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ABSTRACT

Density estimation methods based on aggregating several estimators are described and compared over several simula-
tion models. We show that aggregation gives rise in general to better estimators than simple methods like histograms or
kernel density estimators. We suggest three new simple algorithms which aggregate histograms and compare very well

to all the existing methods.
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1. Introduction

Ensemble learning or aggregation methods are among the
most challenging recent approaches in statistical learning.
In a supervised framework, the main goal is to estimate a
function f : X — Y using a data set of independent ob-
servations of both variables x e X' and y € ¥. Ensemble
learning constructs several such estimates g,,---,d,, .
which are often called weak learners, and combines them
to obtain the aggregated model f =g(g,--,0y)

where g may be a simple or a weighted average when
Y < R such as for regression, or a simple or a weighted
majority voting rule when ¥ < {1,---,J} such as for
classification. In this framework, Bagging ([1]), Boosting
([2]), Stacking ([3]), and Random Forests ([4]) have been
declared to be the best of the shelf classifiers achieving
very high performances when tested over tens of various
datasets selected from the machine learning benchmark.
All these algorithms had been designed for supervised
learning, and sometimes initially restricted to regression
or binary classification. Several extensions are still under
study: multivariate regression, multiclass learning, and
adaptation to functional data or time series.

Very few developments exist for ensemble learning in
the unsupervised framework, clustering analysis and den-
sity estimation. Our work concerns the latter case which
may be seen as a fundamental problem in statistics.
Among the latest developments, we found some exten-
sions of Boosting ([2]) and Stacking ([5]) to density es-
timation. The existing methods seem to be quite complex,
often combining kernel density estimators and whose
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parameters seem to be arbitrary. In particular, most of the
methods combine a fixed number of weak learners.

In this paper we show extensive simulations that ag-
gregation gives rise to effective better estimates than sim-
ple classical density estimators. We suggest three simple
algorithms for density estimation in the same spirit of
bagging and stacking, where the weak learners are histo-
grams. We compare our algorithms to several algorithms
for density estimation, some of them are simple like His-
togram and Kernel Density Estimators (Kde) and others
rather complex like stacking and boosting, which will be
described in details. As we will show in the experiments,
although the accuracy of our algorithms is not system-
atically higher than other ensemble methods, they are
simpler, more intuitive and computationally less expen-
sive. Up to our knowledge, the existing algorithms have
never been compared over a common benchmark simula-
tion data.

Aggregating methods for density estimation are de-
scribed in Section 2. Section 3 describes our algorithms.
Simulations and results are given in Section 4 and con-
cluding remarks and future work are described in Section
5.

2. A Review of the Existing Algorithms

In this Section we review some density estimators ob-
tained by aggregation. They may be classified in two ca-
tegories depending on the aggregation form.

The first type has the form of linear or convex combi-
nation:
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fmm=i%%W) W

where «,, € R and g, is typically a parametric or non
parametric density model, and in general different values
of m refer typically to different parameters values in the
parametric case or different kernels or different band-
widths for a chosen kernel for the kernel density estima-
tors.

The second type of aggregation is multiplicative and is
based on the ideas of high order bias reduction for kernel
density estimation as in [6]. The aggregated density es-
timator has the form:

fmm=ﬁ%%u) o)

2.1. Linear or Convex Combination of Density
Estimators

This kind of estimators (1) has been used in several works

with different construction schemes.

e In[7-9] the weak learners g, are introduced sequen-
tially in the combination. At step m, g,, is a density
selected among a fixed class H and is chosen to ma-
ximize the log likelihood of

f.(X)=(1-a)f,(X)+ag,(x), ae[01] ©))

In [8], g, Iis selected among a non parametric family
of estimators, and in [7,9], it is taken to be a Gaussian
density or a mixture of Gaussian densities whose para-
meters are estimated. Different methods are used to esti-
mate both density g,, and the mixture coefficient « .

In[7], g,, isa Gaussian density and the log likelihood
of (3) is maximized using a special version of Expecta-
tion Maximization (EM) taking into account that a part of
the mixture is known.

The main idea underlying the algorithms given by [8,9]
is to use Taylor expansion around the negative log like-
lihood that we wish to minimize:

Z—Iog fm (Xi)zz_mg fm_l(xi)_az gm(Xi)

i i ! fm—l(xi)

where T ={x,,---,x,} isthe data set. Thus, minimizing the

left side term is equivalent to maximizing ZEL(X)'())
! m-1\ N
and the output of this method converges to a global
minimum.

All the algorithms described above are sequential and
the number of weak learners aggregated may be fixed by
the user.

e In [5], Smith and Wolpert used stacked density esti-
mator applying the same aggregation scheme as in
stacked regression and classification ([10]). The M
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densities estimators g,,---,9,, are fixed in advance
(KDE with different bandwidths). The data set
T={x,, %} isdivided intoV cross validation sub-
sets Ly, L,. For v=1---V, denote L' = L\L,.
The M models g,,---,9,, are fitted using the training
samples L™ ...,L™) and the obtained estimates are
denoted by for all m=1,---,M. These models are then
evaluated over the test samples L,---,L, getting the
vectors g\ (L,) for m=1--,M,v=1--V put
withina nxM block matrix:

o (L) o(L) - el (L)
acl87(L) g7 (L) - e (L)
o (L) o8’ (L) - gk (L)

This matrix is used to compute the coefficients
a,,--+,ay Of the aggregated model (1) using the EM al-
gorithm. Finally, for the output model, we re-estimate the
individual densities g,,---,g,, from the whole data.

This method has been compared with other algorithms
including the best single model obtained by cross-vali-
dation, the best single model obtained over a test sample
and a uniform average of the different Kde models. It is
shown that stacking outperforms these methods for dif-
ferent criteria: log likelihood, L; and L, performance mea-
sures (for the two last criteria use the true density).

e In [11], Rigollet and Tsybakov fixed the densities
0,,--, gy In advance like for stacking (Kde estima-
tors with different bandwidths). The dataset is split in
two parts. The first sample is used to estimate the den-
sities g,,, whereas the coefficients «, are optimiz-
ed using the second sample. The splitting process is
repeated and the aggregated estimators for each data
split are averaged. The final model has the form

fy ()= =3 03 (x) @

|S seS

where S is the set of all the splits used and
M
9m (X) =2 anGn (x) (5)
m=1

is the aggregated estimator obtained from one split s of
the data, §; is the individual kernel density function es-
timated over the learning sample obtained from the split s.
This algorithm is called AggPure. The authors compared
their algorithm using different choices for the Kde’s
bandwidth that we describe in the simulations section.
Oracle inequalities and risk bounds are given for this es-
timator.

2.2. Multiplicative Aggregation

The only algorithm giving rise to this form of aggrega-
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tion is the one described in [12] called BoostKde. It is a
sequential algorithm where at each step m the weak lear-
ner is computed as follows:

@m(x)=iw“”h(i)r<( - ] ©

where K is a fixed kernel, h its bandwidth, and w,, (i) the
weight of observation i at step m. Like for boosting, the
weight of each observation is updated by

wm+l<i)=wm<i>+|og[Mj %

gr(nii) (%)

where @ﬁi)(xi):zme(‘)K[%j

j#i

The output is given by
M
fu () =CITGn (x) ®)
m=1

where C is a normalization constant.

Using several simulation models the authors explore
different values for the bandwidth h minimizing the
Mean integrated Square Error (MISE) for few values of
M. They show that a bias reduction is obtained for M = 2
but it is not clear how the algorithm behaves for more
than two steps.

3. Aggregating Histograms

We suggest three new density estimators obtained by li-
near combination like in (1), all of them use histograms
as weak learners. The first two algorithms aggregate ran-
domized histograms and may be parallelized. The third
one is just an adaptation of Stacking using histograms in-
stead of kernel density estimators.

The first algorithm is similar to Bagging ([1]). Given a
data set T={x,---,x,} and an integer L, at each step
m=1,---,M of the algorithm a bootstrap sample of T is
generated and used to construct an histogram g, with L
equally spaced breakpoints. The output of this method is
an average of the M histograms. We will refer to this
algorithm as BagHist and it is detailed in Figure 1.

The second algorithm, AggregHist, works as follows.
Consider the data set T ={x,---,x,} and an integer L.

1. Let T the original sample and L an integer.
2. For m=1---,M:
a Let T" be a booststrap sample of T.
b Set g, to be the histogram constructed over T"
with L equispaced breakpoints.

3. Output: fM(X)=iam9m(X)
m=1

Figure 1. Bagging histograms (BagHist).
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Let g, be the histogram obtained over T using equally
spaced breakpoints denoted by B={b,---,b_}. We de-
note by h=b —-b_ forall 1=2,---,L the bandwidth
of g,. At each step m=1---,M we add a random
uniform noise ¢, ~U[0,h] to each breakpoint and
construct an histogram g,, using T and the new set of
breakpoints. The final output is an average of the histo-
grams g,,---,d,, . The algorithm is detailed in Figure 2.

The value of the parameter L used for AggregHist and
BagHist will be optimized and the procedure used for
that will be described in the next Section.

Finally, we introduce a third algorithm called StackHist
where we replace in the stacking algorithm the six kernel
density estimators by histograms with different number
of breakpoints.

4. Experiments

In this Section we present the simulations we have done
to compare all the methods described in Section 2 toge-
ther with our three algorithms. We consider several data
generating models we have found in the literature. We
first show how our algorithms adjust quite well for the
different models, and that the adjustment error decreases
monotonically with the numbers of histograms used. Fi-
nally we will compare our methods with ensemble me-
thods for density estimation like Stacking, AggPure,
BoostKde which aggregated non parametric density es-
timators. All these aggregating methods are compared to
optimized Histogram (Hist) and Kde using different band-
width optimization approaches.

4.1. Models Used for the Simulations

Twelve models found in the papers we have referenced
are used in our simulations. We denote them by My,,
Mz and we group them according to their difficulty level.
e Some standard densities used in [11,12]:

(M) standard Gaussian density N (0,1) ,

(M;) standard exponential density,

(M3) a Chisquare density 7/, ,

1. Let T the original sample, fix an integer L and construct the
histogram g, built over T, B={b,---,b} the equally

spaced breakpoints of g, and h=b -b,.
2. For m=1---M:
a  Consider B"={b ,---,b "} the randomly modified set of
breakpoints where b'=b +¢,,, £,~U[0,h]
b We compute ¢, the histogram over T using these new
breakpoints.

3. output: f, (x)=>,9,(x)

Figure 2. Aggregating histograms based on randomly per-
turbed breakpoints (AggregHist).
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(My) a student density t,,

Some Gaussian mixtures taken from [5,12]:

(Ms) 0.5N(-1,0.3)+0.5N (1,0.3),

(Mg) 0.25N(-3,0.5)+0.5N (0,1)+0.25N (3,0.5)

(M7) 0.55N(-3,0.5)+0.35N(0,1)+0.1N(3,0.5)
Gaussian mixtures used in [11] and taken from [13]:
(Mg) the Claw density,
(Mo) the Smooth Comb density,
(M1p) is a mixture density with highly inhomogeneous
smoothness as in [12]
Finally we include in our study two simple models
known to be challenging for density estimators:
(M11) a triangular density with support [0,1] and ma-
ximum at 1,

(M12) the beta density with parameters 2 and 5.

All the simulations are done with the R software, and
for models Mg and My we use the benchden package.
Figure 3 shows the shape of the densities we have used to
generate the data sets.

Figure 4 shows, for some models, the estimator ob-
tained using AggregHist (red curve), BagHist (green curve)
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and StackHist (blue curve) for n = 1000 observations and
M = 150 histograms for the two first algorithms. A simple
histogram is shown together with the three estimates. For
StackHist we aggregate six histograms having 5, 10, 20,
30, 40 and 50 equally spaced breakpoints and a ten fold
cross validation is used. Both AggregHist and BagHist
give more smooth estimators than StackHist.

Figures 5 and 6 show the adjusted densities obtained
from AggregHist and BagHist when increasing the num-
ber M of histograms for model M;.

4.2. Tuning the Algorithms

We compare the following algorithms AggregHist, Bag-
Hist, StackHist, Stacking, AggPure and BoostKde with
some classical methods like Hist and Kde.

For AggregHist and BagHist we fix the number of
histograms to M = 200. The number of breakpoints is
optimized testing different values over a fixed grid of 10,
20 and 50 equally spaced breakpoints. The optimal value
retained for each model is the one which maximizes the
log likelihood over 100 independent test samples drawn
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Figure 3. Densities used for the simulations.

Copyright © 2013 SciRes.

0JS



348 M. BOUREL, B. GHATTAS
Model 1 Model 5
~
o Hist = AggregHist = BagHist = StackHist ,o_ T Hist = AggregHist = BagHist = StackHist
©
S ©
]
w0 -
=]
. o ]
2 o 2 ° \
(%] w
5 3 -
8 g - e < |
=]
N
o
]
- o 7
S
o o
[SIa [SI
I I I I I 1 [ I I 1
-3 -2 0 1 2 3 0 1 2
X X
Model 7 Model 8
g — Hist = AggregHist —— BagHist = StackHist o Hist = AggregHist —— BagHist = StackHist
<}
o
o
©
< S 7
I
2z 7 2z
@ ¢ ‘@
c T c <
8 ° 8 o7
]
P
]
R o. 7]
S
e e J
o o
I I I I 1 I I I I I I 1
-4 -2 0 2 4 -3 -2 -1 0 1 2 3
X X
Model 11 Model 12
o _= Hist = AggregHist = BagHist = StackHist — Hist = AggregHist = BagHist =  StackHist
— 0 .
N
o | - Eﬁ‘
~— F .
a7 £
27 AH o\
=]
= § 2 i |
o ° Qa
< e 4
o T A
0
S SN N
o o %ﬂ
c ~ o~
I T T T 1 I T T I 1
0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8
X X

Figure 4. Density estimators obtained used for Hist, AggregHist (red curve), BagHist (green curve) and StackHist (blue curve)
for 6 models among those used in the simulations.

Copyright © 2013 SciRes.

0JS



M. BOUREL, B. GHATTAS 349

M=1 M=4 M= 10 M= 50
- I = - <
o 7 o =] (=]
2 J 34 (|l 3 3
g g g £
< c c c
2 8 2 2
3 3 - S | ch
- - | = 5
o o
(=1 J
o | o 7 g -
g T T T T T @ T T T T T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 [ 2 4 -4 -2 0 2 4
x x X x
Figure 5. Density estimate given by AggregHist with different values of M for model M.
M=1 M=4 M= 10 M= 50
- 3 A 3 3
|
5 5 5 H
T T T T T T T T T T T T T T T < T T T T T
—4 -2 o 2 4 —4 -2 0 2 4 -4 -2 o 2 4 —4 -2 o 2 4

Figure 6. Density estimate given by BagHist with different values of M for model M.

Copyright © 2013 SciRes. 0Js



350 M. BOUREL, B. GHATTAS

from the corresponding model. We optimize the number

of breakpoints of the histogram in the same way as for

our algorithms. These optimal values are given in Table

1 for differents values of n (100, 500 and 1000). We

denote the optimal number of breakpoints L., Ly and

L 4 for Hist, BagHist and AggregHist respectively.

To make the comparisons as faithful as possible, we
have used for the other methods the same values sug-
gested by their corresponding authors:

e For Stacking, six kernel density estimators are aggre-
gated, three of them use Gaussian kernels with fixed
bandwidths h = 0.1, 0.2, 0.3 and the others use train-
gular kernels with bandwidths h = 0.1, 0.2, 0.3. The
number of cross validation samples is V = 10.

e For AggPure six kernel density estimators are aggre-
gated having bandwidths 0.001, 0.005, 0.01, 0.05, 0.1
and 0.5. Instead of the quadratic algorithm used by the
authors in [11], we optimize the coefficients of the
linear combination with the EM algorithm. The final
estimator is a mean over |S| = 10 random splits of the
original data set.

e For BoostKde, we use 5 steps for the algorithm ag-
gregating kernel density estimators whose bandwidths
are optimized using Silverman rule of thumbs (see
Appendix). Normalization of the output is done using
numerical integration. Extensive simulations we have
done using BoostKde showed that more steps give rise
to less accurate estimators and unstable results.

For Kde we use a standard gaussian kernel and some
common data driven bandwidth selectors:

Table 1. Optimal number of breakpoints used for Hist and
our algorithms for each model and for each value of n.

n =100 n =500 n=1000

Model

L/—/ LBH LAH L/—/ LBH LAH L/—/ LBH LAH

M; 50 50 10 50 10 10 50 20 10
M, 50 50 50 50 50 50 50 50 50
M; 50 50 10 50 50 20 50 50 20
Ms; 50 50 20 50 50 50 50 50 50
Ms 50 50 10 50 50 20 50 50 20
M¢ 50 10 10 20 20 20 20 20 20
M; 50 10 10 50 20 20 50 20 20
Mg 50 50 50 50 50 50 50 50 50
My 50 50 20 50 50 50 50 50 50
Mo 50 50 50 50 50 50 50 50 50
My 50 10 10 10 10 10 20 20 10
Mz 50 10 10 20 20 10 20 20 20
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o the Silverman’s rules of thumb ([14]) using factor 1.06
(KdeNrd) and factor 0.9 (KdeNrd0),
o the unbiased cross-validation rule (KdeUCV, [15]),
o the Sheater Johns plug-in method (KdeSJ, [16,17]).
These choices are described in details in the appendix.

4.3. Results

The performance of each estimator is evaluated using the
Mean Integrated Squared Error (MISE):

MISE(f(x))zE(j[f(x)—f(x)]zdx) ©)

where f is the true density and f its estimate. It is
computed as the average of the integrated squared error

1SE( (x)) = [[ F (x)~ £ ()] dx (10)
over 100 Monte Carlo simulations.

For the same simulations, we have also computed the
log likelihood criterion whose maximization is equiva-
lent to reducing the Kullback-Leibler divergence between
the true and the estimated densities (see P. Hall, “On Kull-
back-Leibler loss and density estimation”, Ann. Stat., Vol.
15, 1987). The results obtained using this criterion are
unstable due to numerical approximation of the log like-
lihood for small values of the densities. In particular the
histogram has very good performance with respect to the
log likelihood when compared to all the other methods.
This is due to the fact that when computing the log like-
linood we omit the points i for which f (x;) equals zero,
and such points appear much more for the histogram than
for the other methods. For all these reasons we do not
report these results.

Figure 7 shows how the MISE varies when increasing
the number of histograms in AggregHist and BagHist. For
all the models, the adjustment error decreases significant-
ly for the first 100 iterations. In most of the cases Ag-
gregHist gives a better estimate than BagHist.

Table 2 shows the execution time for AggregHist,
BagHist, Stacking and AggPure for n = 2000. The other
algorithms need much less time as they combine very
few simple estimators and do not use any resampling.
Computing time is significantly lower for our algorithms.

We compare now all the algorithms cited above over
the twelve models using n = 100, n = 500 and n = 1000.
For AggregHist and BagHist we use M = 200 histograms.
Tables 3 to 5 summarize the results for each value of n =
100, 500 and 1000. For each model and each method we
give the average of 100 x MISE over 100 Monte Carlo
simulations. For the Kde we kept the best result among
the four choices of bandwidth selectors (nrd, nrd0, ucv
and sj), the best choice being between brackets. The best
result for each simulation model is put in bold.

It is clear that no method outperforms all the others in
all the cases and for all the methods the error decreases
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Figure 7. MISE error versus number of aggregated histograms in AggregHist and BagHist for models 1 to 12.
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Table 2. Time (in seconds) elapsed for each model for AggregHist, BagHist, Stacking and AggPure taking n = 2000 and M =
50.

Model AggregHist BagHist Stacking AggPure
My 18.3 19.6 22.3 161.4
M; 20.3 19.2 24.6 168.6
M; 174 17.6 27.7 160.2
My 20.3 19.3 28.3 177.6
Ms 19.1 20.5 31.8 177.6
Me 20.0 18.0 253 165
M7 20.1 19.6 27.7 163.2
Ms 19.6 20.2 25.1 166.8
My 18.8 204 25.3 170.4
Mo 18.5 19.6 245 163.8
My 20.0 19.8 25.1 175.8
M 20.0 19.2 20.8 160.8

Table 3. 100 x MISE with n =100 and M = 200.

Model Hist Kde Stacking StackHist BoostKde AggPure BagHist AggregHist
M, 2.94 0.18(nrd0) 0.268 0.546 0.441 0.407 2.33 0.268
M; 5.06 4.24(ucv) 2.35 1.48 8.19 2.58 4.38 331
M3 0.15 0.0103(nrd) 0.0612 0.0301 0.0306 0.0995 0.118 0.0148
M, 141 0.189(nrd0) 0.211 0.389 1.29 0.366 1.15 0.301
Ms 6.72 3.02(ucv) 0.897 19 0.515 1.09 5.18 0.757
Me 0.843 0.156(ucv) 0.112 0.18 0.114 0.166 0.137 0.114
M7 1.3 0.542(ucv) 0.196 0.413 0.262 0.233 0.303 0.31
Mg 3.99 2.16(ucv) 151 1.7 3.19 1.82 3.07 2.26
Mo 2.51 1.35(ucv) 0.933 1.14 1.34 0.97 1.97 0.841
Mio 6.24 6.72(nrd0) 5.76 5.79 6.21 5.22 491 479
My 18.6 2.2(nrd0) 122 2.75 1.87 13 2.48 1.75
M 133 58.1(nrd0) 8.67 21.3 16.6 12.9 18.4 13.8

Table 4. 100 x MISE with n =500 and M = 200.

Model Hist Kde Stacking StackHist BoostKde AggPure BagHist AggregHist
M; 0.46 0.0839(nrd0) 0.0536 0.16 0.131 0.0825 0.085 0.05
M; 0.742 3.01(ucv) 1.25 0.605 6.6 1.41 0.684 0.477
M; 0.0241 0.00292(nrd) 0.0121 0.009 0.0192 0.0194 0.0185 0.00502
M4 0.182 0.091(nrd0) 0.042 0.113 1.57 0.0576 0.131 0.0861
Ms 1.26 2.01(ucv) 0.219 0.57 0.107 0.41 0.916 0.231
Me 0.073 0.0843(ucv) 0.0311 0.0624 0.022 0.0329 0.0448 0.0294
M, 0.231 0.313(ucv) 0.0734 0.142 0.0368 0.0694 0.115 0.0675
Mg 0.933 1.78(ucv) 0.603 0.707 2.13 0.765 0.606 0.485
Mo 0.625 0.89(ucv) 0.403 0.449 1.06 0.449 0.507 0.379
Mio 48 6.12(ucv) 4.47 4.94 5.43 2.79 43 413
My 0.856 1.49(nrd0) 0.444 0.902 0.505 0.6 0.66 0.367
Miz 9.46 40(ucv) 2.11 6.79 46 3.43 7.22 2.65
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Table 5. 100 x MISE with n = 1000 and M = 200.

Model Hist Kde Stacking StackHist BoostKde AggPure BagHist AggregHist
M, 0.216 0.0694(nrd0) 0.0364 0.089 0.076 0.0407 0.0663 0.0359
M; 0.378 2.49(ucv) 0.864 0.365 6 0.918 0.333 0.21
M; 0.0112 0.00178(nrd) 0.00614 0.00556 0.0183 0.00971 0.0085 0.00252
M4 0.0893 0.0748(nrd0) 0.0285 0.0716 144 0.0315 0.0557 0.0381
Ms 0.627 1.69(ucv) 0.155 0.349 0.0674 0.271 0.445 0.152
Me 0.0535 0.0662(ucv) 0.0218 0.0426 0.0124 0.0221 0.0321 0.0203
M7 0.137 0.227(ucv) 0.0381 0.084 0.0198 0.0401 0.0835 0.0453
Mg 0.607 1.69(ucv) 0.37 0.522 1.54 0.482 0.337 0.299
Mo 0.393 0.753(ucv) 0.277 0.321 0.889 0.299 0.32 0.259
Mo 4.76 5.57(ucv) 4.09 4.78 5.39 1.97 4.44 4.16
M 0.681 1.19(nrd0) 0.268 0.544 0.302 0.381 0.531 0.202
Mz 4.99 32.7(ucv) 1.28 423 2.67 2.14 3.7 2.3

when increasing the sample size. Ensemble methods es-
timators outperform largely the Hist and Kde in most
cases except three models (standard gaussian, z7 and
student distributions) for n = 100, and only the z2
model for n = 500 and 1000. For the gaussian mixtures
models BoostKde gives the best results for the largest
values of n (500 and 1000). Stacking outperforms the
other algorithms for the student and the triangular distri-
butions for n = 1000. For model Mo, AggPure achieves
the best performance. For the remaining simulation mod-
els, AggregHist outperforms all the other methods when
n = 1000. When it is doesn’t achieve the lowest error, it
is still very close to the best especially for the most chal-
lenging distributions used in models Mg to M.

5. Conclusion

In this paper we have given a brief summary of most
existing approaches for density estimation based on ag-
gregation. We have shown using a wide range of simula-
tions that, like for supervised learning, ensemble methods
give rise to better density estimators than the Histogram
and the Kernel Density Estimators. Among the existing
methods we have tested direct extensions of stacking
(Stacking) and of boosting (BoostKde) as well as the most
recent approach found in the literature called AggPure.
We have also suggested three new algorithms among
which two of them BagHist and AggregHist combine a
large number of histograms. BagHist randomizes the data
using bootstrap samples whereas AggregHist uses the ori-
ginal data set, randomizing the histogram breakpoints.
AggregHist gives very good results for most of the situa-
tions especially for large sample sizes, and it is easy to
implement and has the lowest computation cost among

Copyright © 2013 SciRes.

all the ensemble density estimators.

Most of the presented algorithms may be extended to
the multivariate case and are now under study both em-
pirically and theoretically. All the simulations and the
methods have been implemented within an R package
available upon request.
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Appendix

Different Choices for the Bandwidth Selection in
KDE

If T={x,,x,}denotes a sample obtained from a ran-
dom variable X with density f, the kernel density estima-
tion of f at point x is:

~ 1 X=X
JOREYIE

where K is a kernel function.

A usual measure of the difference of the estimate den-
sity and the true density is the Mean integrated Squared
Error (MISE) which may be written as:

MISE (f,) = [Bias F, (x)) dx
+.[Var(fh x))dx

: ] (11)

(12)

It is well known

Lrk)+ e ()R(1)

+o[n—1hj+o(h4)

with h—0 and nh— <+ where R(g)=[g*(x)dx

and #Z(K)=d[X2K(X)dX The Asymptotic Mean Inte-
grated Squared Error (AMISE) is:
h4

TR a3)

MISE ( f, | =

~ 1
AMISE( f, |=—R(K
and it is minimized for
1/5
N R(K
h {#} n (14)
ﬂz(K)R(f )

Taking Gaussian kernel K and assuming that the un-
derlying distribution is normal, Silverman ([14]) showed
that the expression of h” is
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~
hyro =1 06m|n{ 1Q4} (15)

where & and IQR are the standard deviation and the
interquantile distance respectively of the sample. This is
known as Silverman’s rule of thumbs. Furthermore Sil-
verman recommended to use for the constant the values
0.9 (Nrd0) or 1.06 (Nrd).

Another choice of the bandwidth is given by the cross
validation method ([15]). Here we consider the Integrated
squared error (ISE) which is given by

ISE( ) [f2-2f f, f+]f? (16)

Observe that the last term does not involve h. The least
squares cross-validation is

LCSV (h _[fz—— > £ (%) (17)

where fh('i) denotes the kernel estimator constructed
from the data without the observation i. In [17], it is prov-
ed rewriting

~ 1 Lo X. — X
f2(x)dx =—— KsK| L1 18
Ih(X)xnzhi_ljZ_;*[ . j (18)

where * denotes the convolution, that LSCV (h) is an
estimator of ISE( ) jfz Moreover it is easy to veri-

fy that E(LCSV (h))=MISE(f, )- [ f*(x

least squares cross-validation is also called unbiased cross-
validation. We denote by h,, the value of h which mi-
nimizes LSCV (h).

Finally, the plug-in method of Sheather and Jones re-
places the unknown R(f”)used in the optimal value of

h by an estimator R( fg”(h)) where g is a “pilot bandwidth”

dx thus the

which depends on h (see [16-18] for more details).
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