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ABSTRACT 

In its broadest sense, this paper reviews the general outlier problem, the means available for addressing the discordancy 
(or lack thereof) of an outlier (or outliers), and possible strategies for dealing with them. Two alternate approaches to 
the multiple outlier problem, consecutive and block testing, and their respective inherent weaknesses, masking and 
swamping, are discussed. In addition, the relative susceptibility of several tests for outliers in normal samples to the 
swamping phenomena is reported. 
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1. Introduction 

An outlier, or more descriptively an “outright liar” [1], is 
an observation (even a subset of observations) which 
appears to be out of line, that is, not consistent with the 
remainder of a data set. Such mavericks, often either in- 
nocently missed in the blind transition between data col- 
lection and computer or not so innocently slipped under 
the rug of “what isn’t seen can’t hurt”, should fire the 
curiosity and concern of researchers. 

1.1. The Origin of Outliers 

In most instances, the origin of outliers can be traced to 
one of three sources: 1) errors of measurement, 2) faults 
in execution, or 3) intrinsic variability. Values linked to 
either of the first two categories are straightforwardly 
rejected or replaced. Although the lack of any identifi- 
able deterministic source does not positively rule out 
such causes, it should raise the possibility that intrinsic 
variability is the culprit. As such, the outlier must be 
studied “relative to some initial model for the data gen- 
eration” [2: p. 247]. The recognition of an outlier is un- 
deniably a subjective process, but one which does to 
some extent incorporate the crude notion of an “underly- 
ing distribution”; otherwise, how did the observation(s) 
“catch the eye” of the researcher and become identified  

as “not consistent with the rest of the sample”? 

1.2. Methods for Outlier Detection 

There are seven generally accepted “forms” of statistical 
tests of discordancy [see, 3]: 

1) Excess/spread statistics are ratios of the differences 
between an outlier and its nearest neighbor to the range 
or spread of the sample [e.g., 4,5]. 

2) Range/spread statistics replace the numerator of the 
excess/spread statistic with the sample range and contrast 
it with another measure of dispersion, often the sample 
standard deviation [e.g., see 6,7]. 

3) Deviation/spread statistics use in the numerator a 
measure of distance between an outlier and some meas- 
ure of central location in the sample [e.g., 8]. 

4) Sum of squares statistics are tests expressed as rati 
os of sums of squares for the reduced and total samples. 
Reduced sample sum of squares simply refers to the cal- 
culation based upon the total sample minus outliers [see 
8]. 

5) Higher-order moment statistics are tests not speci- 
fically designed for assessing outliers, such as skewness 
and kurtosis, but which nevertheless are quite useful in 
this context [e.g., 9,10]. 

6) Extreme-location statistics take the form of ratios of 
extreme values (outliers to measures of central location), 
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usually the sample mean [11-14]. 
7) W-statistics for normal data are simply the ratio of 

the square of a linear combination of the ordered sample 
values to the sum of squares of the individual deviations 
about the mean [15-17]. 

1.3. Treatment of Outliers 

Having established the discordancy of the observation (or 
observations), how does one deal with the situation? Ac- 
cording to Barnett [2: p. 247], four distinctive means of 
handling discordant outliers can be identified: 

1) With accommodation the researcher is determined 
to draw inferences, typically concerning location or dis- 
persion, regardless of the existence of outliers in the 
sample. Accommodation, then, concerns itself with em- 
ploying robust methods, i.e., methods that protect against 
the existence of outliers. 

2) A discordant outlier may lead to a reevaluation of 
the initial assumption as to the nature of the underlying 
probability model. As a result, the incorporation of the 
outlier may lead to the adoption of a new model. 

3) The existence of outliers may foster the identifica- 
tion of important characteristics of the population. Often 
this can be accounted for by the development of a new 
“mixture” alternative probability model which assumes 
most of the data are coming from distribution A whereas 
a small probability of observations are being selected 
from a distinctly different population with distribution B. 

4) Although widely believed to be the sole option for 
discordant outliers, rejection is essentially reserved for 
cases in which the initial probability model is considered 
sacred. Under this restriction, the only alternative is to 
dispose of the “contaminant” and proceed with the treat- 
ment of the residual sample. 

1.4. Subjective Nature of Outlier Detection 

The process just described is fraught with subjectivity. 
Fisher [18] points out the subjective nature of the re- 
searcher’s initial response as to how many, if any, out- 
liers exist, the selection of an appropriate probability mo- 
del for the data, the actual selection of an objective sta- 
tistical outlier procedure, the decision as to how parame- 
ter estimates should be calculated for the test statistic 
(with or without the outlier present), and how the dis- 
cordant outlier should be treated. She also demonstrates 
that the testing results can be greatly influenced by the 
subjective decisions adopted. Fisher then concludes: 

Until a satisfactory definition of an outlier is formu- 
lated, the… researcher needing an outlier test would be 
well-advised to do some research on the test itself, and 
on the consequences of the subjective decisions required 
in its very execution (p. 36). 

Although one purpose of this paper is to review the 

general outlier problem, another more substantial goal is 
to acquaint the reader with current work directly related 
to some of the problems associated with the application 
of outlier methods. 

1.5. The Multiple Outlier Problem: Consecutive 
versus Block Testing 

The simplest situation to imagine is a single upper or 
lower, potentially discordant, outlier. Suppose, however, 
that the researcher observes or anticipates a cluster (k  2, 
where k is the number of outliers) of outliers in an ex- 
treme upper and/or lower position relative to the reman- 
der of the sample. Two contrasting approaches have been 
proposed in the literature for dealing with such multiple 
outlier problems. 

Consecutive testing requires that a given single-outlier 
procedure be applied repeatedly to outliers, one at a time, 
beginning with the most extreme observation and pro- 
ceeding “in order of decreasing degree of deviancy, until 
an observation “fails” the discordancy test (i.e., moving 
inward) and is declared to be consistent with the rest of 
the data set” [19: pp. 9-10]. Alternatively, a single-outlier 
procedure can be applied consecutively in an outward di- 
rection until significance is reached [(e.g., 20,21]. This 
latter approach has an advantage that will be addressed 
below. 

Block procedures, on the other hand, require the re- 
searcher to scrutinize suspected discordant observations 
as a unit. Tests have been devised for a single upper- 
and-lower outlier pair, blocks (k  2) of upper or lower 
outliers, or clusters (k  2) of both upper and lower sus- 
pected values. Block testing is an all-or-none proposi- 
tion in that all observations in the unit are declared dis- 
cordant, or none of them are. 

As might be expected, both approaches have inherent 
weaknesses. The use of block procedures requires a deci- 
sion as to the number of observations one suspects to be 
discordant. Fisher [19: pp. 10-11] gives an excellent ex- 
ample that demonstrates the possible difficulties associ- 
ated with this seemingly straightforward task. Consider 
the following three sets of data: 

A: 1, 2, 3, 4, 5, 6, 7, 30, 35 
B: 1, 2, 3, 4, 5, 6, 12, 20, 30 
C: 1, 2, 15, 18, 19, 20, 21, 33, 35 
In sample A, most observers would agree that the two 

upper values, 30 and 35, are suspicious. Where to draw 
the line to delineate the upper outliers becomes more of a 
challenge in sample B. And in sample C it is not even 
clear as to which end of the data set might, in fact, con- 
tain outliers. 

Obviously, prespecification of the number of outliers 
is not an issue in consecutive testing. However, one prob- 
lem facing the use of consecutive procedures is the effect 
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of masking. 

1.6. Masking 

Barnett and Lewis define masking as “the tendency for 
the presence of extreme observations not declared as 
outliers to mask the discordancy of more extreme obser- 
vations under investigation as outliers” [22: p. 114]. Take, 
for example, data set A above. If one wished to check for 
the discordancy of the values at the upper end of the 
sample using the consecutive testing approach, the first 
objective would be to apply the chosen single-outlier 
procedure to the observation X(9) = 35. (In this paper, X(i) 
refers to the ith ordered value in a given sample of ele- 
ments.) If X(9) were to be declared discordant, the next 
move would be to test X(8) = 30 and so on until an obser- 
vation failed to lead to a rejection. Presumably, X(9) and 
X(8) would be declared an outlier set. Masking can influ- 
ence the outcome of this process, however, if the extreme 
nature of the observation X(8) (either a valid member of 
the sampled population or a discordant outlier itself) 
prevents the detection of X(9) as an outlier. Therefore, the 
masking phenomenon can halt the initiation of any con- 
secutive testing procedure. However, consecutive appli- 
cation of single-outlier tests in an outward direction may 
avoid this problem [20,21]. 

Research conducted by Fisher [19] into the masking 
issue yielded some interesting and useful results. She 
used a computer simulation to generate various size sam- 
ples (n = 10, 30, and 50) of pseudo-random numbers 
from a normal distribution. Then, according to specified 
criteria, a pair of outliers was located at the upper end of 
each ordered sample for each of the four single-outlier 
tests under investigation. Once all outliers were in place, 
a metric-free masking index was calculated by sample 
and averaged over sample size and test statistic. From 
this information a ranking of the relative susceptibility to 
masking of each of the four methods was created. 

1.7. Swamping 

Drawing again on Sample A (previously discussed in 
connection with masking), a simple example will demon- 
strate block testing’s analogue to masking: the swamping 
phenomenon. Suppose that, for whatever reason, a re- 
searcher wishes to apply a block procedure for outlier 
detection to sample A and specifies the number of suspi- 
cious observations (k) to be the upper 3. That is, the val- 
ues X(9) = 35, X(8) = 30, and X(7) = 7 are to be tested as 
being inconsistent with the remainder of the sample 
against some prespecified underlying probability distri- 
bution. A block test applied to these three upper values 
may well declare them discordant as a unit; the extreme 
observations 30 and 35 have “carried” the otherwise un- 
exceptional value 7. 

The above example cites a situation with an obvious 
upper outlier pair; however, the use of a block test for k = 
3 upper outliers may declare 35, 30, and 7 discordant. 
The nearest neighbor to 30 and 35, i.e., 7, may be a valid 
member of the population being sampled. The phenome- 
non may easily be simplified to a single outlier swamp- 
ing a single neighbor or generalized to a situation where 
a cluster of k outliers swamps the nearest (n - k)th nei- 
ghbor(s). 

Swamping poses a potential problem for the use of any 
block procedure. Although the possible threat of the 
swamping effect has been defined and documented, very 
little if anything is known of the relative vulnerability of 
various block tests to it. 

2. Methods 

The approach taken to study swamping in this study was 
similar to Fisher’s in that it involved a simulation in 
which various sizes (n = 10, 30 and 50) of computer gen- 
erated pseudo-random samples from a normal distribu- 
tion ( = 0,  = 1) based upon a self-programmed four- 
parameter algorithm. Minitab (release 16.2.3) was used 
to generate assessments of the swamping phenomenon as 
well as all graphics. Outliers were placed at the upper 
end of each ordered sample according to specified crite- 
ria for each of the block tests being studied. Having all 
outliers placed, a unit-free swamping index was calcu- 
lated for Special Case I (k = 1 outlier swamping its nea- 
rest neighbor), Special Case II (k = 2 outliers swamping a 
third value) and Special Case III (k = 3 outliers swamp- 
ing a fourth value, and the simplest example of the most 
generalized case of k outliers swamping the nearest (n − 
k)th neighbor). 

2.1. Example: Special Case I 

Given a specific sample and a particular block test, for a 
given -level there exists a point above the mean, at or 
beyond which any sample value and its next lowest 
“core” neighbor will be declared discordant, as a unit. 
Define O1 as the point at or beyond which a given block 
test will declare  nX  and  1n  both discordant upper 
outliers, i.e.,  n

X 
X  will swamp  1n . Define d1 as 

 1 1n

X 
O X   which represents the relative susceptibility of 
that test to swamping. 

Defining d2 as  1 nO X  (where  nX  is the mean of 
the n − 1 “core” of observations), the ratio of d2 to d1, or 

2 1S d d , provides a metric-free indication of a block 
test’s susceptibility to the swamping phenomenon. The 
greater the magnitude of the swamping index, the greater 
the susceptibility of a given test to the swamping phe- 
nomenon (see Figure 1) (Given more than a single outlier, 
a centroid value ( X  or median) representing the outliers 
is suggested for use in determining the swamping index). 
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Figure 1. Outlier placement and swamping index. 
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2.2. Test Selection and the Swamping 
Consideration 

This study focused on four specific block procedures for 
multiple outliers. Test T2 was restricted in its usefulness 
due to its design (only appropriate for k = 2 outliers), as 
well as limitations in the availability of distributional 
information. It is recognized that any attempt at outlier 
test selection is influenced by many considerations. The 
researcher must contemplate the goals and objectives of 
the study, existing knowledge about the population dis- 

tribution, as well as personal and practical issues as they 
relate to the application of such procedures. 

3. Results 

Those hoping to avoid the swamping effect when adopt- 
ing the block approach would certainly wish to avoid test 
T3 under small sample conditions, n = 10 (see Table 1 
for a summary the relative susceptibility of each test to 
swamping, for each case; graphical presentations of the 
results are provided by Figures 2-5). In fact, when sam- 
ples are relatively large (n = 30 to 50) and k is relatively 
small (e.g., 2 or 3), or when the reverse is true, one 
would also be ill-advised to apply T3. An investigator in 
the exploratory phase primarily interested in population 
characteristics might wish to take a more “conservative” 
approach if very small samples or very few outliers are 
the rule. For instance, the situations outlined above might 
be better served by the application of test T2, if appropri- 
ate; otherwise, T1, or even T4 would be suitable middle- 
of-the-road choices. 

On the other hand, access to a larger data set with sus- 
picion of more than 2 or 3 of these maverick observa- 
tions points toward T3 as more appropriate. Within this 
context, test T3 exhibited less vulnerability to swamping 
than T1 or T4, and might be considered the most satisfac- 
tory technique. Quite clearly, test T4 stands alone as most 
susceptible to swamping given larger samples with a hi- 
gher frequency of potential outliers. 

As general as these recommendations may be, certain 
explicit inclinations in the behavior of these tests under 
tightly controlled situations do make the researcher 
 
Table 1. Ranked susceptibility of swamping (most to least) 
and mean swamping index (S, in parentheses) of block out-
lier tests. 

 Special Case 

Sample Size I II IIIA IIIB 

T3 (12.978) T3 (10.684) T3 (2.605) T3 (2.156)

T4 (4.414) T4 (1.472) T4 (1.215) T1 (1.261)

T1 (2.183) T1 (1.431) T1 (1.191) T4 (1.254)
10 

T2 (1.972)    

T3 (11.007) T3 (4.029) T4 (2.504) T4 (2.174)

T1 (5.907) T4 (2.958) T1 (2.233) T1 (1.993)

T4 (4.690) T1 (2.611) T3 (2.111) T3 (1.952)
30 

T2 (4.289)    

T3 (14.153) T4 (4.565) T4 (7.896) T4 (2.745)

T4 (6.306) T3 (3.044) T1 (2.499) T1 (2.363)50 

T1 (4.484) T1 (3.037) T3 (2.250) T3 (1.981)
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Figure 2. Swamping index by test: Special case I. 
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Figure 3. Swamping index by test: Special case II. 
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Figure 4. Swamping index by test: Special case IIIa. 
 
aware of important considerations in the selection of any 
block procedure. Given the evidence that tests T1, T2, and 
T4 became more susceptible to swamping as sample size 
increased (and the number of potential outliers remained 
constant), one should weigh carefully the decision to 
adopt a block technique as opposed to a consecutive one,  
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Figure 5. Swamping index by test: Special case IIIb. 
 
since Fisher [19] has demonstrated that the influence of 
masking is inversely related to n, for this latter approach. 
However, it was precisely this characteristic, the suscep- 
tibility to swamping being inversely related to sample 
size, which made test T3 more attractive as sample size 
and k increased. 

Although an exception existed (n = 50, T4), this study 
revealed that for a given test and sample size, vulnerabil- 
ity to the swamping effect decreased as the block of po- 
tentially discordant observations grew. Therefore, re- 
gardless of the procedure being considered by the inves- 
tigator, as the number of rogue observations mounts the 
likelihood of interference by swamping appears to di- 
minish, and therefore test selection based upon this crite- 
rion becomes less productive. 

In summary, if one standard in test selection is swamp- 
ing, tests T1 and T2 would be recommended as most effi- 
cacious for small samples in general (especially if nor- 
mality is assured), as well as for large samples with rela- 
tively small blocks of outliers. Conversely, T3 becomes 
most desirable under circumstances where a sizable 
block of outliers appears to exist in a relatively large 
sample, but T4 should be avoided. 

4. Discussion 

It is noteworthy that Fisher [19] found an unusual quality 
in one of the tests she evaluated. Upon placing the pair of 
outliers in her samples, she found a tendency for one test 
to place the second outlier inside the first. This occurred 
81% of the time for samples of size 30 and 94% of the 
time for samples of size 50. It should also be noted that 
this same test was least susceptible to masking and in 
terms of outlier definition (another aspect of Fisher’s 
study was to investigate the definitions of “outlier” in- 
herent in the several single-outlier tests under evaluation), 
and it was the least conservative. She concluded that this 
test “defined as outliers observations which were rela- 
tively closer to the [“center” of the sample] than the other 
tests did” (p. 49). 
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Findings in the swamping study indicated a similar 
phenomenon with the single outlier (or “centroid” of 2 or 
3 outliers in cases II and III, respectively) being placed 
within the upper boundary set by 1n k  more often 
with increasing sample size for T1 and T4, and yet T2 and 
T3 were inversely related to n in this respect. This could 
simply indicate, as suggested by Fisher’s [19] results, 
that those block tests exhibiting this enigma rather fre- 
quently are quite liberal in terms of outlier definition. 
However, this peculiarity deserves further thought, dis- 
cussion, and investigation. 

X  

The need to assess and rank single- and multiple-out- 
lier tests in terms of their relative degree of “conserva- 
tism” concerning outlier definition, as well as “suscepti- 
bility” to such phenomena as masking and swamping 
may assist with developing the generalized outlier meth- 
odology alluded to by Barnett and Lewis [3], Rosner [26], 
and others. 
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