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ABSTRACT 

In this article, we develop a statistical inference technique for the unknown coefficient functions in the varying coeffi- 
cient model with random effect. A residual-adjusted block empirical likelihood (RABEL) method is suggested to inves- 
tigate the model by taking the within-subject correlation into account. Due to the residual adjustment, the proposed 
RABEL is asymptotically chi-squared distribution. We illustrate the large sample performance of the proposed method 
via Monte Carlo simulations and a real data application. 
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1. Introduction 

Varying coefficient model has been widely used to mod- 
el all kinds of data. One popular application is the analy- 
sis of the longitudinal data (e.g. [1,2]). Although both [3] 
and [4] proposed effective inference procedure for the 
varying coefficient model and applied them to the analy- 
sis of CD4 count data, whose detailed information can be 
referred to [5], none of them considered the within-sub- 
ject correlation of longitudinal data. To improve the effi- 
ciency of the inference by considering this kind of corre- 
lation, we consider the varying coefficient model with 
random effect 

 T T ,ij ij ij ij i ijY X T Z e   

m

          (1) 

with  where 1, , , 1, , ,i n j       is an unknown 
smoothing  function vector, i 1p   are independent 

 vectors of random effect with mean 0 and covari- 
ance matrix D and ij  are independent mean 0 random 
variables with variance . Let ij  and ij

1l
e

2
e 0 Y X , ijZ , 

ij  denote the response and covariate variable, respect- 
tively, where the i and j are their associated jth measure- 
ment of the ith subject among all of the longitudinal data. 

T

Random effect model is frequently employed to ex- 
ploit the characteristics of longitudinal data over several 
time periods. Recently, there has been fruitful research 

on it. (e.g. [6-9]) proposed an efficient estimation for the 
single index model with random effect and provided a 
further way to construct the confidence interval for the 
parameter of interest with the aid of an estimator for its 
asymptotic variance. 

In this article, we address a general problem to con- 
struct the confidence interval for the varying coefficient 
model with random effect by using the empirical likely- 
hood method (e.g. [10-12]). Thanks to the empirical like- 
lihood method, we can construct the confidence interval 
without the estimation for the asymptotic variance, and 
the whole inference procedure is totally data-adaptive. 
For longitudinal data, except for [3,13] studied an em- 
pirical likelihood method for the varying coefficient er- 
ror-in-variable models with longitudinal data. Both of 
them did not consider incorporating the within-subject 
correlation. [14] reported that it caused a loss of effi- 
ciency for empirical likelihood applications by ignoring 
the within-subject correlation. In this article, we propose 
a residual-adjusted block empirical likelihood (RABEL) 
method for the varying coefficient model with random 
effect to incorporate the within-subject correlation for 
longitudinal data. This approach is appealing in that it 
can not only construct the confidence interval for the 
unknown coefficient function, but also improve estima- 
tion efficiency through considering the within-subject 
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correlation of longitudinal data. Also the estimation pro- 
cedure introduced in Section 2 makes the implementation 
much easier. 

The rest of this article is organized as follows. In Sec- 
tion 2, we introduce the residual-adjusted block empirical 
likelihood method and provide details on constructing the 
confidence interval for the varying coefficient function of 
interest. Some asymptotic results are derived in Section 3 
and several implementation issues are shown in Section 4. 
Simulations are reported in Section 5. Data arising from 
CD4 study is analyzed in Section 6. Proofs of the main 
results are relegated to Appendix. 

2. Estimation Method 

2.1. Empirical Likelihood Estimation 

Assume that the observed data  are gen- 
erated from model (1). Moreover, let , 

, 1i i im  and  
. Based on the idea of GEE [15], we can 

construct an auxiliary random vector nonparametric com- 
ponent 

 , ,ij ij ijY X T

1i iY Y
 T

, , Z





t

 T
, , imY

 T

1, ,i i imX X X 
 T

1, ,i i ime e e 
Z Z

    T 1
i i i i i it X W Y X t            (2) 

where  is the within-subject covariance matrix. De- 
note , where 

i
    1diag , ,i h i h imW K t t K t  

   hK K 

  E t

h

  0i  

 with  and  being a kernel 
function and proper bandwidth, respectively. Note that 

 if  is the true parameter. There- 
fore, we can introduce an estimating equation as  

 K 

 t

h



  
1

0
n

i
i

t 


 , and a naive empirical log-likelihood 

ratio function for  can be derived as  t
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   (3) 

However, by the similar argument in [3], the proposed 
empirical log-likelihood ratio (3) is no longer a standard 
chi-square distribution unless an undersmoothing band- 
width is chosen. And some complicated techniques, such 
as Monte Carlo approximation or estimated transforma- 
tion, have to be employed to make further inference. For 
its limit being chi-square in practice, we propose a 
RABEL method by taking the ideal of [14] and [16]. 
Under the framework of RABEL, the auxiliary random 
vector function is newly defined as 

        T 1
i i i i i i i it X W Y X t X t t           

   (4) 

where the estimator  is a preliminary estimator. 
And the RABEL ratio is further derived as 

 t
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By the Lagrange multiplier method, we have 

  T

1 1
, 1, ,

1i
i

p i
n t  







,n         (6) 

where   is a 1p  vector satisfying 
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       (7) 

Then, the empirical likelihood ratio function (5) can be 
represented as 

      T

1

2 log 1 1 , 1, , .
n

i
i

l t t i n   


        (8) 

2.2. Estimation of the Variance Component 

The within-subject covariance i  is assumed to be 
known in the proposed RABEL procedure in Section 2.1. 
However, in practice, we need to construct an estimator 
for it. Assume that the model (1) satisfies the variance 
covariance-variance model 



2 T 21 1 ,i m m e I                 (9) 

where  represents an  vector of ones and m1m 1m I  
is the m m  identity matrix. This proposed model (9) is 
called a variance component model and widely used in 
longitudinal analysis, see, for example (e.g. [8,9]). Let 

im , with ij T 1i i , ,  i ije  
 2 ,

. Hence, an estima- 
tor for the variance component 2

e   is derived as 

  1 2
1 1 2

2
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n m

ij ij
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1
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1
ˆˆ ,
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e ij
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2
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              (10) 

where with the preliminary estimator  for  t  t , 
the residual îj  is defined as 

 Tˆ , 1, , , 1, , .ij ij ij ijY X t i n j m        

Therefore, we obtain the estimator for , that is i
2 T 2ˆ ˆ ˆ1 1 ,i m m e mI                (11) 

Furthermore, with the true covariance in (4) being in- 
terpolated by the estimator (11), we derive a new auxil- 
iary random vector 

         T 1ˆ ˆ
i i i i i i i it X W Y X t X t t           

   

(12) 
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And, the newly estimated RABEL ratio function is 

    
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Additional implementation details of solving the pre- 
liminary estimator will be postponed to Section 4, after 
discussion of the asymptotic properties of the proposed 
method. 

3. Asymptotic Result 

In this section, we study the asymptotic properties of the 
estimators. Denote  f   to be the density for covariate 
variable . ij

Theorem 1. Suppose that conditions (C1)-(C6) in the 
Appendix hold, then 

T

  2 2ˆ 0, ,Ln N     V          (14) 

and 
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Theorem 2. Suppose that conditions (C1)-(C7) in the 
Appendix hold. If  is the true value of the parame- 
ter, then 

 t

   2ˆ ,L
pl t              (16) 

where 2
p  means a 2  distribution with freedom . p

Note that p 2 1    is the 1   quantile of 2
p . 

Based on Theorem 2, we can derive the 1   confi- 
dence interval of , that is  t

          2ˆ 1 .pC t t l t         

4. Implementation Issue 

4.1. Calculation of the Preliminary Estimator 

For t in the small neighborhood of 0 , a Taylor expan- 
sion for the kth component of the varying coefficient 
function  leads to 

t

 t

   0 , 1, ,k k kt a b t t k p      ,        (17) 
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By ignoring the within-subject correlation, we can ob- 

tain the unknown vector a, b by minimizing 

   
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T T

1 , 1 . Then, the so- 
lution to the minimization of (18) is 
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Specially, by the idea of local linear estimation, the 
preliminary estimator  0t  is followed by 

    0 0 0 0 0

1T T
0 ,0 .p p t t t t tt I D W D D W


 Y       (19) 

4.2. Choice of Bandwidth 

As is well-known, the choice of bandwidth h can affect 
both the bias and variance estimation and there is a trade- 
off between a proper bias and variance. A smaller vari- 
ance arise with the choice of a large bandwidth value, 
whereas will increase the estimation bias. As pointed out 
by [3,13], an optimal bandwidth, which is selected by 
using the leave-one-subject-out cross validation, can sat- 
isfy the conditions. Therefore, in the following simula- 
tions in this article, we use kernel function  

   20.75 1K u u


   and the optimal bandwidth is ob- 
tained by minimizing 

      2
T

1 1

, ,
n m

i
ij ij ij

i j

CV h Y X t h 

 

      

where    ,i
ijt h   is denoted to be the preliminary es- 

timator (19) estimated with all over the measurements 
except the ith subject. 

5. Empirical Study 

In this section, we perform some Monte Carlo simula- 
tions to assess the finite sample performance of the pro- 
posed method. Assume the data is generated from the 
model 

 T , 1, , ; 1, , ,ij ij ij i ijY X T e i n j m          (20) 

where  with       T

1 2,t t t      1 sin π 2t t   
and    1 cos π .t t 2  Moreover, we also assume that 

 0, 4 , 1,2ijkX N k 2  and ijT  are generated from an 
uniform distribution on interval [0,1]. Meanwhile, denote 
that  20,i N    and  20,ij e e N  , where  , e   
is set to be  0.2,0.1 . It is assumed that the number of 
observed subject and repeated measurement within sub- 
ject are n = 100 and m = 3. For the purpose of intensive 
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

procedure in this article, we apply it to the analysis of a 
longitudinal AIDS data set, reported by [5]. Some infer- 
ence methods are related in literatures of [3,4,17]. How- 
ever, there is limited work of them that focused on the 
within-subject correlation under the random effect frame- 
work. In fact, when we use the Hausman test for the null 
hypothesis of the random effect, the random effect is 
approved at 5% level of significance with p-value 85.9%, 
which can be calculated by the R function phtest() in the 
plm package. 

comparison, in addition to the proposed procedure during 
the simulations, a “naive” approach, based on the work- 
ing independence assumption, is also involved, assuming 
that the within cluster covariance matrices are identities. 
The simulation results were calculated by 100 runs. 

Figure 1 reports the approximate 95% point-wise con- 
fidence intervals and their coverage probability curves 
for the coefficient function  and , calcu- 
lated by the proposed method in this article and the “na- 
ive” method. Although from Figure 1, two methods con- 
struct close confidence intervals for the nonparametric 
component, the coverage probability curves in the right 
panels show a significant difference. The coverage prob- 
ability curves, estimated with the proposed method in 
this article, are closer to the significance lever 95% and 
possess a more stable and superior performance. 

 1 t  2 t

As to the jth measurement of the ith subject, let ij  be 
CD4 percentage, ij  be the time in years after HIV in- 
fection, 1i

Y
t

Z  be the centered age at HIV infection, 2iZ  

be the centered preCD4 percentage, and 3iZ  be the 
smoking status, taking a value of 1 or 0 for smoker or 
nonsmoker. Hence, we consider the following varying 
coefficient model with random effect By the two required methods, we construct the simul- 

taneous confidence regions of  at time 
point  in Figure 2. The two plot are designed with 



    1 2,t t 
1t 

e ,   being (0.1,0.1) and (0.2,0.1), respectively. Di- 
rect comparison of them illustrates the inference im- 
provement of the proposed RABEL method on that “na- 
ive” one. 

    
 

0 ,1 1 ,2 2

,3 3 ,

ij ij ij ij ij ij

ij ij i ij

Y t Z t Z t

Z t e

  

 

  

  


        (21) 

where the baseline CD4 percentage curve  0 t  is used 
to represent the mean CD4 percentage of t years after the 
infection. By the proposed inference procedure in this 
article, we plot the curves of the unknown coefficient 
functions in model (21) and their approximate 95% con- 
fidence intervals in Figure 3. From the curve of baseline  

6. Real Application 

To illustrate the effectiveness of the proposed inference  
 

 

Figure 1. The true curve and its 95% confidence interval of the varying coefficient function are shown in the left two panels. 
On the other hand, the right two panels show the coverage probability curve of the corresponding confidence interval. And 
all the dashed and dotted-dashed curve are estimated by ignoring and considering the within-subject correlation, respec- 
tively. 
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Figure 2. The simultaneous confidence region of the two varying coefficient functions at point t = 1, with dashed and dotted- 
dashed curve being estimated by ignoring and considering the within-subject correlation, respectively. The left and right 
panel are for    e, 0.1,0.   1  and    e, 0.2,0.   1 , respectively. 

 

 

Figure 3. The four plots show the changing curve and their corresponding 95% confidence interval for the different covariate 
variables as baseline curve, Age, PreCD4, and Smoke status. 
 
function in Figure 3, we can find that the estimated 
curve of the mean CD4 percentage depletion over time 
also indicate that after getting infected, the CD4 counts 
decreases sharply at the first 4 years and then the de- 
creasing rate becomes slower although it sometimes 
changes a little, which is similar to the arguments in [3, 

17,18]. Moreover, other estimated curves in Figure 3 
suggest the dependence of CD4 percentage on other 
variable, such as age, preCD4 and smoke status. Spe- 
cially, the curve about the variable preCD4 is similar to 
that shown in Figure 4 in [4], although small nonlinear 
changing tendency was found in [3]. 
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Appendix 

Condition 1. The bandwidth satisfies  1 5h O n . 
Condition 2. The kernel K(·), a symmetric probability 

density function, is twice continuously differentiable at  

0t  and satisfies  4 du K u u   . 

Condition 3. The intensity  f t  of covariate vari- 
able ij  is bounded away from 0 and infinity on [0,1], 
and is continuously differentiable on (0,1). 

T

Condition 4. ,  are twice continuously 
differentiable on 

 t  t
 0,1 , where 

       T
t E X E X T t X E X T t        

  

Condition 5.   4E t t   and   4
rE X t t  are 

twice continuous with t, and   4
0 1sup t E t t    , 

  0
4

1sup t rE X t t    , where  4
rX t  is rth compo- 

nent of .  X t

Condition 6. For given t,  is positive definite 
matrix. 

 t

Condition 7. There exist two positive constants 1  
and , such that 2

1 1 2
1 1

0 min maxi im
i n i n

   
   

     ,  

where 1i  and im  denote to be the smallest and larg- 
est eigenvalues of , respectively. i

Lemma 1. Suppose that conditions (C1)-(C6) hold, 
 denote to be the preliminary estimators solved by  



 t

the estimation Equation (19), then we have 

   
1 2

2 log
sup .p
t T

n
t t O h

nh
 



       
   

      (A.1) 

Proof. See the proof of Lemma 4.1 in [19]. 
Lemma 2. Let nA  be a sequence of random matrices 

converging to an invertible matrix A. Then 

  1 1 1 1 2 ,n n nA A A A A A Op A A           (A.2) 

where  1 22 T .A tr A A  
Proof. See the proof in [20-22]. 
Lemma 4. Assume the conditions (C1)-(C7) hold, and 
 t  is the true parameter, then 

    
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1
0, .
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i
i

t N
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With several calculation and the Central Limit Theo- 

rem, 

 1
1

1
0, ,

n
D

i
i

I N B
nh 

           (A.3) 

and 2
1

1
0.

n
P

i
i

I
nh 

  

Therefore, Lemma 4 can be derived directly. 
Lemma 5. Assume the conditions (C1)-(C7) hold, and 

 is the true parameter, then  t

     T
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1
.
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i i
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t t
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Proof. By the proof of Lemma 4, we can derive that 
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According to the proof of Lemma 4, we know that 

 
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  and  
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1
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i s

n

p
i

I O
nh 

  which are 

the rth or sth component of 1iI  and 2iI . Some simple 

algebra calculation leads to that 2J 0P . And we can 

derive 0,P
lJ   3, 4l  . Moreover, by the law of 

large numbers, we can derive that 1
PJ B . So, the 
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proof of Lemma 5 is completed. 
Proof of Theorem 1. By the definition, 2ˆ  can be 

written a 

 
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Using the Taylor formula and Lemma 1, we can derive 
1

2
2 pI o n

 
 

 
  and 

1

2
3 pI o n

 
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 
. 

Moreover, by the Lyapunov central limit theorem and 
that proof of Theorem 4 in [8], we can dirive (14) in 
Theorem 1. 

By the proof of the first part, we can easily prove (15) 
in Theorem 1. 

Proof of Theorem 2. Here, we mainly provide the 
proof procedure by showing the evidence about the as- 
ymptotic equivalence between the auxiliary random vec- 
tor (4) and that one (12) with the within-subject covari- 
ance being replaced by the estimator (11). That is the 
error caused by the use of plug-in estimation is negligi- 
ble. 

For the given estimator (11) for the within-subject co- 
variance, the auxiliary random vector is 

      
      

   

       

T 1

T 1

T 1 1 1 1

ˆ

ˆ

1 1 .

i i i i i i i

i i i i i i i

i i i i i i i i

i i p

X W Y X t X t t

X W Y X t X t t

X W Y

X t t o

  

  



 





   

     
    

     
   
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 

 

X t




    (A.4) 

The second term in (A.4) is high order of  1po . 
Therefore, the empirical likelihood ratio based on the 
auxiliary random vector (12) with the estimated within 
subject covariance is asymptotic equivalent to that one (4) 
with a true one. By a Taylor expansion of (13) and fol- 
lowing a similar lines as in the proof of Theorem (3.2) in 

[3], we can show that  is asymptotic equivalent 
to that one (5) with the true covariance 

 l̂ t 
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By the arguments in the proof of (2.14) in [11] and 
together with Lemma 3, we can derive that 

1

2 ,O n   h



 
            (A.5) 

where   is defined by (7).  
By Lemma 3-5 and (A.5), a Taylor expansion of (8) 

leads to 
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Then by (7), it follows that 
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    (A.7) 

Hence, by Lemma 3-5, and (A.7), we can derive that 
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(A.9) 

With the plug-in of (A.8) and (A.9) in (A.7), we can 
further derive that 
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(A.10) 

Therefore, the asymptotic result of Theorem 2 follows 
from Lemma 4 and 5. 
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