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ABSTRACT

In deriving a regression model analysts often have to use variable selection, despite of problems introduced by data-
dependent model building. Resampling approaches are proposed to handle some of the critical issues. In order to assess
and compare several strategies, we will conduct a simulation study with 15 predictors and a complex correlation struc-
ture in the linear regression model. Using sample sizes of 100 and 400 and estimates of the residual variance corre-
sponding to R* of 0.50 and 0.71, we consider 4 scenarios with varying amount of information. We also consider two
examples with 24 and 13 predictors, respectively. We will discuss the value of cross-validation, shrinkage and back-
ward elimination (BE) with varying significance level. We will assess whether 2-step approaches using global or pa-
rameterwise shrinkage (PWSF) can improve selected models and will compare results to models derived with the
LASSO procedure. Beside of MSE we will use model sparsity and further criteria for model assessment. The amount of
information in the data has an influence on the selected models and the comparison of the procedures. None of the ap-
proaches was best in all scenarios. The performance of backward elimination with a suitably chosen significance level
was not worse compared to the LASSO and BE models selected were much sparser, an important advantage for inter-
pretation and transportability. Compared to global shrinkage, PWSF had better performance. Provided that the amount
of information is not too small, we conclude that BE followed by PWSF is a suitable approach when variable selection
is a key part of data analysis.
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1. Introduction predictive value of regression model cross-validation is
often recommended [2]. For models with a main interest
in a good predictor the LASSO by [5] has gained some
popularity. By minimizing residuals under a constraint it
combines variable selection with shrinkage. It can be re-
garded, in a wider sense, as a generalization of an app-
roach by [2], who propose to improve predictors with
respect to the average prediction error by multiplying the
estimated effect of each covariate with a constant, an
estimated shrinkage factor. As the bias caused by vari-
able selection is usually different for individual cova-
riates, [4] extends their idea by proposing parameterwise

In deriving a suitable regression model analysts are often
faced with many predictors which may have an influence
on the outcome. We will consider the low-dimensional
situation with about 10 to 30 variables, the much more
difficult task of analyzing ‘omics’ data with thousands of
measured variables will be ignored. Even for 10+ vari-
ables selection of a more relevant subset of these vari-
ables may have advantages as it results in simpler models
which are easier to interpret and which are often more
useful in practice. However, variable selection can intro-

duce severe problems such as biases in estimates of re-
gression parameters and corresponding standard errors,
instability of selected variables or an overoptimistic esti-
mate of the predictive value [1-4].

To overcome some of theses difficulties several pro-
posals were made during the last decades. To assess the
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shrinkage factors. The latter approach is intended as a
post-estimation shrinkage procedure after selection of
variables. To estimate shrinkage factors the latter two
approaches use cross-validation calibration and can also
be used for GLMs and regression models for survival
data.
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When building regression models it has to be distin-
guished whether the only interest is a model for predic-
tion or whether an explanatory model, in which it is also
important to assess the effect of each individual covariate
on the outcome, is required. Whereas the mean square
error of prediction (MSE) is the main criterion for the
earlier situation, it is important to consider further quality
criteria for a selected model in the latter case. At least
interpretability, model complexity and practical useful-
ness are relevant [6]. For the low-dimensional situation
we consider backward elimination (BE) as the most suit-
able variable selection procedure. Advantages compared
to other stepwise procedure were given by [7]. For a
more general discussion of issue in variable selection and
arguments to favor BE to other stepwise procedures and
to subset selection procedures using various penalties
(e.g. AIC and BIC) see [4] and [8]. To handle the impor-
tant issue of model complexity we will use different
nominal significance levels of BE. The two post-estima-
tion shrinkage approaches mentioned above will be used
to correct parameter estimates of models selected by BE.
There are many other approaches for model building.
Despite of its enormous practical importance hardly any
properties are known and the number of informative
simulation studies is limited. As a result many issues are
hardly understood, guidance to built multivariable regres-
sion models is limited and a large variety of approaches
is used in practice.

We will focus on a simple regression model

Y=8,+X"B +¢

with X a p-dimensional covariate. Let there be n ob-
servations (y,,x,),~(,.x,) used to obtain estimates

b, and b, =y—Xx'h of the regression parameters.

The standard approach without variable selection is
classic ordinary least squares (OLS). In a simulation
study we will investigate how much model building can
be improved by variable selection and cross-validated
based shrinkage. The paper reviews and extends early
work by the authors [2,4,9]. Elements added are a tho-
rough reflection on the value of cross-validation and a
comparison with Tibshirani’s LASSO [5]. With an in-
terest in deriving explanatory models we will not only
use the MSE as criteria, but will also consider model
complexity and the effects of individual variables. Two
larger studies analyzed several times in the literature will
also be used to illustrate some issues and to compare
results of the procedures considered.

The paper is structured in the following way. Section 2
describes the design of the simulation study. Section 3
reviews the role of cross-validation in assessing the pre-
diction error of a regression model and studies its be-
havior in the simulation study. Section 4 reviews global
and parameterwise shrinkage and assesses the perform-
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ance of cross-validation based shrinkage in the simu-
lation data. The next Sections 5 and 6 discuss the effect
of model selection by BE and the usefulness of cross-
validation and shrinkage after selection. Section 7 com-
pares the performance of post-selection shrinkage with
the LASSO. Two real-life examples are given in Section
8. Finally, the findings of the paper are summarized and
discussed in Section 9.

2. Simulation Design

The properties of the different procedures are investi-
gated by simulation using the same design as in [10]. In
that design the number of covariates p =15, the cova-
riates have a multivariate normal distribution with mean
u; =0, standard deviation o, =1 for all covariates.
Most correlations are zero, except Ry 5 = 0.7, Ry 10 = 0.5,
Rys= 0.5 Ryg=-07, R4=03R,,=05R, ;=05
and R, =0.7. The covariates X,, X; and X5 are
uncorrelated with all other ones. The regression coeffi-
cients are taken to be £, =0 (intercept), f; =, =p5=0,
ﬂ4 = _0.5, ﬁ5 :ﬂé :ﬂ7 = 05, ﬂg :ﬁg =1 and ﬁlO :1.5,
Bi=bBr=PB5=P.=5s=0.
The variance of the linear predictor
X"B=X,B ++X,pB, inthe model equals

var(XTﬂ) =B'C, f=6.25, where Cy is the covariance

matrix of the X’s. The residual variances are taken to be
0> =625 or o’ =2.5. The corresponding values of
the multiple correlation coefficient

Rzzvar(XTﬁ)/var<XTﬂ+0'2) are R*=0.50 and

R® =5/7=0.714, respectively. Sample sizes are n = 100
or n=400. For each of the four (02 , n) combinations,
called scenarios, N =10,000 samples are generated
and analyzed. The scenarios are ordered on the amount
of information they carry on the regression coeffients.
Scenario 1 is the combination (n =100,0° = 6.25), sce-

nario 2 is (n =100,0° = 2.50) , scenario 3 is
(n =400,0° = 6.25) and scenario 4 is

(n=400,0" =2.50).

Since the covariates are not independent, the contribu-
tion of X; to the variance of the linear predictor
Var(XT,B) is not simply equal to 3} Var(Xj):,Bf.
Moreover, the regression coefficients have no absolute
meaning, but depend on which other covariates are in the
model. To demonstrate this, it is studied how dropping
one of the covariates influences the optimal regression
coefficients of the other covariates, the variance of the
linear predictor Var(X B ) and the increase of the resi-
dual variance o, which is equal to the decrease of
var(XT,B) . This is only done for X,,--,X,, which
have non-zero coefficients in the full model. The results
are shown in Table 1.
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Table 1. Effects of dropping one covariate with non-zero f’s. The other 14 covariates remain in the model. The main body of
the table gives the regression coefficients. The last rows show the resulting values of var(X B ) , the increase in the residual

variance o’ and the multiple correlation R The latter is computed for the case of ¢’ =6.25 . Covariates X;, X;, X3, X171, ***,

Xis have =0. Dropping them will not affect the £’s of the model under “none”.

cov covariate dropped

none 4 5 6 7 8 9 10
coeff. 1 0 0 0.47 0 0 0 0 1.47

2 0 0 0 0.25 0 0 0 0

3 0 0 0 0 0 0 0 0
4 —-0.5 - —0.50 —0.50 -0.29 -1.20 —-0.50 —-0.50
5 0.5 0.50 - 0.50 0.50 0.50 0.50 0.53
6 0.5 0.50 0.50 - 0.50 0.50 0.50 0.50
7 0.5 0.34 0.50 0.50 - 0.90 0.50 0.50
8 1.0 1.40 1.00 1.00 1.29 - 1.00 1.00
9 1.0 1.00 1.00 1.00 1.00 1.00 - 1.00

10 1.5 1.50 1.27 1.50 1.50 1.50 1.50 -

11 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0.50 0

14 0 0 0 0 0.25 —-0.20 0 0

15 0 0 0 0 0 0 0 0
var(XTﬂ) 6.25 6.139 6.163 6.063 6.107 5.860 5.500 5.103
increase o’ 0 0.111 0.087 0.187 0.143 0.390 0.750 1.147
R’ 0.50 0.491 0.493 0.485 0.488 0.469 0.440 0.408

The table also shows the resulting R> for the case
that o = 6.25. Apparently, the effect of each covariate
is partly “inherited” by some of the other covariates. A
simple pattern of inheritance is seen for Xg. It only
correlates with JX; and the pair (X,,X,) is independent
of the rest. If X, is dropped, X, gets the regression
coefficient 3, ;... = R, ¢ = 0.25. This saves a little bit
of the variance of the linear predictor. It drops from
6.250 to 6.063, while it would have dropped to 6.000 if
Xs were independent of the other predictors. A more
complicated pattern is seen for X7. If that one is dropped,
X,,,Xg; and X, inherite the effects. The covariates X4
and Xg show up because they are directly correlated with
X;. Covariate X; shows up because it is correlated with
Xs. The variance of the linear predictor drops from 6.250
t0 6.107.

Since (X3, X,,,X,,,X,;) are independent of the
other covariates, they cannot inherit effects. However,
(XI,XZ,XB,XM) can partly substitute X,,--, X, ,
although they have coefficients £ =0 in the full
model.

3. The Value of Cross-Validation

Cross-validation is often recommended as a robust way
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of assessing the predictive value of a statistical model.
The simplest approach is leave-one-out cross-validation in
which each observation is predicted from a model using
all the other observations. The generalization is k -fold
cross-validation in which the observations are randomly
divided into £ “folds” of approximately equal size and
observation in one fold are predicted using the observa-
tions in the other folds. In the paper leave-one-out cross-
validation will be used (k=n), but the formulas pre-
sented apply more generally. Let i(fi),y?(fi),blﬁ(ﬂ.) be
obtained in the cross-validation subset, in which ob-
servation i is not included. The cross-validation based
estimate of the prediction error is defined as

. 1& _ T g
Errgy, = ;Z(J’i _(y(—i) +(xi _x(—i)) bl,(i))]

i=l1

The true prediction error of the model with estimates
by and b, from the “original” model using all n obser-
vations is defined as

Err= E[(Ynew —(by+ XL ))2}

In the simulation study it is given by
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Err=0"+b} +(b —B) Cy (b - B).

The results in the simulation study using all covariates
without any selection are given in Table 2.

The results show that Err., does a good job in esti-
mating the mean value of Err over all simulations.
However, since the correlation between Err,, and
Err over all simulation runs is virtually equal to zero, it
must be concluded that it does a very poor job in
estimating the prediction error of the individual models.

Notice that the standard deviation of ErrCV is much
larger than that of Err . The explanation is that a lot of
the variation in Err., is due to the estimation of the
unknown o . Cross-validation might be do a better job
in picking up the systematic prediction part of the pre-
diction error caused by the error in the estimated /S ’s.
That can be checked by studying the behavior of
l:?rrc,, —s° which is an estimate of the systematic part

b +(b,~B) R(b—pB). Here s is the usual unbiased

estimator of . The results are shown in Table 3. It
nicely shows that the systematic error decreases mono-
tonically from scenario 1 to scenario 4.

Means are very similar but standard deviations from
the CV estimates are much smaller. CV somehow shrinks
the estimate of the systematic error towards the mean.
The table shows that the correlations between the esti-
mate Err., —s® and the true value Err—o® are still
very low. The warning issued in Section 4 of [2] still
holds. It is nearly impossible to estimate the prediction
error of a particular regression model. Cross-validation is
of very little help in estimating the actual error. It can
only estimate the mean error, averaged over all potential

“training sets”. However, it might be helpful in selecting
procedures that reduce the prediction error.

Finally, it should be pointed out that the cross-vali-
dation results are in close agreement with the model
based estimates of the prediction error as discussed in the
same section of [2].

4. Cross-Validation Based Shrinkage
without Selection

4.1. Global Shrinkage

As argued by [2,11], the predictive performance of the
resulting model can be improved by shrinkage of the
model towards the mean. This gives the predictor

Y=y+c(X-%) b
with shrinkage factor ¢, 0 <c¢ <1. In the following ¢ will
be called global shrinkage factor. Under the assumption

of homo-skedasticity, the optimal value for ¢ can be

estimated as

R p-s’

Cheur 1 SSCXP
with SS.~ the explained sum of squares, s* the esti-
mate of the residual variance and p the number of pre-
dictors.

A model free estimator can be obtained by means of
cross-validation. Let )7(71.),3?(7,.),131’(4) be obtained in the
cross-validation subset, in which observation i is not
included, then ¢ can be estimated by minimizing

n T :
2 (y REERCEES) bh(*"))

i=1

Table 2. Simulation results for ErrCV and Err and their correlation (corr.) in models without selection.

EVI‘C,, Err COIT.
scenario n o’ mean st.dev mean st.dev.
1 100 6.25 7.470 1.160 7.461 0.473 0.024
2 100 2.50 3.029 0.474 2.980 0.188 0.029
3 400 6.25 6.505 0.470 6.511 0.096 -0.009
4 400 2.50 2.611 0.189 2.604 0.038 0.002

Table 3. Simulation results for Errcy -5’

and Err—o’ and their correlation (corr.) in models without selection.

Err., - Err—o’ corr.
scenario n o’ mean st.dev mean st.dev.
1 100 6.25 1.216 0.275 1.211 0.473 0.063
2 100 2.50 0.526 0.150 0.480 0.188 0.045
3 400 6.25 0.261 0.048 0.261 0.096 0.095
4 400 2.50 0.114 0.031 0.104 0.038 0.044

Copyright © 2013 SciRes.
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resulting in

n

2

i=1

2
((x,. %) b1,<—i>j

This estimate can be obtained by regressing y, — Ve
T
on (x,. —f(_i)) bl,(—i) in a model without an intercept. It

differs slightly from the one obtained by regressing y,
on j/(fl.) as proposed in [2]. The definition allows i-fold
cross-validation and is not restricted to leave-one-out
cross-validation. The results of application of global
shrinkage in the simulation data, ignoring the restriction
0<c¢<1, are shown in Table 4. Actually, ¢ <0 was
never observed and ¢ >1 only occasionally.

The table shows that global shrinkage can help to
reduce the prediction error if the amount of information
in the data is low. For scenario 1 the mean of the shrink-
age factor is 0.84 and the mean reduction of prediction
error is 0.14. Corresponding values for scenario 4 are
0.98 and 0.001. For the latter all shrinkage factors are
close to one and predictors with and without shrinkage
are nearly identical. However, the positive correlation
between the shrinkage factor ¢ and the reduction in
prediction error is counter-intuitive. To get more insight
the data for scenario 1 with a small amount of infor-
mation (7 =100,0° = 6.25) is shown in Figure 1.

The relation between reduction in prediction error due
to shrinkage and the prediction error of the OLS models
are shown for three categories of the shrinkage factor c,
namely (¢<0.8),(0.8<¢<0.9) and (¢>0.9). The
frequencies of these categories among the 10,000 simu-
lations are 1754, 7740 and 506, respectively. The upper
panel shows the apparent (estimated) prediction errors
based on cross-validation and the apparent reduction
achi- eved by global shrinkage. The differences between
the three categories are small, but they are in line with
the intuition that the largest reduction is achieved when
the shrinkage factor is small. The quartiles (25%, 50%,
75%) of the apparent reduction are 0.09, 0.15, 0.27 for
¢<0.8,-0.01,0.04,0.15 for 0.8<¢<0.9 and —0.07,

83

—0.02, 010 for ¢>0.9. The middle panel shows the
actual (true) prediction error based on our knowledge of
the true model. Here, the picture is completely different.
Reduction of the prediction error only occurs when the
shrinkage factor is close to one and the OLS prediction
error is large. Substantial shrinkage with ¢ < 0.8 tends
to increase the prediction error. The quartiles of the true
reduction are —0.29, —0.13, 0.04 for ¢ < 0.8, 0.05, 0.18,
0.31 for 0.8<¢<0.9 and 0.19, 0.28, 0.38 for ¢>0.9.
The lower panel shows the relation between the apparent
and the actual reduction. At first sight the results our
counter-intuitive. This phenomenon is extensively dis-
cussed in [9]. What happens could be understood from
the heuristic shrinkage factor ¢, =1 —( p-s’ / SSCXP) If
b is “large” by random fluctuation, the observed ex-
plained sum of squares SS. is large and ¢, stays
close to 1 and does not “push” b in the direction of the
true S.If b is “small” by random fluctuation, SS,
is small and ¢,,, will be closer to 0 and might “push”
in the wrong direction. This explains the overall negative
correlation » =-0.253 between apparent and actual re-
duction of the prediction error. It must be concluded that
it is impossible to predict from the data whether shrink-
age will be helpful for a particular data set or not. The
chances are given under “frac. pos.” in Table 4. They are
quite high in noisy data, but that gives no guarantee for a
particular data set.

4.2. Parameterwise Shrinkage

[4] suggested a covariate specific shrinkage factor, coin-
ed parameterwise shrinkage factor (PWSF), to be defined
as

Y=5+(X-%) (cxb).

Here, ¢ is a vector of shrinkage factors with
0<c¢<l1 for j=1--,p and “x” stands for coordi-
nate-wise multiplication: (cxb,). =c,-b, ;. This way of
regulation is in the spirit of Breiman’s Garrote [12]. See
also [9,13]. Sauerbrei suggests to use the parameterwise
shrinkage after model selection and to estimate the vector
¢ by cross-validation. As for the global shrinkage

Table 4. Simulation results for the reduction in prediction error (compared with OLS) achieved by global shrinkage in
models without selection; “frac. pos.” stands for the fraction with positive reduction, “corr.” stand for the correlation

between the shrinkage factor and the reduction.

shrinkage factor ¢ reduction of pred. error frac. pos. corr.
scenario n o’ mean st.dev mean st.dev
1 100 6.25 0.839 0.045 0.139 0.245 0.746 0.617
2 100 2.50 0.929 0.018 0.022 0.067 0.657 0.487
3 400 6.25 0.962 0.006 0.007 0.025 0.636 0.679
4 400 2.50 0.984 0.002 0.001 0.006 0.573 0.495

Copyright © 2013 SciRes.
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Figure 1. Reduction of prediction error achieved by global shrinkage for different categories of the shrinkage factor c¢; data

from scenario 1 (11:100,0'z :6.25) . The upper panel shows the apparent prediction errors obtained through cross-

validation, the middle panel shows the actual (true) prediction errors and the lower panel shows the relation between the

apparent and the actual reduction.

this could be obtained by regression without intercept
of y, —)7(_[) on (xi _f(_;))*(bn,(_;))-

Although this is against the advice of [4] parameter-
wise shrinkage was applied in the simulation data in
models without selection, ignoring the restrictions
0<c, <1 for j=1,--,p. A summary of the results is
given in Table 5.

Using PWSF the average prediction error increases
when compared with the OLS predictor. The increase is
large (about 10%) in scenario 1. In scenario 4 the in-

Copyright © 2013 SciRes.

crease is moderate, but still present. Moreover, the esti-
mated prediction error obtained from the cross-validation
fit is far too optimistic. (Data not shown). The explana-
tion is that parameterwise shrinkage is not able to handle
the redundant covariates with no effect at all. This can be
seen from the box plots in Figure 2.

For the redundant covariates the shrinkage factors are
all over the place. Even variables with a weak effect have
sometimes negative PWSF values. For the strong cova-
riates they are quiet well-behaved despite the erratic
behavior for the other ones. The conclusion must be that
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Table 5. Comparison

85

of the prediction errors of OLS, global shrinkage and parameterwise shrinkage in models without

selection.
mean prediction error
scenario n o’ OLS global shr. parameterwise shr.
1 100 6.25 7.46 7.32 8.10
2 100 2.50 2.98 2.96 3.24
3 400 6.25 6.51 6.50 6.94
4 400 2.50 2.60 2.60 2.77
Q
*
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. ) | X
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8 9 10 11 12 13 14 15

covariate

Figure 2. Box plot of parameterwise shrinkage factors in models without selection. Results from scenario 4.

in models with many predictors without selection on
stronger predictors parameterwise shrinkage cannot be
recommended. The behavior is a bit better if negative
shrinkage values will be set to zero, but altogether such a
constraint is not sufficient. This is completely in line
with Sauerbrei’s original suggestion.

5. Model Selection

Following [10] models are selected by backward eli-
mination at significance levels of a=0.1573,a =0.05
and «=0.01. An impression of which covariates are
selected is, shown in Figure 3.

5.1. Number of Variables Selected, Type I and
Type IT Error

The “softest” definition of model selection is the selec-
tion of covariates to be used in further research. The
“optimal” model contains only the important covariates,

Copyright © 2013 SciRes.

the ones that have an influence on the outcome in the full
model. In the simulation those are the covariates
X,,,X,,. If these are selected the other ones are
redundant. However if one of the important covariates is
not selected, other non-important covariates can come to
the rescue if they are correlated with the non-selected
important covariate(s). In the simulation data non-im-
portant covariates that can play such a role are covariates
X,,X,,X,;,X,, ascanbe seen from Table 1. The effect
of omitting important covariates is the loss of explained
variation in the optimal model after selection or, equi-
valently, the introduction of additional random error. If
no selection takes place there is no loss of explained
variation, but there is a large number of non-important
covariates, leading to larger estimation errors. Even more
important is a severe loss in general usability of such pre-
dictors [4,6]. Consider, for example, a prognostic model
comprising many variables. All constituent variables
would have to be measured in an identical or at least in a
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Figure 3. Frequency of selection per covariate.

similar way, even when their effects were very small.
Such a model is impractical, therefore “not clinically
useful” and likely to be “quickly forgotten” [14].

From Figure 3 we learn that in the easy situation with
a lot of information (scenario 4) all important variables
are selected in nearly all replications. For the 8 variables
without an influence selection frequencies agree closely
to the nominal significance level. For a =15.73% se-
lection frequencies are between 15.7% and 19.0%. The
corresponding relative frequencies are between 5.1% and
6.55% for a=5% and between 0.9% and 3.3% for
a =1% . Results are much worse for situations with less
information. For the most extreme scenario 1 it is ob-
vious that all selected models deviate substantially from
the true model. For o =1% selection frequencies are
only between 23.4% and 25.1% for the 4 relevant vari-
ables (X,-X,) with a weak effect. Even for
a =15.73% these frequencies are only between 46.1%
and 57.3%. Of these X, has the lowest frequency,
which is probably caused by the strong correlation with
X, . With 28.9% X, has the largest frequency of se-
lection among the non-important covariates. That is
explained by its strong correlation with Xs. In 19.4% of
the simulations X is selected while the important vari-
able X5 is not selected.

The effect of selection at the three levels is shown in
Figures 4-6.

Figure 4 summarizes the number of included variables
for the different scenarios. In the simple scenario 4 all
seven relevant variables were nearly always selected. In
addition irrelevant variables were selected in close agree-

Copyright © 2013 SciRes.

ment to the significance level. In 87.7% the correct
model was selected for o =0.01 whereas redundant
variables without influence were added when using
a =0.157 For scenarios with less information the num-
ber of selected variables is usually smaller and the sig-
nificance level has a stronger influence on the inclusion
frequencies. Strong predictors are still selected in most of
the replications, but the rest of the selected model does
hardly ever agree to the true model. For each of the vari-
ables with a weaker effect the power for variable inclu-
sion is low.

The comparison of Figures 5 and 6 nicely shows the
balance between allowing redundant covariates (cova-
riates without effect in the selected model) and allowing
loss of explained variation. The number of redundant
covariates shown in Figure 5, corresponds directly to the
type I error. It hardly depends on the residual variance
o’ and the sample size 7. Despite of some stronger
correlations in our design the distribution is very close to
binomial (8,a). The type II error is reflected by the loss
of the variance of the optimal linear predictor
var(X B ) , or ,equivalently, the increase in residual
variance o, caused by not selecting all important cova-
riates. It could be translated into a loss of R*> by divi-
ding it by the marginal variance

var(Y)= Var(XTﬁ)+ o’ , which is equal to 12.5 in sce-
narios 1 and 3 (6° = 6.25) and 8.75 in scenarios 2 and 4
(6> =2.5). This is shown in Figure 6.

Generally speaking, loss of R> depends on both the
significance level used in the selection process and the
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amount of information in the data reflected by residual
variance o and the sample size 7. In scenario 4 with
a high amount of information, the loss of R® is
negligible and the number of redundant covariates can be
controlled by taking « =0.01. In scenario 1 there is a
substantial loss of R® if the selection is too strict and
a =0.1573 might be more appropriate.

As mentioned above and seen in Table 1 the variable
X, can partly take over the role of X, (correlation

Copyright © 2013 SciRes.

coefficient is 0.7) if the latter is not selected. That is
shown in Table 6 for scenario 2 and « =0.05. It has to
be kept in mind that other variables are also deleted
making a direct comparison difficult. Concerning these
two variables the correct model includes X5 and excludes
Xi, which is the case in 69% of the replications. Here the
mean loss is smallest. X5 is erroneously excluded in
about 28% of the models. In about half of them the
correlated variable X, is included, reducing the R? loss
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Table 6. Inclusion frequencies and average loss of R’ for combinations of X, and X, for scenario2and a=0.05.

X, included X, included Frequency mean loss of R’
no no 1365 0.0485
no yes 6900 0.0179
yes no 1433 0.0274
yes yes 302 0.0206

Copyright © 2013 SciRes. 0oJS
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caused by exclusion of X5 substantially.

5.2. Assessment of Prediction Error

The prediction error of a particular model depends on the
number of redundant covariates and the loss of explained
variation. The average reduction of prediction error when
compared with no selection (significance level a=1) is
shown in Figure 7. Those numbers could be best com-
pared with the systematic component of the prediction
error, Err—o’, as reported in Table 3.

It nicely shows that the optimal level depends on the
amount of information in the data. It also shows that
moderate selection at « =0.1573, in a univariate situ-
ation equivalent with AIC or Mallows’ CP, can do very
little harm. Even a =0.05 gives always better results
than no selection. For a small sample size the relative
reduction in prediction error is small. For the large
sample size elimination of several variables reduces the
relative prediction error substantially for « =0.05. The
average number of selected variables is 7.02 for scenario
3 and 7.40 for scenario 4.

Figure 8 shows the prediction error ranking of the
different levels in the individual simulation data sets.
Mean ranks were used in replications where the same
model was selected. As observed before, the variation is
very big and there is no outspoken winner, but there are
some outspoken losers. In all scenarios it is bad not to
select at all. However, for a small sample size it is even
worse to use a very small selection level.

The prediction errors of the selected models can be
estimated by cross-validation in such a way that in each
cross-validation data set the whole selection procedure is
carried out. As in Section 3 this will yield a correct esti-
mate of the average prediction. Thus, it could be used to
select the “optimal” significance level in general, but it
will not necessarily yield the best procedure for the act-
ual data set at hand.

6. Post-Selection Cross-Validation

A common error in model selection is to use cross-
validation after selection to estimate the prediction error
and to select the best procedure. As pointed out by [15],
this is a bad thing to do. That is exemplified by Figures 9
and 10.

Comparing Figures 7 and 9 shows that cross-valida-
tion after selection is far too optimistic about the re-
duction of the prediction error and is not able to notice
the poor performance of selection at « =0.01 for the
scenarios 1 and 2. Moreover, as can be seen from Figure
10, post-selection cross-validation tends to favor selec-
tion at & =0.1573 for all scenarios. This is no surprise
because in univariate selection « =0.1573 is equi-
valent with using AIC, which is very close to using
cross-validated prediction error if the normal model
holds true.

6.1. Post-Selection Shrinkage

While cross-validation after selection is not able to select
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Figure 7. Mean reduction of the true prediction error as reported in Tables 2 and 3 for different a-levels. Values of Err — s
are 1.21, 0.48, 0.26 and 0.104 in scenarios 1-4, respectively (see Table 3).
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the best model, it might be of interest to see whether
cross-validation based shrinkage after selection can help
to improve the model. The results are shown in Figure
11.

On the average, parameterwise shrinkage gives better
predictions than global shrinkage, when applied after
selection. An intuitive explanation is that small effects
that just survive the selection, are more prone to selection
bias and, therefore, can profit from shrinkage. In contrast,
selection bias plays no role for large effects and shrink-
age is not needed, see [16] and chapter 2 of [8]. Whereas
global shrinkage “averages” over all effects, parameter-
wise shrinkage aims to shrink according to these indi-
vidual needs.

This can also be investigated by looking into the mean

A 2
squared estimation errors ( B =B j.) of the regres-

sion coefficients conditional on the selection of cova-
riates in the model. The coefficients S, are the op-
timal regression coefficients in the selected model. As
discussed in Section 2 the S, . coefficients can differ
from the [, coefficients if there is correlation between
the covariates. Figure 12 shows the mean squared errors
of the shrinkage based estimators relative to the mean
squared errors of the OLS estimators for sample size
n =100, scenarios 1 and 2 . Sample size »n =400 is not
shown, because post-selection shrinkage has hardly any
effect.

It is clear that the parameterwise shrinkage helps to
reduce the effect of redundant covariates that only enter

Copyright © 2013 SciRes.

by chance, while the global shrinkage is not able to make
that distinction. The precise mechanism is not quite clear
yet. To get some better feeling what is going on, the
observed scatterplot of parameterwise shrinkage factors
versus the OLS estimator are shown in Figure 13 for
covariate X3 (no effect), X5 (weak effect) and X, (strong
effect). These covariates are selected because the optimal
parameter value when selected does not depend on which
other covariates are selected as well. X; is independent of
all other variables and the other two variables are only
correlated with one variable without influence. Therefore
parameter estimates are theoretically equal to the true
value in the full model. If the optimal value varies with
the selection the graphs are a bit harder to interpret.

For X;, the covariate without effect and no correlation,
the inclusion frequency is close to the type I error and in
about half of these cases parameter estimates are positive
and negative. The variable is selected in replications in
which the estimated regression coefficient is by chance
most heavily overestimated (in absolute terms) compared
to the true (null) effect. One would hope that PWFS
would correct these chance inclusions by a rule like “the
larger the absolute effect |b| , the smaller the shrinkage
factor ¢”. Although most shrinkage factors are much
lower than one, Figure 13 shows a different cloud: “the
larger |b|, the larger c”.

A similar observation transfers to the plot for X,
which is selected in all replications. Therefore, selection
bias is no issue for this covariate. The hope is that PWSF
would move the estimate close to the true value f = 1.0.
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Generally speaking that does not happen: ¢ increases shrinkage is not required. The only “hoped for” ob-
slowly with 5. Most values are close to 1, indicating that servation can be made for the cases where the correlated
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variable X); is included (plot not shown). Xj; has no
effect and the selection frequency (5.9%) agrees well to
the type I error. If Xj; is included, the shrinkage factor
for Xy show a decreasing trend with c-values clearly
below 1 if the estimate b overestimates the true value
p =1, and values around c¢=1 if b<1.One might say
that parameter shrinkages helps to correct for chance
inclusions of X|3 but not for estimation errors.

X 1s a covariate with a weak effect. It is not included
in 19% of the replications, certainly cases in which the
true effect was underestimated by chance. The overall
picture for the case where it is included shows a stronger
increasing trend (compared with X,) tending to a value of
about ¢=0.96, if b is large. Here, X, plays the role of a
confounding redundant covariate. In cases where it is
included (plot not shown), the shrinkage factor for Xj is
rather stable with median value about ¢ =0.88.

Some understanding can be obtained by the observa-
tion in [2] that in univariate models the optimal shrinkage

factor is given by ¢, = l—var(ﬂﬂ’)/ﬂ’2 If |ﬂ| is small,

this quantity is very hard to estimate. If |4] is large it
could be estimated by ¢ :1—1/ t* . The parameter-

uni

Copyright © 2013 SciRes.

wise shrinkage factor behaves very similarly. This could
be seen from plotting PWSF against |t| (Graphs not
shown). Such a plot clearly shows that |t| ~2 (for
a=0.05) is the cut-point for an inclusion and that
PWSF tends to increase with |t| for included variables.
For large absolute #-values, PWSF’s are close to one.
whereas they drop to about 0.8 for |t| close to 2. The
relation between PWSF and |t| is similar for all three
covariates X, . The difference between the covariates is
the size of the effect and correspondingly the range of |t|
after selection.

The conclusion so far is that coordinate-wise shrinkage
is helpful after selection. However it is not clear how to
select the significance level. In a real analysis, the level
should be determined subjectively by the aim of the
study [4]. In the following we will compare backwards
elimination with a procedure like the LASSO, that com-
bines selection, shrinkage and fine-tuning.

7. Comparison with LASSO

The simulations discussed above were compared with the
results of the LASSO with cross-validation based selection

oJs
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of the penalty parameter A. Because LASSO is quite
time-consuming it was only applied on the first 2000 data
sets for each combination of » and o”. Figure 14
shows the distribution of the cross-validation based A
for each combination. The variation in the penalty para-

meter A, even in the simple situation of scenario 4 is
surprisingly large. There is some correlation with the
estimated variance in the full model, but that does not
explain the huge variation.

The next Figure 15 shows the inclusion frequencies
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for the different covariates. Relevant variables are nearly
always included, but LASSO is not able to exclude
redundant covariates if there is much signal in the other
ones. For example, in scenario 4 inclusion frequencies
are 52% for X, and 54% for X, the two uncorrelated
variables without influence. The probable reason is that
selection and shrinkage are controlled by the same penal-
ty term A . The phenomenon is also nicely illustrated by
Figure 16.

Finally, the question how the prediction error of
LASSO compares with the models based on selection
and shrinkage is answered by Figure 17.

The conclusion must be that LASSO is no panacea.
Concerning prediction error, it seems to be OK for noisy
data (scenarios 1 and 2), but it is beaten by variable
selection followed by some form of shrinkage if the data
are less noisy (scenario 4). Most likely, that is caused by
the inclusion of two many variables without effect. Vari-
able selection combined with parameterwise shrinkage
performs quit well. The choice of a suitable significance
level seems to depend on the amount of information in
the data. Whereas o =0.01 has the best performance in
scenario 4, this level seems to be too low in the other
scenarios. In these cases selections with « =0.157 or
a =0.05 have better prediction performance. Using
post selection shrinkage slightly reduces the prediction
errors with an advantage for parameterwise shrinkage.

8. Examples
8.1. Ozone Data

For illustration, we consider one specific aspect of a

study on ozone effects on school children’s lung growth.
The study was carried out from February 1996 to Octo-
ber 1999 in Germany on 1101 school children in first and
second primary school classes (6 - 8 years). For more
details see [17]. As in [18] we use a subpopulation of 496
children and 24 variables. None of the continuous vari-
ables exhibited a strong non-linear effect, allowing to
assume a linear effect for continuous variables in our
analyses.

First, the whole data set is analyzed using backward
elimination in combination with global and parameter-
wise shrinkage and LASSO. Selected variables with cor-
responding parameter estimates are given in Table 7 and
mean squared prediction errors are shown in Table 8.
The t-values are only given for the full model to illustrate
the relation between the #-value and the parameterwise
shrinkage factor. For variables with very large |t| -values,
PWSEF are close to 1. In contrast, PWSFs are all over the
place if |t| is small, a good indication that variables
should be eliminated.

Mean squared prediction errors for the full model and
the BE models were obtained through double cross-va-
lidation in the sense that for each cross-validated pre-
diction, the shrinkage factors were determined by cross-
validation within the cross-validation training set. Pre-
diction error for the LASSO is based on single cross-
validation because double cross-validation turned out to
be too time-consuming. Therefore, the LASSO predic-
tion error might be too optimistic.

MSE is very similar for all models, irrespective of
applying shrinkage or not (range 0.449 - 0.475; the full
model with PWSF is the only exception), but the number
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Figure 17. Average prediction errors for different strategies.

Table 7. Analysis of full ozone data set using standardized covariates. The unadjusted R’ equals 0.67 in the full model and
drops only slightly to 0.64 for the BE(0.01) model. For the LASSO model it is 0.66.

method full model BE(0.1573) BE(0.05) BE(0.01) LASSO
Cylobal 0.973 0.9876 0.9927 0.9958 -
variables b | Cpar b Cpar b Cpar b Cpar b
ALTER 0.016 1.42 1.09 0.015
ADHEU -0.010 0.90 1.03 —-0.005
SEX -0.099 10.04 1.00 —-0.101 0.98 —0.098 0.99 —-0.096 0.99 -0.094
HOCHOZON —-0.033 2.52 0.78 —0.036 0.64 —0.026 0.72 -0.014
AMATOP —0.002 0.15 -33.9
AVATOP -0.007 0.70 -0.20 —-0.003
ADEKZ 0.004 0.38 -8.93
ARAUCH 0.003 0.31 -9.15
AGEBGEW 0.010 0.97 —0.00 0.007
FSNIGHT 0.008 0.77 -1.09 0.004
FLGROSS 0.173 11.42 0.97 0.181 1.01 0.181 1.01 0.184 1.01 0.172
FMILB —-0.021 1.56 0.45 -0.018 0.64 —-0.011
FNOH24 —0.036 2.85 0.72 —0.038 0.72 —0.032 0.79 —0.020
FTIER —0.004 0.37 —5.60 —0.002
FPOLL —0.026 1.32 -1.13 -0.020 0.79 -0.025 0.80 -0.011
FLTOTMED -0.019 1.93 0.86 -0.020 0.63 -0.012
FO3H24 0.033 1.58 0.46 0.038 0.22
FSPT 0.015 0.65 -3.61
FTEH24 —-0.030 1.53 0.36 —0.032 0.25 -0.002
FSATEM 0.023 1.88 1.08 0.023 0.76 0.019
FSAUGE 0.003 0.30 —6.61
FLGEW 0.086 6.04 1.16 0.090 0.98 0.090 0.98 0.090 0.97 0.086
FSPFEI 0.027 2.20 0.68 0.027 0.87 0.032 0.89 0.026 0.90 0.019
FSHLAUF —0.008 0.75 —-1.16
Copyright © 2013 SciRes. 0oJS
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Table 8. Mean squared prediction errors.

model no shrinkage global shrinkage parameterwise shrinkage
full 0.0461 0.0461 0.0629
BE(0.1573) 0.0449 0.0449 0.0456
BE(0.05) 0.0475 0.0475 0.0470
BE(0.01) 0.0465 0.0465 0.0464
LASSO 0.0458

of variables in the model is very different. BE(0.01)
selects a model with 4 variables, corresponding PWSF
are all close to 1. Three variables are added if 0.05 is
used as significance level. Using 0.157 selects a model
with 12 variables. Two of them have a very low (below
0.3) PWSF, indicating that these variables may better be
excluded. LASSO selects a complex model with 17 vari-
ables.

Although they carry relevant information the double
cross-validation results for the full data set lack the in-
tuitive appeal of the split-sample approach. To get closer
to that intuition the following “dynamic” analysis scheme
is applied. First the data are sorted randomly, next the
first n,,, observations are used to derive a prediction
model which is used to predict the remaining n-—n,,,
observations. This is done for n,;, = 100, 150, 200, 250,
300, 350 and repeated 100 times. In that way an im-
pression is obtained how the different approaches behave
with growing information. The results are shown in
graphs. Figure 18 shows the mean number of covariates
included. More variables are included with increasing
sample size (larger power) and differences between the
procedures are substantial. For ng,;, = 350 LASSO
selects on average 14.4 variables, whereas BE(0.01) se-
lects only 4.0 variables. Figure 19 shows the evolution
of the global shrinkage factor. For models selected with
BE(0.01) it is always around 0.98 and for BE(0.157) it
varies between 0.96 and 0.98, but for the full model the
global shrinkage factor is much lower, starting from 0.83
with an increase to 0.95. Figure 20 shows the mean
squared prediction errors for the different strategies.
Without selection PWSF has a very bad performance,
whereas the global shrinkage factor can slightly reduce
MSE of prediction. PWSF improves the predictor if
variable selection is performed and has smaller MSE
than using a global shrinkage factor. The most important
conclusion is that “BE(0.01) followed by PWSF” and
LASSO have very similar prediction MSE’s, but the
LASSO has to include many more covariates to achieve
that.

8.2. Body Fat Data

In a second example we will illustrate some issues in a
study with one dominating variable. The data were first

Copyright © 2013 SciRes.

analysed in [19] and later used in many papers. 13
continuous covariates (age, weight, height and 10 body
circumference measurements) are available as predictors
for percentage of body fat. As in the book of [8] we
excluded case 39 from the analysis. The data are avail-
able on the website of the book. In Table 9 we give mean
squared prediction errors for several models and shrink-
age approaches. Furthermore we give these estimates for
variables excluding X, the dominating predictor. This
analysis assumes that X, would not have been mea-
sured or that it would not have been publicly available. A
related analysis is presented in chapter 2.7 of [8] with the
aim to illustrate the influence of a dominating predictor
and to raise the issue about the term “full model” and
whether a full model approach has advantageous pro-
perties compared with variable selection procedures.
Using all variable MSEs of the models are very similar
with a range from 18.76 - 20.80. Excluding X, leads to
a severe increase, but differences between models are
still negligible (25.87 - 27.47); with the full model
followed by PWSF as an exception. This agrees well
with the results of the ozone data. For BE(0.157),
BE(0.01) and LASSO we give parameter estimates in
Table 10.

Excluding X, results in the inclusion of other vari-
ables for all approaches. As in the ozone data LASSO
hardly eliminates any variable, but the MSE is not better
than from BE(0.01) followed by PWSF. PWSF of all
variables selected by BE(0.01) are close to 1, whereas
variables selected additionally by BE(0.157) all have
PWSF values below 0.9 and sometimes around 0.6. This
example confirms that BE(0.01) followed by PWSF
gives similar prediction MSE’s, but includes a much
smaller number of variables.

9. Discussion and Conclusions

Building a suitable regression model is a challenging task
if a larger number of candidate predictors is available.
Having a situation with about 10 to 30 variables in mind
the full model is often unsuitable and some type of
variable selection is required. Obviously subject matter
knowledge has to play a key role in model building, but
often it is limited [20] and data-driven model-building is
required. Despite of some critique in the literature [3,20,
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Figure 19. Evolution of the global shrinkage factor for different selection levels. From top to bottom BE(0.010), BE(0.050),

BE(0.157) and BE(1.000) = “No selection”.

21] we consider backward elimination as a suitable
approach, provided the sample size is not too small and
the significance level is sensibly chosen according to the
aim of a study. For a more detailed discussion see chapt-
er 2 of [8]. Under- and overfitting, model instability and
bias of parameter estimates are well known issues of

Copyright © 2013 SciRes.

selected regression models.

In a simulation study and two examples we discuss the
value of cross-validation, assess a global and a para-
meterwise cross-validation shrinkage approach, both
without and with variable selection, and compare results
with the LASSO procedure which combines variable
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Figure 20. Mean squared prediction error for the different strategies.

Table 9. Mean squared prediction errors.

model no shrinkage global shrinkage param.wise shrinkage
all no X, all no X, all no X,
full 19.05 26.74 19.04 26.71 20.59 31.47
BE(0.1573) 20.80 27.47 20.78 27.45 20.22 27.22
BE(0.05) 18.76 26.10 18.76 26.10 18.83 26.85
BE(0.01) 19.54 25.87 19.54 25.87 19.54 25.90
LASSO 19.08 26.22

selection with shrinkage [2,4,5]. As discussed in the
introduction it is often necessary to derive a suitable
explanatory model which means that the effects of indi-
vidual variables are important. In this respect a sparse
model has advantages, both from a statistical point of
view and from a clinical point of view. In a related con-
text [22] refer to parameter sparsity and practical spars-

1ty.

9.1. Design of Simulation Study

Our simulation design was used before for investigations
of different issues [10]. We consider 15 covariates with
seven of them having an effect on the outcome. In addi-
tion, multicollinearity between variables introduces in-

Copyright © 2013 SciRes.

direct effects of irrelevant variables if a relevant variable
is not included. It seems consensus that stepwise and
other variable selection procedures have limited value as
tools for model building in small studies ([8,21] Section
2.3) and 10 observations per variable is often considered
as a lower boundary to derive an explanatory model [23].
Based on this knowledge it is obvious that a sample size
of n=100 (6.7 per variable) is low. As a more realistic
scenario we also consider » =400. Concerning the resi-
dual variance we have chosen two scenarios resulting in
R*=0.5 and R*=0.71. The 4 scenarios reflect the
situation with a low to a large(r) amount of information
in the data. As expected from related studies the amount
of information in the data has an influence on the results
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Table 10. Parameter estimates for the standardized variables.

BE(0.1573) BE(0.01) LASSO

all no X, all no X, all no X,
var. b Cpur b Cpur b Cpur b Cpur b b
X, 0.77 0.85 2.76 0.95 2.49 0.98 0.89 2.49
X, 8.46 0.99 8.86 0.99 4.74
X, —0.84 0.91 -2.90 0.99 -1.11 0.93 -2.99 0.99 —-0.81 -2.17
X, -0.76 0.69 —-0.93 0.63 —0.80 -0.47
X -1.09 0.71 —-0.76 1.56
X, 8.93 0.96 8.01 0.99 8.54
X, —0.57 1.41
X, 1.01 0.71 0.54 0.99
X,
Xy 0.18
X 0.40
X, 0.73 0.59 0.43
X, —1.58 0.98 —2.64 1.00 -1.57 0.97 -2.97 0.96 —1.64 —2.32

and therefore on the comparison between different proce-
dures.

9.2. Cross-Validation and Shrinkage without
Selection

The findings of Section 3 confirm that cross-validation
does not estimate the performance of the model at hand
but the average performance over all possible “training
sets”. The results of Section 4 confirm that global shrink-
age can help to improve prediction performance in data
with little information [2,11] like in the first scenario
with =100 and o =6.25 . However, the results
show that the actual value of the global shrinkage factor
is hard to interpret [9]. Shrinkage is a bit counter-
intuitive. Considerable shrinkage is a sign that something
is wrong and application of shrinkage might even in-
crease the prediction error. That is evident from the nega-
tive correlation p =-0.253 between apparent and actual
reduction in prediction error in the simulations from
scenario 1. For the more informative scenarios 2-4 all
shrinkage factors are close to one and predictors with and
without shrinkage are nearly identical. It must be con-
cluded that it is impossible to predict from the data
whether shrinkage will be helpful for a particular data set
or not.

Our results confirm that it does not make any sense to
use parameterwise shrinkage in the full model [4]. Esti-
mated shrinkage factors are not able to handle redundant
covariates with no effect at all. Therefore they can have

Copyright © 2013 SciRes.

positive and negative signs and some of them have
values far away from the intended range between 0 and
1.

9.3. Variable Selection and Post Selection
Shrinkage

Most often prediction error is the main criteria to com-
pare results from variable selection procedures. This
implies that a suitable predictor with favorable statistical
criteria are the main (or only) interest of an analysis. In
contrast to such a statistically guided analysis researchers
have often the aim to derive a suitable explanatory model
and are willing to accept a model with slightly inferior
prediction performance [6]. Excluding relevant variables
results in a loss of R*> and the inclusion of variables
without effect complicates the model unnecessarily and
usually increases the variance of a predictor. We used
several criteria to compare the full model and models
derived by using backward elimination with several val-
ues of the nominal significance level, the key criterion to
determine complexity of a selected model, and the
LASSO procedure. The number of variables is a key
criterion for the interpretability and the practical useful-
ness of a predictor. BE(0.01) always selects the sparsest
model, but such a low significance level may be danger-
ous in studies with a low amount of information. Our
results confirm that BE(0.01) is very well suited if a lot
of information is available. All stronger predictors are
always included and only a small number of irrelevant
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variables is selected. Altogether BE with significance
levels of 0.05 or 0.157 selected reasonable models. For
studies with a sample size of 400 the loss in R® is
acceptable and more than compensated when using the
prediction error as criterion. Obviously, considering sev-
eral statistical criteria the full model does not have
advantages and the simulation study illustrates that some
selection is always sensible. The results of Section 5
show that parameterwise shrinkage after selection can
help to improve predictive performance by only correct-
ing the regression coefficients that are borderline signi-
ficant.

9.4. Comparison with LASSO and Similar
Procedures

With the hype for high-dimensional data the LASSO
approach [5] became popular. However, results in our
simulation study and in the two examples are dis-
appointing. As originally proposed we used cross-valida-
tion to select the penalty parameter lambda. However,
even in the simplest situation of scenario 4 the variation
is surprisingly large. In all scenarios a large number of
redundant variables were selected which means that this
approach is less suitable for variable selection. This is
confirmed in the examples. From 24 candidate variables
17 were included in the model derived for the ozone data.
In contrast, BE(0.01) selected a small model with only 4
variables, but the MSE was similar. The simultaneous
combination of variable selection with shrinkage is often
considered as an important advantage of LASSO and
some of its followers, such as SCAD [24] or the elastic
net [25]. We compare the LASSO results with post selec-
tion shrinkage procedures, in principle two-step proce-
dures combining variable selection and shrinkage. In
contrast to LASSO and related procedures post selection
shrinkage is not based on optimizing any criteria under a
given constraint and the approaches are somehow ad-
hoc. Using cross-validation a global shrinkage approach
was proposed [2] and later extended to parameterwise
shrinkage [4]. These post selection shrinkage approaches
can be easily used in all types of GLMs or regression
models for survival data after the selection of a model.
Whereas global shrinkage “averages” over all effects,
parameterwise shrinkage aims to shrink according to
individual needs caused by the selection bias. Our results
confirm that parameterwise shrinkage helps to reduce the
effect of redundant covariates that only enter by chance,
while the global shrinkage is not able to make that
distinction. The better performance concerning the indi-
vidual factors results also in better predictions for para-
meterwise shrinkage compared to global shrinkage. The
PWSF results confirm observations from another type of
study on the use of cross-validation to reduce bias caused
by model building [16]. Small effects that just survived
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selection are prone to selection bias and can profit from
shrinkage. In contrast, large effects are always selected
and do not need any shrinkage.

From the large number of newer proposals combining
variable selection and shrinkage simultaneously, we con-
sidered only the LASSO in this work. In a comparison of
approaches in low-dimensional survival settings [26] also
compared results from the elastic net, SCAD and some
boosting approaches. Using stability, sparseness, bias and
prediction performance as criteria they conclude “overall
results did not differ much. Especially in prediction
performance, -+, the variation of them was not too large”.
They did not consider backward elimination followed by
post-selection shrinkage, the approach which gave better
results than the LASSO in our investigation, both in
simulation and the examples. With a suitably chosen sig-
nificance level for BE prediction performance was not
worse compared to the LASSO and models selected were
much sparser, an important advantage for interpretation
and transportability of models. The investigation also
shows that the PWSF approach has advantages compared
to the global shrinkage factor. As our two step approach,
BE followed by PWSF, can generally be used in regres-
sion models we consider it as a suitable approach when
variable selection is a key part of data analysis.

9.5. Directions for Future Research

Like the choice of A4 in LASSO, the choice of the sig-
nificance level « in the variable selection is crucial.
Double cross-validation might be helpful in selecting « ,
but reflection is needed about the criterion to be used.
Prediction error is the obvious choice but does not reflect
the need for a sparse model [27]. In order to improve
research on selection procedures for high-dimensional
data, several approaches to determine a more suitable A
or use two penalty parameters were proposed during the
last years. It would be important to investigate whether
they can improve model building in the easier low-di-
mensional situations

As mentioned above, the approach of this paper can be
easily implied for generalized linear models like model
logistic regression and survival analysis. It would be
interesting to see such applications.
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