )0
10

log log .i
i i

g g
U g g g g

f f=

   
= + +   

   
∑ 

x x
x x x x

x x
 

Since ( )U g  is not a function of g ′ , the first order derivative of g, the Euler-Lagrange equation is then 
given by 

( )
0,

U g
g

∂
=

∂
 

where the derivative is taken with respect to g. 
Thus, we have 

( ){ } ( ) ( )0 0
1 1

1 1 log log log .
m m

i i i
i i

g f f
= =

 + + = + −         
∑ ∑  x x x  

It then follows that the optimal density function takes the form 

( ) ( ) ( )
0

1*
2 0

1
e ,i

s ms ss
i

i
g f f

+
−

=

=       ∏x x x


 





  

where 
1

1 .
n

i
i

s
=

= +∑


  ◊  

Proof of Lemma 2: In view of the definition of ∗ϑ , the properties of K-L divergence and Lemma 1, Lemma 
2 can be proved by following the proof of Lemma 1 of Wald (1949) ◊ . 

Proof of Lemma 3: By Lemma 1, Lemma 3 can be proved by following the proof of Lemma 2 of Wald 
(1949). ◊  

Proof of Lemma 4: By applying Lemma 1, Lemma 4 can be proved by following the proof of Lemma 3 of 
Wald (1949). ◊  

Proof of Theorem 4: By Lemmas 2 and 4, we can find a positive number 0κ  such that 

( ) ( )* * *
0log , log , .E g E gκ    <   X X ϑ                          (1.7) 

Let 1ϖ  be the subset of ϖ  consisting of all points ϑ  of Ω×Ξ  for which 0κ≤ϑ . By Lemmas 2 - 3, 
for each point 1ϖ∈ϑ , there is a 0ρ >ϑ  such that 

( ){ } ( ){ }log , , log , .E f E fρ ∗   <   X Xϑϑ ϑ                       (1.8) 

Since 1ϖ  is a closed set, there exists a finite number of points 1, , hϑ ϑ  in 1ϖ  such that 
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( ) 1
1

, ,
j

h

j
j

ρ ϖ
=

⊃


 ϑϑ  

where ( ),
jj ρ ϑϑ  denotes the open sphere with center jϑ  and radius 

j
ρϑ . Thus, 

( ) ( ) ( ) ( ) ( )
1 0

0
11 1 1 1 1

0 , , , , , , .sup sup sup
j

n n n n nh

i i i i j i
ji i i i i

f f f f g r
ϖ ϖ κ

ρ
∈ ∈ > == = = = =

≤ ≤ + ≤ +∑∏ ∏ ∏ ∏ ∏x x x x xϑ
ϑ ϑ ϑ

ϑ ϑ ϑ ϑ  

In light of (1.7)-(1.8), we have 

( )( ) ( )( ) ( ){ } ( ){ }
1

1 log , , log , log , , log , 0,a.s.
j j

n

i j i j
i

f f E f E f
n

ρ ρ∗ ∗

=

     − → − <     ∑ X X X Xϑ ϑϑ ϑ ϑ ϑ  

and 

( )( ) ( )( ) ( ){ } ( ){ }0
1

1 log , log , log , , log , 0,a.s.
j

n

i i j
i

g f E g E f
n

κ ρ∗ ∗

=

    − → − <    ∑ X X X Xϑϑ ϑ ϑ  

Therefore, 

( )( ) ( )( )*

1
lim log , , log , 1,

j

n

i j in i
P f fρ

→∞ =

  − = −∞ =    
∑ X Xϑϑ ϑ  

( )( ) ( )( )*
0

1
lim log , log , 1,

n

i in i
P g fκ

→∞ =

  − = −∞ =   
∑ X X ϑ  

which jointly with (1.9) implies (1.6). ◊  
Proof of Theorem 5: For any > 0ε , if a subsequence { }mn

ϑ  of { }n
ϑ  that has a limit ϑ  such that 

ε∗ >ϑ− ϑ , then for infinitely many n , 

( ) ( )
1 1

, , .sup
n n

i i n
i i

f f
ε∗ = =− ≥

>∏ ∏ x x
ϑ ϑ

ϑ ϑ  

Hence, for infinitely many n, 

( )

( )
1

1

sup ,
> 0.

,

n
ii

n
ii

f

f

ε
δ

∗ =− ≥

∗
=

≥
∏

∏

x

x

ϑ ϑ
ϑ

ϑ
 

By Theorem 4, this event has zero probability. Thus all limit points ϑ  of { }n
ϑ  satisfy the inequality 

ε∗ ≤ϑ− ϑ  with probability one, which concludes the theorem. ◊  
Proof of Theorem 7: By following the proof of Theorem 4.17 of Shao (2003), it can be shown that 

( ) ( ) ( )( ) ( )( )( )
*

* * * *
log , log ,

.p

f f
H o H

∂ ∂
= − − + −

∂ ∂




x θ x θ

θ θ θ θ θ θ
θ θ

 

Hence, 

( ) ( )( ) ( )( )( )
*

* * * *
log ,

,p

f
H o H

∂
= − + −

∂

 
x θ

θ θ θ θ θ θ
θ

 

which, jointly with Slutsky’s theorem and the central limit theorem, concludes the proof of the theorem. ◊  
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