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ABSTRACT 

The generalized order statistics which introduced by [1] are studied in the present paper. The Gompertz distribution is 
widely used to describe the distribution of adult deaths, and some related models used in the economic applications [2]. 
Previous works concentrated on formulating approximate relationships to characterize it [3-5]. The main aim of this 
paper is to obtain the distribution of single, two, and all generalized order statistics from Gompertz distribution with 
some special cases. In addition the conditional distribution of two generalized order statistics from the same distribution 
is obtained. The Gompertz distribution has a continuous probability density function with location parameter a and 

shape parameter b,    1e
e ,
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   is the generalized integro-exponential function [6]. In this paper we shall obtain joint 

distribution, distribution of product of two generalized order statistics from the Gompertz distribution, and then derive 
some useful formulas of these distributions as special cases. 
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1. Introduction 

Order statistics appears in many statistical applications 
and is widely used in statistical modeling and inference. 
Such models describe random variables arranged in as- 
cending order of magnitude. In a wide subclass of gener- 
alized order statistics, representations of marginal, joint 
and probability density distribution functions are devel- 
oped. The results are applied to obtain these representa- 
tions for several expressions for the joint of generalized 
order statistics from Exponential Pareto distribution [7]. 

The Gompertz distribution plays an important role in 
modeling survival times, human mortality and actuarial 
tables. According to the literature, the Gompertz distri- 
bution was formulated by Gompertz (1825) to fit mortal- 
ity tables. On the other hand, generalized order statistics 
(GOS) have been of interest in the past ten years because 
they are more flexible in reliability theory, statistical 
modeling and inference, the generalized order statistics 
have been introduced as a unified distribution theore-  

tical set-up which contains a variety of models of ordered 
random variables with different interpretations. The sub- 
ject of order statistics has been further generalized and 
the concept of generalized order statistics (GOS) is in- 
troduced and studied by Kamps in a series of papers and 
books [1,8-10]. 

The ordered random variables such as order statistics 
play an important role in many branches of statistics and 
applied probability. Kamps in [9] introduced the concept 
of GOS and showed that order statistics, record values, 
and some other ordered random variables can be consid- 
ered as special cases of generalized order statistics. M. 
Ragab, in [11] established several recurrence relations 
satisfied by the single and the product moments for order 
statistics from the Generalized Exponential Distribution 
(GED). The relationships can be written in terms of po- 
lygamma and hypergeometric functions and used in a 
simple recursive manner in order to compute the single 
and the product moments of all order statistics for all  
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1ksample sizes. 
The Generalized Exponential Distribution (GED) with 

two non-negative parameters   and   is considered 
to be one of those distributions which have real attention 
from researchers. It has been studied and introduced by 
[12]. 

In the present paper we shall obtain joint distribution 
and distribution of product of two generalized order sta- 
tistics from the Gompertz distribution. 

2. Generalized Order Statistics (GOS) 

Generalized order statistics (GOS) have been of interest 
in the past ten years because they are more flexible in 
reliability theory, statistical modeling and inference [12], 
Uniform generalized order statistics is defined via some 
joint density function on a cone of Rn. (GOS) based on 
an arbitrary distribution function F is defined by means 
of the inverse function of F, as in the following: 

Definition (1) Let  F x

, , , XΛ

 , , ,

 denotes an absolutely con- 
tinuous distribution function with density function f(x), 
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Now, if   and   it gives the joint pdf of 
“n” ordinary order statistics 1, 2, ,n n n nX , , ,X XΛ

1m
, more- 

over if  1k,   , it gives the joint pdf of the first 
“n” upper records of the independent identically distrib- 
uted random variables. 

3. The Gompertz Distribution 

A random variable X is said to have Gompertz distribu- 
tion with location parameter a and shape parameter b, has 
a continuous probability density function (pdf) and for- 
mulated as, 
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with a supported domain on . 
The distribution function (cdf) is: 
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4. Joint Distribution of All Generalized 
Order Statistics 

4.1. Joint Distribution of All Generalized Order 
Statistics for Generalized Gompertz 
Distribution (GOSGD) 

The generalized order statistics were defined by [14] as 
follows: 
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generalized order statistics (based on F), which have a 
joint density function of the form 
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The marginal density function of rth GOS 
.  

 , , , , 1, ,X r n m k r n%  based on Λ F  is formulated by 
[13] as, 
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We discuss some special cases in Corollaries 2.2 and 
2.3. 

Corollary 4.1 (The joint pdf of all ordinary order 
statistics for Gompertz Distribution) 

In Equation (5), let  and  then the joint 
pdf of all ordinary order statistics  
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We discuss some special cases in Corollaries 2.5 and 
2.6. 

4.2. Joint Distribution of Two Generalized Order 
Statistics 

The joint pdf of and generalized order statistics, 
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, 

we get Equation (15) and that completes the proof. 

Distribution of Single Generalized Order 
Statistics for Gompertz Distribution 

Lemma 5.3 Using the pdf and cdf given in Equations (2) 
and (3) in Equation (13), and collecting terms we get 
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Corollary 5.1 The pdf of the minimum generalized 
order statistic for Gompertz Distribution 

In Equation (16), let  , 

  1 1 1 1c k n m     , and collecting terms then    
the pdf of the minimum generalized order statistic for 
Gompertz Distribution is 

 
  

 
  

 

1, , ,

1 1 1
e 1 e 1

1 1

e e
bx bxi i

i

n m k

k n ma a
bx

b b

f x

k n m

a

   
   

     

 
  
 

%

1k

    (17) 

Corollary 5.2 The pdf of the minimum ordinary 
statistics for Gompertz Distribution 

In Equation (17), let   and  then, 0m 
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Lemma 5.3 Using the pdf and cdf given in Equations 
(2) and (3) in Equation (15), and collecting terms we get 
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6. Conditional Distribution of Generalized 

Order Statistics 
Corollary 5.4 The pdf of the maximum generalized 

order statistic for Gompertz Distribution 
In Equation (18), let  and , then the pdf 

of the maximum ordinary order statistic for Gompertz 
Distribution 
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In this section some previous literature of the conditional 
distribution of generalized order statistics is presented 
and then derived these results for Gompertz distribution. 
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Corollary 5.5 (Conditional distribution of an ordinary 
order statistics) 

Using Theorem (5.1), if  and , then 
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Conditional Distribution of Generalized Order 
Statistics for Gompertz Distribution 

1 2 1n n s  Λsc n n  , and  

Lemma 5.5 Using Equation (20) The conditional pdf 
of     !
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Corollary 5.6 
In Equation (22), let  and , and collecting 

terms then the conditional pdf of two ordinary order sta- 
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where, 
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which is the well known conditional distribution of two 
ordinary order statistics    , ,0,1 , ,0,1X s n X r n  for 
LGD. 

7. Conclusion and Future Research 

In this paper, we have derived the joint pdfs of general- 
ized order statistics for Generalized and Linear Exponen- 
tial distributions in explicit forms. In addition, the pdf of 
the conditional distribution of generalized order statistics 
from those distributions is given. Furthermore, some spe- 
cial cases have been discussed. 

Many opportunities of future research are available. 
The plan for the future research on generalized order 
Statistics from Generalized and Linear Exponential dis- 
tributions can be split into two main areas. Estimation 
and hypothesis testing of Generalized Exponential pa- 
rameters based on generalized order statistics. 
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