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ABSTRACT 

In deriving a regression model analysts often have to use variable selection, despite of problems introduced by data- 
dependent model building. Resampling approaches are proposed to handle some of the critical issues. In order to assess 
and compare several strategies, we will conduct a simulation study with 15 predictors and a complex correlation struc- 
ture in the linear regression model. Using sample sizes of 100 and 400 and estimates of the residual variance corre- 
sponding to R2 of 0.50 and 0.71, we consider 4 scenarios with varying amount of information. We also consider two 
examples with 24 and 13 predictors, respectively. We will discuss the value of cross-validation, shrinkage and back- 
ward elimination (BE) with varying significance level. We will assess whether 2-step approaches using global or pa- 
rameterwise shrinkage (PWSF) can improve selected models and will compare results to models derived with the 
LASSO procedure. Beside of MSE we will use model sparsity and further criteria for model assessment. The amount of 
information in the data has an influence on the selected models and the comparison of the procedures. None of the ap- 
proaches was best in all scenarios. The performance of backward elimination with a suitably chosen significance level 
was not worse compared to the LASSO and BE models selected were much sparser, an important advantage for inter- 
pretation and transportability. Compared to global shrinkage, PWSF had better performance. Provided that the amount 
of information is not too small, we conclude that BE followed by PWSF is a suitable approach when variable selection 
is a key part of data analysis. 
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1. Introduction 

In deriving a suitable regression model analysts are often 
faced with many predictors which may have an influence 
on the outcome. We will consider the low-dimensional 
situation with about 10 to 30 variables, the much more 
difficult task of analyzing ‘omics’ data with thousands of 
measured variables will be ignored. Even for 10+ vari- 
ables selection of a more relevant subset of these vari- 
ables may have advantages as it results in simpler models 
which are easier to interpret and which are often more 
useful in practice. However, variable selection can intro- 
duce severe problems such as biases in estimates of re- 
gression parameters and corresponding standard errors, 
instability of selected variables or an overoptimistic esti- 
mate of the predictive value [1-4]. 

To overcome some of theses difficulties several pro- 
posals were made during the last decades. To assess the  

predictive value of regression model cross-validation is 
often recommended [2]. For models with a main interest 
in a good predictor the LASSO by [5] has gained some 
popularity. By minimizing residuals under a constraint it 
combines variable selection with shrinkage. It can be re- 
garded, in a wider sense, as a generalization of an app- 
roach by [2], who propose to improve predictors with 
respect to the average prediction error by multiplying the 
estimated effect of each covariate with a constant, an 
estimated shrinkage factor. As the bias caused by vari- 
able selection is usually different for individual cova- 
riates, [4] extends their idea by proposing parameterwise 
shrinkage factors. The latter approach is intended as a 
post-estimation shrinkage procedure after selection of 
variables. To estimate shrinkage factors the latter two 
approaches use cross-validation calibration and can also 
be used for GLMs and regression models for survival 
data. 
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When building regression models it has to be distin- 
guished whether the only interest is a model for predic- 
tion or whether an explanatory model, in which it is also 
important to assess the effect of each individual covariate 
on the outcome, is required. Whereas the mean square 
error of prediction (MSE) is the main criterion for the 
earlier situation, it is important to consider further quality 
criteria for a selected model in the latter case. At least 
interpretability, model complexity and practical useful- 
ness are relevant [6]. For the low-dimensional situation 
we consider backward elimination (BE) as the most suit- 
able variable selection procedure. Advantages compared 
to other stepwise procedure were given by [7]. For a 
more general discussion of issue in variable selection and 
arguments to favor BE to other stepwise procedures and 
to subset selection procedures using various penalties 
(e.g. AIC and BIC) see [4] and [8]. To handle the impor- 
tant issue of model complexity we will use different 
nominal significance levels of BE. The two post-estima- 
tion shrinkage approaches mentioned above will be used 
to correct parameter estimates of models selected by BE. 
There are many other approaches for model building. 
Despite of its enormous practical importance hardly any 
properties are known and the number of informative 
simulation studies is limited. As a result many issues are 
hardly understood, guidance to built multivariable regres- 
sion models is limited and a large variety of approaches 
is used in practice. 

We will focus on a simple regression model  

0 1Y X    

   , , , ,n n

 

with X a p-dimensional covariate. Let there be n ob- 
servations 1 1y x y xΛ  used to obtain estimates  

1b  and 0 1x b

15p 

0

b y   of the regression parameters. 

The standard approach without variable selection is 
classic ordinary least squares (OLS). In a simulation 
study we will investigate how much model building can 
be improved by variable selection and cross-validated 
based shrinkage. The paper reviews and extends early 
work by the authors [2,4,9]. Elements added are a tho- 
rough reflection on the value of cross-validation and a 
comparison with Tibshirani’s LASSO [5]. With an in- 
terest in deriving explanatory models we will not only 
use the MSE as criteria, but will also consider model 
complexity and the effects of individual variables. Two 
larger studies analyzed several times in the literature will 
also be used to illustrate some issues and to compare 
results of the procedures considered. 

The paper is structured in the following way. Section 2 
describes the design of the simulation study. Section 3 
reviews the role of cross-validation in assessing the pre- 
diction error of a regression model and studies its be- 
havior in the simulation study. Section 4 reviews global 
and parameterwise shrinkage and assesses the perform- 

ance of cross-validation based shrinkage in the simu- 
lation data. The next Sections 5 and 6 discuss the effect 
of model selection by BE and the usefulness of cross- 
validation and shrinkage after selection. Section 7 com- 
pares the performance of post-selection shrinkage with 
the LASSO. Two real-life examples are given in Section 
8. Finally, the findings of the paper are summarized and 
discussed in Section 9. 

2. Simulation Design 

The properties of the different procedures are investi- 
gated by simulation using the same design as in [10]. In 
that design the number of covariates , the cova- 
riates have a multivariate normal distribution with mean 

j  , standard deviation j 1  

7,14 ,130.3, 0.5, 0.5R R R  
0.7R

 for all covariates. 
Most correlations are zero, except R1,5 = 0.7, R1,10 = 0.5, 
R2,6 = 0.5, R4,8 = −0.7, 7,8 9  
and 11,12  . The covariates 3 8X X  and 15, X  are 
uncorrelated with all other ones. The regression coeffi- 
cients are taken to be 0 0   (intercept), β1 = β2 = β3 = 0, 
β4 = −0.5, β5 = β6 = β7 = 0.5, β8 = β9 = 1 and 10 1.5 , 

11 012 13 14 15        

1 1 15 15X X X

. 
The variance of the linear predictor  
     Λ  in the model equals  

 var 6.25XX C    

2 6.25  2 2.5 

, where CX is the covariance  

matrix of the X’s. The residual variances are taken to be 
 or . The corresponding values of 

the multiple correlation coefficient  

   2 2var varR X X     2 0.50R  are  and  
2 5 7 0.714R  

400n
, respectively. Sample sizes are n = 100 

or  . For each of the four  combinations, 
called scenarios, 

 2 ,n
10,000N   samples are generated 

and analyzed. The scenarios are ordered on the amount 
of information they carry on the regression coeffients. 
Scenario 1 is the combination , sce-   2100, 6.25n  

 2100, 2.50n   , scenario 3 is  nario 2 is 

 2400, 6.25n    and scenario 4 is  

 2400, 2.50n   . 
Since the covariates are not independent, the contribu- 

tion of Xj to the variance of the linear predictor  
 var X  2 2varj j j

 X is not simply equal to    . 
Moreover, the regression coefficients have no absolute 
meaning, but depend on which other covariates are in the 
model. To demonstrate this, it is studied how dropping 
one of the covariates influences the optimal regression 
coefficients of the other covariates, the variance of the 
linear predictor  var X 

2
 and the increase of the resi- 

dual variance  , which is equal to the decrease of 
 var X  , ,. This is only done for 4 10X XΛ  which 

have non-zero coefficients in the full model. The results 
are shown in Table 1. 
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Table 1. Effects of dropping one covariate with non-zero β’s. The other 14 covariates remain in the model. The main body of 

the table gives the regression coefficients. The last rows show the resulting values of  Xvar 

2

, the increase in the residual 

variance   and the multiple correlation R2. The latter is computed for the case of . Covariates X1, X2, X3, X11, ..., 
X15 have β = 0. Dropping them will not affect the β’s of the model under “none”. 

.2 6 25

 cov covariate dropped 

  none 4 5 6 7 8 9 10 

coeff. 1 0 0 0.47 0 0 0 0 1.47 

 2 0 0 0 0.25 0 0 0 0 

 3 0 0 0 0 0 0 0 0 

 4 −0.5 - −0.50 −0.50 −0.29 −1.20 −0.50 −0.50 

 5 0.5 0.50 - 0.50 0.50 0.50 0.50 0.53 

 6 0.5 0.50 0.50 - 0.50 0.50 0.50 0.50 

 7 0.5 0.34 0.50 0.50 - 0.90 0.50 0.50 

 8 1.0 1.40 1.00 1.00 1.29 - 1.00 1.00 

 9 1.0 1.00 1.00 1.00 1.00 1.00 - 1.00 

 10 1.5 1.50 1.27 1.50 1.50 1.50 1.50 - 

 11 0 0 0 0 0 0 0 0 

 12 0 0 0 0 0 0 0 0 

 13 0 0 0 0 0 0 0.50 0 

 14 0 0 0 0 0.25 −0.20 0 0 

 15 0 0 0 0 0 0 0 0 

 var X 

2

  6.25 6.139 6.163 6.063 6.107 5.860 5.500 5.103 

increase    0 0.111 0.087 0.187 0.143 0.390 0.750 1.147 

2R   0.50 0.491 0.493 0.485 0.488 0.469 0.440 0.408 

 
The table also shows the resulting  for the case 

that . Apparently, the effect of each covariate 
is partly “inherited” by some of the other covariates. A 
simple pattern of inheritance is seen for X6. It only 
correlates with X2 and the pair 6

2R
2 6.25 

 2 ,

of assessing the predictive value of a statistical model. 

X X  is independent 
of the rest. If X6 is dropped, 2X  gets the regression 
coefficient 2,inher 2,6 6 0.25R   . This saves a little bit 
of the variance of the linear predictor. It drops from 
6.250 to 6.063, while it would have dropped to 6.000 if 
X6 were independent of the other predictors. A more 
complicated pattern is seen for X7. If that one is dropped, 

14 8,X X  and 4X  inherite the effects. The covariates X14 
and X8 show up because they are directly correlated with 
X7. Covariate X4 shows up because it is correlated with 
X8. The variance of the linear predictor drops from 6.250 
to 6.107. 

Since 3 11 12 15 , , ,X X X X



 are independent of the 
other covariates, they cannot inherit effects. However, 

14 1 2 13, , ,X X X X  can partly substitute 4 10, ,X XΛ , 
although they have coefficients 0i   in the full 
model. 

3. The Value of Cross-Validation 

Cross-validation is often recommended as a robust way  

d

The simplest approach is leave-one-out cross-validation in 
which each observation is predicted from a model using 
all the other observations. The generalization is k -fold 
cross-validation in which the observations are ran omly 
divided into k  “folds” of approximately equal size and 
observation in one fold are predicted using the observa- 
tions in the other folds. In the paper leave-one-out cross- 
validation will be used  k n , but the formulas pre- 
sented apply more gene Let rally.      1,, ,i i iy x b    be 
obtained in the cross-validation sub ob- 
servation i  is not included. The cross-validation based 
estimate of the prediction error is defined as  

set, in which 

      

2

1,
1

ˆ
CV i ii i i

i

Err y y x x b
n   



         
  

The true prediction error of the model with estimates 
b0

 

1 n 

 and b1 from the “original” model using all n obser- 
vations is defined as 

 2

new 0 new 1 .Err E Y b X b     
 

In the simulation study it is given by 
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  2 2
0 1 XErr b b C b 1 .        

The results in the simulation study using all variates 
w

d job in esti- 
m of Err

l to ze
mus

 
la

CVr

co
ithout any selection are given in Table 2. 
The results show that ˆ

CVErr  does a goo
ating the mean value  over all simulations. 

However, since the correlation between ˆ
CVErr  and 

Err  over all simulation runs is virtually equa ro, it 
t be concluded that it does a very poor job in 

estimating the prediction error of the individual models. 
Notice that the standard deviation of ˆ

CVErr  is much
rger than that of Err . The explanation is that a lot of 

the variation in Êr  is due to the estimation of the 
unknown 2 . Cr alidation might be do a better job 
in picking  the systematic prediction part of the pre- 
diction error caused by the error in the estimated 

oss-v
up 

 ’s. 
That can be checked by studying the behavior of 

2ˆ
CVErr s  which is an estimate of the systematic part  

2
0 1b b   1R b   . Here 2  s  is the usual unbiased  

estimator of 2 . The re
th

 deviations from 
th

results a  shown in Table 3. It 
nicely shows at the systematic error decreases mono- 
tonically from scenario 1 to scenario 4. 

Means are very similar but standard
e CV estimates are much smaller. CV somehow shrinks 

the estimate of the systematic error towards the mean. 
The table shows that the correlations between the esti- 
mate 2ˆ

CVErr s  and the true value 2Err   are still 
very low. The warning issued in Section 4 of [2] still 
holds. It is nearly impossible to estimate the prediction 
error of a particular regression model. Cross-validation is 
of very little help in estimating the actual error. It can 
only estimate the mean error, averaged over all potential 

“training sets”. However, it might be helpful in selecting 
procedures that reduce the prediction error. 

Finally, it should be pointed out that the cross-vali- 
dation results are in close agreement with the model 
based estimates of the prediction error as discussed in the 
same section of [2]. 

4. Cross-Validation Based Shrinkage 
without Selection 

4.1. Global Shrinkage 

As argued by [2,11], the predictive performance of the 
resulting model can be improved by shrinkage of the 
model towards the mean. This gives the predictor  

  1Ŷ y c X x b
   

0 1c

 

with shrinkage factor c,   . In the following c will 
be called global shrinkage factor. Under the assumption 
of homo-skedasticity, the optimal value for c can be 
estimated as 

2

heur
exp

ˆ 1
p s

c
SS


 

SS 2

 

with exp  the explained sum of squares, s  the esti- 
mate of the residual variance and p the number of pre- 
dictors. 

A model free estimator can be obtained by means of 
cross-validation. Let      1,i i i, ,y x b    be obtained in the 
cross-validation subset, in which observation i  is not 
included, then  can be estimated by minimizing c

      

2

1,
1

n

i ii i i
i

y y c x x b


  


     
 

Table 2. Simulation results for ˆ
CV

 
 

 
Err  and Err  and their correlation (corr.) in models without selection. 

   ˆ
CVErr  Err  corr. 

scenario n 2  mean st.dev mean st.dev.  

1 1  6.2 0.024 00 5 7.470 1.160 7.461 0.473 

2 100 2.50 3.029 0.474 2.980 0.188 0.029 

3 400 6.25 6.505 0.470 6.511 0.096 -0.009 

4 400 2.50 2.611 0.189 2.604 0.038 0.002 

 
Table 3. Simulation results for ˆ CVErr s2  and Err 2  and their correlation (corr.) in models without selection. 

   2ˆ
CVErr s  2Err  corr. 

scenario n 2  mean st.dev mean st.dev.  

1 1  6.2 0.063 00 5 1.216 0.275 1.211 0.473 

2 100 2.50 0.526 0.150 0.480 0.188 0.045 

3 400 6.25 0.261 0.048 0.261 0.096 0.095 

4 400 2.50 0.114 0.031 0.104 0.038 0.044 
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resulting in 

       

    

1,

2

1,

.
i i i

i i

x b

b



  

 



 
 
 

 

ng 

1

1

ˆ

n

i i
i

cal n

i
i

y y x
c

x x







 








This estimate can be obtained by regressi  i iy y    

on     


rcept. I

slightly from
ŷ  as proposed in

u

1,i i ix x b   in a model without an inte t  

diff  the one obtained by regressing iy  
on  [2]. The definition allows k-fold 

ers 

 i
cross-validation and is not restricted to leave-one-o t 
cross-validation. The results of application of global 
shrinkage in the simulation data, ignoring the restriction 
0 1c  , are shown in Table 4. Actually, 0c   was 
never observed and 1c   only occasionally. 

ble shows that global shrinkage ca lp to 
reduce the predictio r if the amount of in

Th n he
n erro formation 

in

between reduction in predictio
age and the predictio

ar

0 an ely. The

−0 10 for 9 . The  panel  the 
actual (true) prediction error based on our knowledge of 

8, 0.05

e ta

 the data is low. For scenario 1 the mean of the shrink- 
age factor is 0.84 and the mean reduction of prediction 
error is 0.14. Corresponding values for scenario 4 are 
0.98 and 0.001. For the latter all shrinkage factors are 
close to one and predictors with and without shrinkage 
are nearly identical. However, the positive correlation 
between the shrinkage factor c and the reduction in 
prediction error is counter-intuitive. To get more insight 
the data for scenario 1 with a small amount of infor- 
mation  2100, 6.25n    is shown in Figure 1. 

The re n error due 
to shrink n error of the OLS models 

lation 

e shown for three categories of the shrinkage factor c, 
namely    0.8 , 0.8 0.9c c    and  0.9c  . The 
frequencies of these categories among the 10,000 simu- 
lations ar espectiv  upper 
panel shows the apparent (estimated) prediction errors 
based on cross-validation and the apparent reduction 
achi- eved by global shrinkage. The differences between 
the three categories are small, but they are in line with 
the intuition that the largest reduction is achieved when 
the shrinkage factor is small. The quartiles (25%, 50%, 
75%) of the apparent reduction are 0.09, 0.15, 0.27 for 

0.8, 0.01,0.04,0.15c    for 0.8 0.9c   and −0.07, 

e 1754, 774 d 506, r

.02, 0 0.c  middle shows

the true model. Here, the picture is completely different. 
Reduction of the prediction error only occurs when the 
shrinkage factor is close to one and the OLS prediction 
error is large. Substantial shrinkage with 0.8c   tends 
to increase the prediction error. The quartiles of the true 
reduction are −0.29, −0.13, 0.04 for c < 0. , 0.18, 
0.31 for 0.8 0.9c   and 0.19, 0.28, 0.38 for 0.9c  . 
The lower panel shows the relation between the apparent 
and the a ion. At first sight the res r 
counter-intuitive. This phenomenon is extensively dis- 
cussed in [9]. What happens could be understood from 
the heuristic shrinkage factor 

ctual reduct ults ou

 2
heur expˆ 1c p s SS   . If 

b  is “large” by random fluctuation, th
plained sum of squares expSS heur ays 

ose to 1 and does not “push” b  in the direction of the 
true 

e observed ex- 
 is large and ĉ  st

cl
 . If b  is “small” andom fluctuati  expSS  

is small and heurĉ  will be close  to 0 and might “push” 
in the wrong direction. This explains the overall neg  
correlation 0.253r

 by r on,
r

ative
 

ible to pred

se Shrinkage 

rinkage factor, coin- 
PWSF), to be defined 

 between apparent and actual re- 
duction of the prediction error. It must be concluded that 
it is imposs ict from the data whether shrink- 
age will be helpful for a particular data set or not. The 
chances are given under “frac. pos.” in Table 4. They are 
quite high in noisy data, but that gives no guarantee for a 
particular data set. 

4.2. Parameterwi

[4] suggested a covariate specific sh
ed parameterwise shrinkage factor (
as 

   Ŷ y X x c b
    1 .

Here, c  is a vector of shrinkag actors with 
0 1c

e f
  for 1, ,j p  Λ

ultiplication: 
 and “  ” stands for coordi- 

nate-wise m  1 1,j jj
c b c b  . This way of 

of Breiman’s Garrote [12]. See 
also [9,13]. Sauerbrei sug arameterwise 
shrinkage after model selection and to estimate the vector 
c  by cross-validation. As for the global shrinkage 

 (compared with OLS) achieved by global shrinkage in 

regulation is in the spirit 
gests to use the p

Tab mulation resu the reductio error
out selection; “frac. pos.” stands for the fraction with positive reduction, “corr.” stand for the correlation 

 
lts for n in prediction le 4. Si

odels withm
between the shrinkage factor and the reduction. 

   shrinkage factor c reduction of pred. error frac. pos. corr. 

scenario n 2  m ean st.dev mean st.dev   

1 100 6.25 0.746 0.617 0.839 0.045 0.139 0.245 

2 100 2.50 0.929 0.018 0.022 0.067 0.657 0.487 

3 400 6.25 0.962 0.006 0.007 0.025 0.636 0.679 

4 400 0.984 0.002 0.001 0.006 0.573 0.495 2.50 
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Figure 1. Reduction of prediction error achieved by global shrinkage for different categories of the shrinkage factor c; data 

from scenario 1  , . 2100 6 25 . The upper panel shows the apparent prediction errors obtain d through cross- n e

validation, the middle panel shows the actual (true) prediction errors and the lower panel shows the relation between the 
apparent and the actual reduction. 
 
this could be obtained by regression without intercept  

f o  i iy y   on       1,i i i  . 

e shrink as applied in the simulation data in 
m

ith the 
 in scenario 1. In scenario 4 the in-  

mated prediction error obtained from the cross-validation 
fit is far t

 

x x b 
crease is moderate, but still present. Moreover, the esti- 

Although this is against the advice of [4] parameter- 
wis age w

odels without selection, ignoring the restrictions  
0 1jc   for 1, ,j p Λ . A summary of the results is 
given in Table 5. 

Using PWSF the average prediction error increases 
when compared w OLS predictor. The increase is 
large (about 10%)

oo optimistic. (Data not shown). The explana- 
tion is that parameterwise shrinkage is not able to handle 
the redundant covariates with no effect at all. This can be 
seen from the box plots in Figure 2. 

For the redundant covariates the shrinkage factors are 
all over the place. Even variables with a weak effect have 
sometimes negative PWSF values. For the strong cova- 
riates they are quiet well-behaved despite the erratic 
behavior for the other ones. The conclusion must be that 
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Table 5. Comparison of the prediction errors of OLS, global 
se

mean prediction error 

shrinkage and parameterwise shrinkage in models without 
lection. 

   

scenario n 2  OLS global shr. parameterwise shr. 

1 100 6.25 7.46 7.32 8.10 

2 100 2.50 2.98 2.96 3.24 

400 6.25 3 6.51 6.50 6.94 

4 400 2.50 2.60 2.60 2.77 

 

 

Figure 2. Box plot of parameterwise shrinkage factors in models without selection. Results from scenario 4. 
 
in models with many predictors without selection on 
stronger predictors parameterwise shrinkage cannot be 
recomm

rinkage values will be set to zero, but altogether such a 

0.1573, 0.05

ended. The behavior is a bit better if negative 
sh
constraint is not sufficient. This is completely in line 
with Sauerbrei’s original suggestion. 

5. Model Selection 

Following [10] models are selected by backward eli- 
mination at significance levels of     
and 0.01  . An impr
selected is, shown in Fig

ession of which cova
ure 3. 

riates are 

ed, Type I and 
Type II

selec- 
he 
s, 

the ones that have an influence on the outcome in the full 
model. In the simulation those ar the covariates 

5.1. Number of Variables Select
 Error 

The “softest” definition of model selection is the 
tion of covariates to be used in further research. T
“optimal” model contains only the important covariate

e 

4 10, ,X XΛ . If these are selected the other ones are 
redundant. However if one of the important covariates is 
not s portant covariates can come to elected, other non-im
the rescue if they are correlated with the non-selected 
important covariate(s). In the simulation data non-im- 
portant covariates that can play such a role are covariates 

1 2 13 14, , ,X X X X  as can be seen from Table 1. The effect 
of omitting important covariates is the loss of explained 
variatio in the optimal model after selection or, equi- 
valently, the introduction of additional random error. If 
no selection takes place there is no loss of explained 
variation, but there is a large number of non-important 
covariates, leading to larger estimation errors. Even more 
important is a severe loss in general usability of such pre- 
d nsider, for example, a prognostic model 
comprising many variables. All constituent variables 
would have to be measured in an identical or at least in a 

n 

ictors [4,6]. Co
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Figure 3. Frequency of selection per covariate. 
 
similar way, even when their effects were very small. 
Such a model is impractical, therefore “not clinically 
useful” and likely to be “quickly forgotten” [14]. 

From Figure 3 we learn that in the
 lot of information (scenario 4) all important variables 

%

 easy situation with 
a
are selected in nearly all replications. For the 8 variables 
without an influence selection frequencies agree closely 
to the nominal significance level. For 15.73   se- 
lection frequencies are between 15.7% and 19.0%. The 
corresponding relative frequencies are between 5.1% and 
6.55% for 5%   and between 0.9% and 3.3% for 

1%  . Results are much worse for situations with less 
information. For the most extreme scen  ob- 
vious that all selected models deviate substantially from 
the true model. For 1%

ario 1 it is

   selection frequencies are 
only between 23  and 25.1% for the 4 relevant vari- 

 4 7

.4%
ables X X  with a weak effect. Even for 

15.73%   these frequencies are only between 46.1% 
and 57.3%. Of these 4X  has the lowest frequency, 
which is probably cau the strong correlation with 

8

sed by 
X . With 28.9% 1X  has the largest frequency of se- 

lection  non-important covariates. That is 
 its strong correlation with X5. In 19.4% of 

the simulations X1 is selected while the important vari- 
able X5 is not selected. 

he effect of sel ion at the three levels is shown in 
Figures 4-6. 

Figure 4 summarizes the number of included variables 
for the different scenarios. In the simple scenario 4 all 
seven relevant variables

 among 
d by

the

T ect

 were nearly always selected. In 
ad

ment to the significance level. In 87.7%  the correct 
model was selected for 0.01

explaine

   whereas redundant 
variables without influence were ded when using 

dition irrelevant variables were selected in close agree- 

ad
0.157   For scenarios with less information the num- 

ber of selected variables is usually smaller and the sig- 
l has a stronger influence on the inclusion 

fr

res 5

riates with

nificance leve
equencies. Strong predictors are still selected in most of 

the replications, but the rest of the selected model does 
hardly ever agree to the true model. For each of the vari- 
ables with a weaker effect the power for variable inclu- 
sion is low. 

The comparison of Figu  and 6 nicely shows the 
balance between allowing redundant covariates (cova- 

out effect in the selected model) and allowing 
loss of explained variation. The number of redundant 
covariates shown in Figure 5, corresponds directly to the 
type I error. It hardly depends on the residual variance 

2  and the sample size n . Despite of some stronger 
correlations in our design the distribution is very close to 
binomial  8, . The type II error is reflected by the loss 
of the variance of the optimal linear predictor  

 var X  , or ,equivalently, the increase in residual 
variance 2 , caused by not selecting all important cova- 
riates. It could be translated into a loss of 2R  by divi- 
ding it by the marginal variance  

    2var varY X    , which is equal to 12.5 in sce- 

n ios 1 and 3 (σ2 = 6.25) and 8.75 in scenarios 2 and 4 
(σ2 = 2.5). This is shown in Figure 6. 

General s aking, loss of 2R  depends on both the 
significance level used in the selection process and the 

 

ar

ly pe
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Figure 4. Number of included covariates. 
 

 

Figure 5. Number of redundant covariates. 
 
amount of information in the data reflected by residual 
variance 2

coefficient is 0.7) if the latter is not selected. That is 
shown in Table 6 for scenario 2 and 0.05  and the sample size n . In scenario 4 with 

a high amount of information, the loss of 2R  is 
negligible and the nu er of redu variates can be 
controlled by taking 0.01

  . It has to 
be kept in mind that other variables are also deleted 
making a direct comparison difficu . Concerning these 
two variables the correct model includes X5 and excludes 

e in 69% of the replications. Here the 

 

mb
 

ndant co
  . In sce ario 1 there is a 

if the selec
n

tionsubstantial loss of 2R   is too strict and 
0.1573   might be more appropriate. 

As mentioned above and seen in Table 1 the variable 

1X  can pa ly take over the role of 5rt X  (correlation 

lt

X1, which is the cas
mean loss is smallest. X5 is erroneously excluded in 
about 28% of the models. In about half of them the 
correlated variable X1 is included, reducing the R2 loss 
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Figure 6. Loss of R  in comparison to the full model. The bars show mean ± 1 st.dev. in the population of replications. 
 

Table 6. Inclusion frequencies and ave age loss of 

2

R X Xr 2  for combinations of 1  and 5  .for scenario 2 and 0 05 . 

1X  included 5X  included Frequency mean loss of 2R  

no no 1365 0.0485 

no yes 6900 0.0179 

 

yes no 1433 0.0274 

yes yes 302 0.0206
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caused by ex f X5 substantially. 

5.2. Assessment of Prediction Error 

The predictio ror of a particular model d nds on the 
number of re ant covariates and the los  explained 
variation. The average reduction of prediction error when 
compared with no selection (significance le 1

clusion o

n er epe
dund s of

vel   ) is 
uld be best com- 

he prediction 
2

shown in Figure 7. Those numbers co
pared with the systematic component of t
error, Err  , as reported in Table 3. 

It nicely shows that the optimal level depends on the 
amount of information in the data. It also shows that 
moderate selection at 0.1573  , in a univariate situ- 
ation equivalent with AIC or Mallows’ CP, can do very 
little harm. Even 0.05   gives always bette ults 
than no selection. For a small sample size the relative 
reduction in prediction error is small. For the large 
sample size elimination of several variab

r res

les reduces the 
relative prediction error substantially for 0.05  . The 
average number of selected variables is 7.02 for scenario 
3 and 7.40 for scenario 4

Figure 8 shows the prediction error ranking of the 
different levels in the ividual simulation data sets. 
Mean ranks were used in replications where the same 
model was selected. As observed before, the variation is 
very big and there is no outspoken winner, but there are 
some outspoken losers. In all scenarios it is bad not to 
select at all. However, for a small sample size it is even 
worse to use a very small s

. 

 ind

election level. 

The p  errors of the se els can be 
estimated by cross-validation in such a way that in each 
cross-validation data set the whole sele rocedure is 
carried ou in Section 3 this will yield a correct esti- 
mate of the average prediction. Thus, it could be used to 
select the al” significance level eral, but it 
will not necessarily yield the best proc or the act- 
ual data set at hand. 

s 7 and 9 shows that cross-valida- 
bout the re- 
le to notice 

rediction lected mod  

ction p
t. As 

 “optim  in gen
edure f

6. Post-Selection Cross-Validation 

A common error in model selection is to use cross- 
validation after selection to estimate the prediction error 
and to select the best procedure. As pointed out by [15], 
this is a bad thing to do. That is exemplified by Figures 9 
and 10. 

Comparing Figure
tion after selection is far too optimistic a
duction of the prediction error and is not ab
the poor performance of selection at 0.01   for the 
scenarios 1 and 2. Moreover, as can be seen from Figure 
10, post-selection cross-validation tends to favor selec- 
tion at 0.1573   for all scenarios. This is no surprise 
because in univariate selection 0.1573   is equi- 
va

 

lent with using AIC, which is very close to using 
cross-validated prediction error if the normal model 
holds true. 

6.1. Post-Selection Shrinkage 

While cross-validation after selection is not able to select  

 

re 7. Mean reduction  prediction error as reported in Tables 2 and 3 for different α-levels. Values of Err − s2 
21, 0.48, 0. ios 1-4, respectively (see Table 3). 

Figu
are 1.

 of the true
 in scenar26 and 0.104
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Figure 8. Ranks of prediction error for different levels; rank = 1 is best, rank = 4 is worst. 
 

 

Figure 9. Reduction of estimated prediction error, obtained through post-selection cross-validation, after backward elimina- 
tion with three selection levels. 
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Figure 10. Ranks of estimated prediction error obtained from post-selection cross-validation for different levels; rank = 1 is 
best, rank = 4 is worst. The ranks of the true prediction error are shown in Figure 8. 

cross-validation based shrinkage after selection can help 
to improve the model. The results are shown in Figure 
11. 

On the average, parameterwise shrinkage gives better 
predictions than global shrinkage, when applied after 
selection. An intuitive explanation is that small effects 
that just survive the selection, are more prone to selection 
bias and, therefore, can profit from shrinkage. In contrast, 
selection bias plays no role for large effects and shrink- 
age is not needed, see [16] and chapter 2 of [8]. Whereas 
global shrinkage “averages” over all effects, parameter- 
wise shrinkage aims to shrink according to these indi- 
vidual needs. 

This can also be investigated by looking into the mean  

squared  

 
the best model, it might be of interest to see whether 

 estimation errors 
2

,
ˆ

j opt j   of the regres-  

sion coefficients conditional on the selection of cova- 
riates in the model. The c efficients ,opt jo   are the op- 
timal regression coef in the selected model. As 
discussed in , j

ficients 
2 the opt Section   coefficients can differ 

from the j  coefficients if there is correlation between 

ce the effect of redundant covariates that only enter 

that distinction. The precise mechanism is not quite clear 
yet. To get some better feeling what is going on, the 
observed scatterplot of parameterwise shrinkage factors 
versus the OLS estimator are shown in Figure 13 for 
covariate X3 (no effect), X6 (weak effect) and X9 (strong 
effect). These covariates are selected because the optimal 
parameter value when selected does not depend on which 
other covariates are selected as well. X3 is independent of 
all other variables and the other two variables are only 
correlated with one variable without influence. Therefore 
parameter estimates are theoretically equal to the true 
value in the full model. If the optimal value varies with 
the selection the graphs are a bit harder to interpret. 

For X3, the covariate without effect and no correlation, 
the inclusion frequency is close to the type I error and in 
about half of these cases parameter estimates are positive 
and negative. The variable is selected in replications in 
which the estimated regression coefficient is by chance 
most heavily overestimated (in absolute terms) compared 
to the true (null) effect. One would hope that PWFS 
would correct these chance inclusions by a rule like “the 

by chance, while the global shrinkage is not able to make 

the covariates. Figure 12 shows the mean squared errors 
of the shrinkage based estimators relative to the mean 
quared errors of the OLS estimators for sample size 

larger the absolute effect b , the smaller the shrinkage
factor c ”. Although most shrinkage factors are muc
lower than one, Fig

 
h 

ure 13 shows a different cloud: “the 
la

s
rger b , the larger c ”. 
A similar observation transfers to the plot for X9, 

which is selected in all replications. Therefore, selection 
bias is no issue for this covariate. The hope is that PWSF 
would move the estimate close to the true value β = 1.0. 

100n  , scenarios 1 and 2 . Sample size 400n   is not 
shown, because post-selection shrinkage has hardly any 
effect. 

It is clear that the parameterwise shrinkage helps to 
redu
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Figure 11. Reduction in prediction error obtained through s
deviation. 

hr kage after selection. Error bars show mean ± 1 standard 

 

in

 

Figure 12. Relative mean squared estimation errors of the partial regression coefficient per covariate (compared to OLS in 
the selected model) for the parameter estimates obtained by global (black) or parameterwise post-selection shrinkage (grey). 
Covariates 1-3 and 11-15 have no effect in the full model. 
 

h b. Most values are close to 1, indicating that servation can be made for the cases where the correlated 
Generally speaking that does not happen: c increases 
slowly wit

shrinkage is not required. The only “hoped for” ob- 
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Figure 13. Parameterwise shrinkage factors versus OLS estimates from selected models for covariates 3, 6 and 9; α = 0:05 
and scenario 2; reference lines refer to the true value of the parameter. 
 
variable X13 is included (plot not shown). X13 has no 
effect and the selection frequency (5.9%) agrees well to 
the type I error. If X13 is included, the shrinkage factor 
for X9 show a decreasing trend with c -values clearly 
below 1 if the estimate overestimates the true value 

1
b  

  , and values around 1  if 1b  . One might say 
that param rin helps to correct for chance 
inclusions of ut r estimation errors. 

X6 is a covariate with a weak effect. It is not included 
in 19% of the replications, certainly cases in which the 

ue effect was underestimated by chance. The overall 
for the case where it is included shows a stronger 

increasing trend (compared with X9) tending to a value of 
about 0.96c  , if b is large. Here, X2 plays the role of a 

nfounding redundant covariate. In cases where it is 
included (plot not shown), the shrinkage factor for X6 is 
rather stable with median value about 0.88c  . 

Some understanding obtained by the observa- 
tion in [2] that in univariate he optimal shrinkage  

factor is given by 

c
es eter sh

X13 b
kag
not fo

tr
picture 

co

 can be 
models t

  2ˆ1 varcuni    . If   is small,  

hard to esti ate. If this quantity is very m   is large it 
could be estimated by 21 1unic t . The parameter- 

wise shrinkage factor behaves very similarly. This could 
be seen from plotting PWSF against t  (Graphs not 
shown). Such a plot clearly shows that 

ˆ  

2t   (for 
0.05  ) is the cut-point for an inclusion and that 

PWSF tends to increase with t  for included variables. 
For large absolute t-values, PWSF’s are close to one. 
whereas they drop to about 0.8 for t  close to 2. The 
relation between PWSF and t  is similar for all three 
covariates 9X . The difference between the covariates is 
the size of the effect and correspondingly the range of t  
after selection. 

The conclusion so far is that coordinate-wise shrinkage 
is helpful after selection. However it is not clear how to 
select the significance level. In a real analysis, the level 
should be determined subjectively by the aim of the 
study [4]. In the following we will compare backwards 
elimination with a procedure like the LASSO, that com- 
bines selection, shrinkage and fine-tuning. 

7. Comparison with LASSO 

The simulations discussed above were compared with the 
results of the LASSO with cross-validation based selection 
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of the penalty parameter  . Because LASSO is quite 
time-consuming it was only applied on the first 2000 data 
sets for eac com ination  n  and 2h b of  . Figure 14 
shows the d i n of e cross-va n based istr butio  th lidatio   
for each co The variation in the penalty para- 

meter 

mbination. 

 , even in the simple situation of scenario 4 is 
surprisingly large. There is some correlation with the 
estimated variance in the full model, but that does not 
explain the huge variation. 

The next Figure 15 shows the inclusion frequencies  
 

 

ation based λ’s for the different scenarios. Figure 14. LASSO: histogram of the cross-v
 

alid

 

Figure 15. LASSO: inclusion frequencies of the covariates. 
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for the different covariates. Relevant variables are nearly 
always included, but LASSO is not able to exclude 
redundant covariates if there is much signal in the other 
ones. For example, in scenario 4 inclusion frequencies 
are 52% for 3X  and 54% for 15X , the two uncorrelated 

bles with uence. The probable reason is that 
selection and shri ge are controlled by the same penal- 

m 

varia

ty ter

out infl
nka

 . The menon is also nicely illustrated by 
Figure 16. 

Finally, the question how the prediction error of 
LASSO compares with the models based on selection 
and shrinkage is answered by Figure 17. 

The conclusion must be that LASSO is no panacea. 
Concerning prediction error, it seems to be OK for noisy 
data (scenarios 1 and 2), but it is beaten by variable 
selection followed by some form of shrinkage if the data 
are less noisy (scenario 4). Most likely, that is caused by 
the inclusion of two many variables without effect. Vari- 
able selection combined with parameterwise shrinkage 
performs quit well. The choice of a suitable significance 
level seems to depend on the amount of information in 

eas 0.01

pheno

the data. Wher    has the best performance in 
scenari s 

en these 
o 4, thi

arios. In 
level seems to be too low in the other 

cases selections with 0.157sc    or 
0.05  ve better pre ormance. Using 

post shrinkage sli ces the prediction 
errors with an advantage for parameterwise shrinkage. 

8. Examples 

8.1. Ozone Data 

For illustration, we consider one specific aspect of a 

study on ozone effects on school children’s lung growth. 
The study was carried out from February 1996 to Octo- 
ber 1999 in Germany on 1101 school children in first and 
second primary school classes (6 - 8 years). For more 
details see [17]. As in [18] we use a subpopulation of 496 
children and 24 variables. None of the continuous vari- 
ables exhibited a strong non-linear effect, allowing to 
assume a linear effect for continuous variables in our 
analyses. 

First, the whole data set is analyzed using backward 
elimination in combination with global and parameter- 
wise shrinkage and LASSO. Selected variables with cor- 
responding parameter estimates are given in Table 7 and 
mean squared prediction errors are shown in Table 8. 
The t-values are only given for the full model to illustrate 
the relation between the t-value and the parameterwise 
shrinkage factor. For variables with very large 

 ha
selection 

diction perf
ghtly redu

t -values, 
PWSF are close to 1. In contrast, PWSFs are all over the 
place if t  is small, a good indication that variables 
should be eliminated. 

Mean squared prediction errors for the full model and 
the BE models were obtained through double cross-va- 

s-validated pre- 
ined by cross- 

validation within the cross-validation training set. Pre- 
diction error for the LASSO is based on single cross- 
validation because double cross-validation turned out to 
be too time-consuming. Therefore, the LASSO predic- 
tion error might be too optimistic. 

MSE is very similar for all models, irrespective of 
applying shrinkage or not (range 0.449 - 0.475; the full 
model with PWSF is the only exception), but the number 

 

lidation in the sense that for each cros
diction, the shrinkage factors were determ

 

 covarFigure 16. LASSO: distribution of the number of redundant iates. There are eight redundant covariates in the design. 
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Figure 17. Average prediction errors for different strategies. 
 
Table 7. Analysis of full ozone data set using standardized covariates. The unadjusted R2 equals 0.67 in the full model and 
drops only slightly to 0.64 for the BE(0.01) model. For the LASSO model it is 0.66. 

method full model BE(0.1573) BE(0.05) BE(0.01) LASSO 
cglobal 0.973 0.9876 0.9927 0.9958 − 

variables b |t| cpar b cpar b cpar b cpar b 
ALTER 0.016 1.42 1.09       0.015 
ADHEU −0.010 0.90 1.03       −0.005 

SEX −0.099 10.04 1.00 −0.101 0.98 −0.098 0.99 −0.096 0.99 −0.094 
HOCHOZON −0.033 2.52 0.78 −0.036 0.64 −0.026 0.72   −0.014 

AMATOP −0.002 0.15 −33.9        
AVATOP −0.007 0.70 −0.20       −0.003 
ADEKZ 0.004 0.38 −8.93        

ARAUCH 0.003 0.31 −9.15        
AGEBGEW 0.010 0.97 −0.00       0.007 
FSNIGHT 0.008 0.77 −1.09       0.004 
FLGROSS 0.173 11.42 0.97 0.181 1.01 0.181 1.01 0.184 1.01 0.172 

FMILB −0.021 1.56 0.45 −0.018 0.64     −0.011 
FNOH24 −0.036 2.85 0.72 −0.038 0.72 −0.032 0.79   −0.020 
FTIER −0.004 0.37 −5.60       −0.002 
FPOLL −0.026 1.32 −1.13 −0.020 0.79 −0.025 0.80   −0.011 

FLTOTMED −0.019 1.93 0.86 −0.020 0.63     −0.012 

FTEH24 −0.030 1.53 0.36 −0.032 0.25     −0.002 
FSATEM 0.023 1.88 1.08 0.023 0.76     0.019 
FSAUGE 0.003 0.30 −6.61        
FLGEW 0.086 6.04 1.16 0.090 0.98 0.090 0.98 0.090 0.97 0.086 
FSPFEI 0.027 2.20 0.68 0.027 0.87 0.032 0.89 0.026 0.90 0.019 

FSHLAUF −0.008 0.75 −1.16        

FO3H24 0.033 1.58 0.46 0.038 0.22      
FSPT 0.015 0.65 −3.61        
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Table 8. Mean squared prediction errors. 

model no shrinkage global shrinkage parameterwise shrinkage 

full 0.0461 0.0461 0.0629 

BE(0.1573) 0.0449 0.0449 0.0456 

BE(0.05) 0.0475 0.0475 0.0470 

BE(0.01) 0.0465 0.0465 0.0464 

LASSO   0.0458 

 
of variables in the model is very different. BE(0.01) 
selects a model with 4 variables, corresponding PWSF 
are all close to 1. Three variables are added if 0.05 is 
used as significance level. Using 0.157 selects a model 
with 12 variables. Two of them have a very low (below 
0.3) PWSF, indicating that these variables may better be 
excluded. LASSO selects a complex model with 17 vari- 
ables. 

Although they carry relevant information the double 
cross-validation results for the full data set lack the in- 
tuitive appeal of the split-sample approach. To get closer 
to that intuition the following “dynamic” analysis scheme 
is applied. First the data are sorted randomly, next the 
first trainn  observations are used to derive a prediction 
model which is used to predict the remaining trainn n  
observations. This is done for ntrain 150, 200, 250, 
300, 350 and repeated 100 time way an im- 
pression is obtained how the different approaches behave 
with growing information. T
raphs. Figure 18 shows the mean number of covariates 

proc are substanti train = 350 LA
selects on average 14.4 vari  whereas BE(0.01)
lect .0 varia s. Figure 19 sho the evo tion 
of t hri o r mo selected  
BE( is alw oun 8 and BE(0  
v  0  0.9 r ll m e 
glo age s mu wer,  from 83 
with an increase to 0.95. Figure 20 s the mean 
squ dictio f e di  
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MS dicti oves d if 
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con that “BE(0.01 lowe PW
L  ve ilar ction E’s, e 
LASSO has to include many e cov es to  
that. 

8.2 at D

In a  exam e wil strate e issues in a 
stu ne d ng v le. T ta w  

analysed in [19] and later used in many papers. 13 
continuous covariates (age, weight, height and 10 body 
circumference measurements) are available as predictors 
for percentage of body fat. As in the book of [8] we 
excluded case 39 from the analysis. The data are avail- 
able on the website of the book. In Table 9 we give mean 
squared prediction errors for several models and shrink- 
age approaches. Furthermore we give these estimates for 
variables excluding 6X , the dominating predictor. This 
analysis assumes that 6X  would not have been mea- 
sured or that it would not have been publicly available. A 
related analysis is presented in chapter 2.7 of [8] with the 
aim to illustrate the influence of a dominating predictor 
and to raise the issue about the term “full model” and 
whether a full model approach has advantageous pro- 
perties compared with variable selection procedures. 
Using all variable MSEs of the models are very similar 
with a range from 18.76 - 20.80. Excluding 6

 = 100, 
s. In that 

X  leads to 
erences between models are 

still negligible (25.87 - 27.47); with the full model 

 of the ozone data. For BE(0.157), 
E(0.01) a SO we giv ter est

Table 10. 
Exclud  6

a severe increase, but diffhe results are shown in 
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included under different strategies. Figure 18. Mean number of covariat
 

es 

 

Figure 19. Evolution of the global shrinkage factor for differ
BE(0.157) and BE(1.000) = “No selection”. 
 
21] w

en

e consider backward elimination as a suitable 
approach, provided the sample size is not too small and 

 sensibly chosen according to the 

t selection levels. From top to bottom BE(0.010), BE(0.050), 

selected regression models. 
In a simulation study and two examples we discuss the 

value of cross-validation, assess a global and a para- 
meterwise cross-validation shrinkage approach, both 
without and with variable selection, and compare results 
with the LASSO procedure which combines variable  

the significance level is
aim of a study. For a more detailed discussion see chapt- 
er 2 of [8]. Under- and overfitting, model instability and 
bias of parameter estimates are well known issues of 
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Figure 20. Mean squared prediction error for the different strategies. 
 

Table 9. Mean squared prediction errors. 

model no shrinkage global shrinkage param.wise shrinkage 

 all no 6X  all no 6X  all no 6X  

full 19.05 26.74 19.04 26.71 20.59 31.47 

BE(0.1573) 20.80 27.47 20.78 27.45 20.22 27.22 

BE(0.05) 18.76 26.10 18.76 26.10 18.83 26.85 

BE(0.01) 19.54 25.87 19.54 25.87 19.54 25.90 

LASSO     19.08 26.22 

 
selection with shrinkage [2,4,5]. As discussed in the 
introduction it is often necessary to derive a suitable 
explanatory model which means that the effects of indi- 
vidual variables are important. In this respect a sparse 
model has advantages, both from a statistical point of 

direct effects of irrelevant variables if a relevant variable 
is not included. It seems consensus that stepwise and 
other variable selection procedures have limited value as 
tools for model building in small studies ([8,21] Section 
2.3) and 10 observations per variable  often considered 

of 100n

view and from a clinical point of view. In a related con- 
text [22] refer to parameter sparsity and practical spars- 
ty.  

as a lower boundary to derive an explanatory model [23]. 
Based on this knowledge it is obvious that a sample size 

i

9.1. Design of Simulation Study 

Our simulation design was used before for investigations 
of different issues [10]. We consider 15 covariates with 
seven of them having an effect on the outcome. In addi- 
tion, multicollinearity between variables introduces in-  

is

  (6.7 per variable) is low. As a more realistic 
400 . Concerning the resi- 

du
scenario we also consider n

al variance we have chosen two scenarios resulting in 
2 0.5R   and 2 0.71R  . The 4 scenarios reflect the 

situation with a low to a large(r) amount of information 
in the data. As expected from related studies the amount 
of information in the data has an influence on the results 
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Table 10. Parameter estimates for the standardized variables. 

 BE(0.1573) BE(0.01) LASSO 

 all no 6X  all no 6X  no 6X  all 

var. b parc  b parc  b parc  b parc  b b 

1X  0.77 0.85 2.76 0.95   2.49 0.98 0.89 2.49 

2X    8.46 0.99   8.86 0.99  4.74 

3X  −0.84 0.91 −2.90 0.99 −1.11 0.93 −2.99 0.99 −0.81 −2.17 

4X  −0.76 0.69 −0.93 0.63     −0.80 −0.47 

5X  −1.09 0.71       −0.76 1.56 

6X  8.93 0.96   8.01 0.99   8.54  

7X          −0.57 1.41 

8X    1.01 0.71     0.54 0.99 

9X            

10X          0.18  

11X          0.40  

12X  0.73 0.59       0.43  

13X  −1.58 0.98 −2.64 1.00 −1.57 0.97 −2.97 0.96 −1.64 −2.32 

 
and therefore on the comparison between different proce- 
dures. 

a
Selection 

The fin  of Section 3 c
does imate the perfor e model at hand 
but the erage perform e over all ble “training 
sets”. T ults of Se  confirm t hrink-
age o impro diction per nce in data
with little information [2,11] like in the first scenario
with 0  and  . However, the results 
show actual val f the global ge factor

ret [9] hrinkage is a bit counter- 

9.2. Cross-Validation nd Shrinkage without 

dings
not est

onfirm that cross-validation 
mance of th

av anc possi
he res ction 4 hat global s  

 can help t ve pre forma  
 

10n  2 6.25
u o that th

rd to 
e 
interp

e 
. S

 shrinka  
is ha
intuitive. Considerable shrinkage is a sign that something 
is wrong and application of shrinkage might even in- 
crease the prediction error. That is evident from the nega- 
tive correlation 0.253    between apparent and actual 
reduction in prediction error in the simulations from 
scenario 1. For the more informative scenarios 2-4 all 
shrinkage factors are close to one and predictors with and 
without shrinkage are nearly identical. It must be con- 
cluded that it is impossible to predict from the data 

a particular data set 

positive and negative signs and some of them have 
values far away from the intended range between 0 and 
1. 

ediction error is o com- 
pare result rom variable selection proce es. This 

plies that able predic th favorable statistical 
in (or only rest of an is. In 

rast to such a statistically  analysis r chers 
often the  to derive a planato odel 

 willing to accept a m or 
prediction per ance [6]. E ing relevant variables 

2

erion fo

ous in st ith a lo

whether shrinkage will be helpful for 
or not. 

Our results confirm that it does not make any sense to 
use parameterwise shrinkage in the full model [4]. Esti- 
mated shrinkage factors are not able to handle redundant 
covariates with no effect at all. Therefore they can have 

9.3. Variable Selection and Post Selection 
Shrinkage 

Most often pr the main criteria t
s f dur  

im  a suit tor wi
criteria are the ma ) inte analys
cont  guided esear
have 
and are

aim  suitable ex ry m
odel with slightly inferi

xcludform
results in a loss of R  and the inclusion of variables 
without effect complicates the model unnecessarily and 
usually increases the variance of a predictor. We used 
several criteria to compare the full model and models 
derived by using backward elimination with several val- 
ues of the nominal significance level, the key criterion to 
determine complexity of a selected model, and the 
LASSO procedure. The number of variables is a key 
crit r the interpretability and the practical useful- 
ness of a predictor. BE(0.01) always selects the sparsest 
model, but such a low significance level may be danger- 

udies w w amount of information. Our 
results confirm that BE(0.01) is very well suited if a lot 
of information is available. All stronger predictors are 
always included and only a small number of irrelevant 
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variables is selected. Altoge
levels of 0.05 or 0.157 select nable models. For 
studies with a sample siz  loss in 2R  is 
acceptable and more than comp using the 
pre n error  criterion. bviou sidering sev- 
eral statistical criteria the odel does not have 
advantages and the simu study illustrates that some 
selection is always sensib  The ts of on 5 
show that parameterwise shrinkage a ter selection can 
help to pro dictiv rform  on rrect-
ing the regre oeffi s tha orderline signi- 
ficant. 

9.4. Comparison with LASSO and Similar
Procedures 

With the hype for high-d sion ata th SSO 
approach [5] became popular. Howe results in our 
simulation study and in the two examples are dis- 
appointing. As originally p posed d cros - 
tion to select the penalty rame bda. H wever, 
even in the sim n of sce  4 the variation 
is surprisingly e. In all scenari e number of 
redund var  were cted ean
pproach is less suitable for variable selection. This is 

rast, BE(0.01) selected a sm odel with only 4 
ous 

n 
cons portant advanta of LASSO and 

constrai  the appro

kage 

actors results also in better p edictions for para- 
m

ion bias and can profit from 
shrinkage. rast, large effects are alway  
and do no y shrinkage. 

m the large num r  newer pro als co ining 
variable selection and shrinkage ultan ously, we con- 
sidered only the L O in this work. In  comparison of 
approaches in low-dimensio rvival settings [ lso 
compared results from the c net, S AD and some 
boosting approaches. Using st
redic erfor  as c  they ude ll 

results did not differ much. Especi n pr n 
performance, ..., th ation of them w t too e”. 
They di not consi backwa ination follo by 

-selection shrinkage, the approach h gave better 
results t an the LASSO in our investigation, both in 
simulation and the xamples. With a s  cho ig- 
nificance level for BE predi per nce w ot 
worse c pared to he LASSO and models selected were 
much sparser, an important a ntage for interpretation 
and transportability of models. The tigation also 
shows that the PW  approac  has adv es com ared 
to the global shrinkage factor  our t tep appr h, 
BE follo d by PWSF, can generally be sed in regres- 
ion m s we er it suita proac n 

variable selection is a key part of data analysis. 

e the choice of 

ther BE with significance selection are prone to select
ed reaso

e of 400 the
ensated when 

sly, con

f

ver, 

 we use
ter lam

n io
os a larg

all m

ge 

r

dictio  as O
full m

lation 
le. resul Secti

 im ve pre e pe ance by ly co  p
 ssion c cient t are b

 

imen al d e LA

ro s-valida
  pa

o
o

plest situati ar
 larg

ant iables  sele which m s that this s
a
confirmed in the examples. From 24 candidate variables 
17 were included in the model derived for the ozone data. 
In cont
variables, but the MSE was similar. The simultane
combination of variable selection with shrinkage is ofte

idered as an im
some of its followers, such as SCAD [24] or the elastic 
net [25]. We compare the LASSO results with post selec- 
tion shrinkage procedures, in principle two-step proce- 
dures combining variable selection and shrinkage. In 
contrast to LASSO and related procedures post selection 
shrinkage is not based on optimizing any criteria under a 
given nt and aches are somehow ad- 
hoc. Using cross-validation a global shrinkage approach 
was proposed [2] and later extended to parameterwise 
shrinkage [4]. These post selection shrinkage approaches 
can be easily used in all types of GLMs or regression 
models for survival data after the selection of a model. 
Whereas global shrin “averages” over all effects, 
parameterwise shrinkage aims to shrink according to 
individual needs caused by the selection bias. Our results 
confirm that parameterwise shrinkage helps to reduce the 
effect of redundant covariates that only enter by chance, 
while the global shrinkage is not able to make that 
distinction. The better performance concerning the indi- 
vidual f

eterwise shrinkage compared to global shrinkage. The 
PWSF results confirm observations from another type of 
study on the use of cross-validation to reduce bias caused 
by model building [16]. Small effects that just survived 

9.5. Directions for Future Research 

Lik

 In cont
t need an

s selected

Fro be of pos mb
 sim e

 aASS
nal su 26] a
elasti

ability, sparseness, bias and 
C

tion p mance riteria  concl “overa
ally i edictio

e vari
der 

as no  larg
wed d rd elim

post  whic
h

 e uitably sen s
ction forma as n

om  t
dva

inves  
SF h antag p

. As wo s
u

oac
we

odel consid as a ble ap h whe

  in LASSO, the choice of the sig- 
nificance level   in the variable selection is 
Double cross-validation might be helpful in selec

crucial. 
ting  , 

but eeded about the criterion to be used. reflection is n
Prediction error is the obvious choice but does not reflect 
the need for a sparse model [27]. In order to improve 
research on selection procedures for high-dimensional 
data, several approaches to determine a more suitable   
or use two penalty parameters were proposed during the 
last years. It would be important to investigate whether 
they can improve model building in the easier low-di- 
mensional situations 

As mentioned abov the approach of this paper can be 
easily implied for generalized linear models like model 
logistic regression and survival analysis. It would be 
interesting to see such applications. 
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