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Abstract 
Guastello’s polynomial regression method for solving cusp catastrophe model has been widely ap-
plied to analyze nonlinear behavior outcomes. However, no statistical power analysis for this 
modeling approach has been reported probably due to the complex nature of the cusp catastrophe 
model. Since statistical power analysis is essential for research design, we propose a novel method 
in this paper to fill in the gap. The method is simulation-based and can be used to calculate statis-
tical power and sample size when Guastello’s polynomial regression method is used to do cusp 
catastrophe modeling analysis. With this novel approach, a power curve is produced first to depict 
the relationship between statistical power and samples size under different model specifications. 
This power curve is then used to determine sample size required for specified statistical power. 
We verify the method first through four scenarios generated through Monte Carlo simulations, 
and followed by an application of the method with real published data in modeling early sexual 
initiation among young adolescents. Findings of our study suggest that this simulation-based 
power analysis method can be used to estimate sample size and statistical power for Guastello’s 
polynomial regression method in cusp catastrophe modeling. 
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Determination 

 
 

1. Introduction 
Popularized in the 1970’s by Thom [1], Thom and Fowler [2], Cobb and Ragade [3], Cobb and Watson [4], and 
Cobb and Zack [5], catastrophe theory was proposed to understand a complicated set of behaviors including 
both gradual and continuous changes and sudden and discrete or catastrophical changes. Computationally, there 
are two directions to implement this theoretical catastrophe theory. One direction is operationalized by Guastello 
[6] [7] with the implementation into a polynomial regression approach and another direction by a stochastic cusp 
catastrophe model from Cobb and his colleagues [5] with implementation in an R package in [8]. And this paper 
is to discuss the first direction on polynomial cusp catastrophe regression model due to its relative simplicity and 
ease for implementation as simple regression approach. This model has been used extensively in research. Typ-
ical examples include modeling of accident process [7], adolescent alcohol use [9], changes in adolescent sub-
stance use [10], binge drinking among college students [11], sexual initiation among young adolescents [12], 
nursing turnover [13], and effect of HIV prevention among adolescents [12] [14]. 

Even though this polynomial regression method has been widely applied in behavioral studies to investigate 
the existence of cusp catastrophe, to the best of our knowledge, no reported research has addressed the determi-
nation of sample size and statistical power for this analytical approach. Statistical power analysis is an essential 
part for researchers to efficiently plan and design a research project as pointed out in [15]-[17]. To assist and 
enhance application of the polynomial regression method in behavioral research, this paper is aimed to fill this 
method gap by reporting the Monte-Carlo simulation-based method we develope to conduct power analysis and 
to determine sample size. 

The structure of the paper is as follows. We start with a brief review of the cusp catastrophe model (Section 2), 
followed by reporting our development of the novel simulation-based approach to calculate the statistical power 
(Section 3). This approach is then verified through Monte Carlo simulations and is further illustrated with data 
derived from published study (Section 4). Conclusions and discussions are given at the end of the paper (Section 
5). 

2. Cusp Catastrophe Model 
2.1. Overview 
The cusp catastrophe model is proposed to model system outcomes which can incorporate the linear model with 
extension to nonlinear model along with discontinuous transitions in equilibrium states as control variables vary. 
According to the catastrophe systems theory [1] [18]-[20], the dynamics for a cusp system outcome is expressed 
by the time derivative of its state variable (often called behavioral variable within the context of catastrophe 
theory) to the potential function: ( ) 4 2; , 1 4 1 2V z x y z z y zx= − −  The first derivative of V  will consist of the 
equilibrium plane of the cusp catastrophe: 

( ) 3, , 0V z x y z z yz x∂ ∂ = − − =                                (1) 

where x  is called asymmetry or normal control variable and y  is called bifurcation or splitting control vari-
able. In the model, the two control variables x  and y  co-vary to determine the behavior outcome variable z . 
Figure 1 depicts the equilibrium plane which reflects the response surface of the outcome measure ( )z  at var-
ious combinations of x  and y . It can be seen from the figure that the dynamic changes in a behavior measure 
( )z  has two stable regions (attractors), the lower area in the front left and the upper areas in the front right. 
Beyond these two regions, behavior z  becomes unstable. This characteristic can be further revealed by pro-
jecting the unstable region to the x  and y  control plane as a cusp region. The cusp region is characterized by 
two lines, line O-Q (the ascending threshold) and line O-R (the descending threshold) of the equilibrium surface. 
In this region, the outcome measure becomes highly unstable, and sudden change or jumping in behavior status 
will occur, because a very small change in x  or y  or both will lead z  to cross either the threshold line O-Q 
or O-R. 

Furthermore, the paths A, B, and C in Figure 1 depict three typical but different pathways of change in the  
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Figure 1. Cusp catastrophe model for outcome measures ( )Z  in the equili-

brium plane with asymmetry control variable ( )X  and bifurcation control 

variable ( )Y . (Annotated by the authors with the original graph produced by 
Grasman’s R package “cusp”).                                         

 
outcome measure ( )z . Path A shows that in any situations where Oy < , there is a smooth relation between 
outcome measure ( )z  and the asymmetry variable ( )x ; path B shows that in any situations where Oy > , if 
the asymmetry variable x  increases to reach and pass the ascending threshold link O-Q, outcome measure 
( )z  will increase suddenly from the low stable region to the upper stable region of the equilibrium plane; and 
Path C shows a sudden drop in outcome measure ( )z  as x  declines to reach and pass the descending thre-
shold line O-R .  

From the affirmative description, it is clearly that a cusp model differs from a linear model in that: 1) A cusp 
model allows the forward and backward progression follows different paths in the outcome measure and both 
processes can be modeled simultaneously (see Paths B and C in Figure 1) while a linear model only permits one 
type of relationship; 2) A cusp model covers both a discrete component and a continuous component of a beha-
vior change while a linear model covers on continuous process (Path A). In this case a linear model can be con-
sidered as a special case of the cusp model; 3) A cusp model consists of two stable regions and two thresholds 
for sudden and discrete changes. Therefore, the application of the cusp modeling will advance the linear ap-
proach and better assist researchers to describe the behavior data while evidence obtained from such analysis, in 
turn, can be used to advance theories and models to better explain a behavior. 

2.2. Guastello’s Cusp Catastrophe Polynomial Regression Model  
To operationalize the cusp catastrophe model for behavior research, Guastello [6] [7] developed the polynomial 
regression approach to implement the concept of cusp model. Since the first publication of this method, it has 
been widely used in analyzing real data as we described in the Introduction. In this study, we referred the me-
thod as Gastello’s polynomial cusp regression. According to Gustello, this approach is derived by inserting re-
gression β  coefficients into the Equation (1), with change scores 2 1z z z∆ = −  (the differences in the mea-
surement scores of a behavior assessed at time 1 and time 2) as a numerical approximation of dz : 

3 2
0 1 1 2 1 3 1 4 5  z z z y z x yβ β β β β β ε∆ = + × + × + × × + × + × +                      (2) 
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where 0β  is the intercept and ε  is the normally distributed error term. Two additional term 2
2 1zβ ×  and 

5 yβ ×  are added to capture potential deviations of the data from the equilibrium plane. When conducting mod-
eling analysis, a cusp is indicated ONLY if the estimated 1β  for the cubic term, plus 3β  (for the interaction 
term) or 4β  (for control variable x) in Equation (2) are statistically significant.  

To demonstrate the efficiency of the polynomial regression approach in describing behavioral changes that 
are cusp, Guastelly [7] recommended a comparative approach. In this approach, two types, four alternative li-
near models can be constructed and used in modeling the same variables: 
1) Change scores linear models 

0 1 1 4 5 z z x yβ β β β∆ = + + +                                    (3) 

0 1 1 3 1 4 5z z yz x yβ β β β β∆ = + + + +                                (4) 

2) Pre-and post-linear models 

2 0 1 1 4 5z z x yβ β β β= + + +                                 (5) 

2 0 1 1 3 1 4 5z z yz x yβ β β β β= + + + +                               (6) 

These alternative linear models add another analytical strategy to strength the polynomial regression method.  
A better data-model fitting (or a larger 2R ) of the cusp model (2) than the alternative linear models (3) through 
(6) is often used as additional evidence supporting the hypothesis that the dynamics of a study behavior follows 
the cusp catastrophe. Fitting Guastello’s cusp regression model and the four alternative models can all be con-
ducted with commonly available statistical software, including SAS, SPSS, STATA and R . More recent dis-
cussions and applications of the cusp catastrophe modeling methods can be found in [21]. 

3. Simulation-Based Power Analysis Approach for Guastello’s Cusp Regression 
3.1. A Brief Introduction to Statistical Power  
In statistics, power is defined as the probability of correctly rejecting the null hypothesis. Stated in common 
language, power is the fraction of the times that the specified null-hypothesis value will be rejected from statis-
tical tests. Operationally based on this definition, if we specify an alternative hypothesis 1H , a desired type-I 
error rate α , and a desired power ( )1 β− , then we can calculate the required sample size n . Alternatively, 
we can calculate the statistical power ( )1 β−  as a function of sample size n  under a specified alternative 
hypothesis 1H  and a desired type-I error rate α . There are extensive literatures on sample size calculation as 
well as statistical power analysis, see the seminal books from [15]-[17] for power analysis for behavioral 
sciences. 

As detailed in Chapter 7 in [17], five factors related to research design interplay with each other to determine 
the statistical power and sample size for a simple t-test: 1) the rate of type-I error α ; 2) the desired statistical 
power 1 β− , 3) the expected treatment effect size of δ , 4) the standard error 2s  for the expected effect size, 
and 5) the sample size n . The mathematical formula can then be derived as ( ) 22 2

1 12n s z zα βδ − − ≥ +  . 
Therefore, to determine the required sample size n , we would need to provide data for four of the five design 
characteristics. Typically, the type-I error α  is set at 0.05 and the desired power ( )1 β−  is chosen to be 0.85 
(or 0.80). The other two will be treatment effect size δ  and its standard error 2s . Depending on actual re-
search questions, different values are often selected for these two characteristics.  

Extending the same concept described above for Guastello’s polynomial cusp regression, we would need to 
specify the corresponding parameter effect size for all sβ  in Equation (2), the standard deviation of the error 
term ε . In addition, we need to specify the distribution of the two control variables, the asymmetry x  and the 
bifurcation y ; and the distribution of the outcome variable z  at time 1 (i.e. 1z ). With these parameters and 
variables being specified, the required sample size for a significant Cuastello’s cusp regression model can be 
determined and statistical power can be analyzed. 

3.2. Simulation-Based Approach for Power Analysis and Sample Size Determination 
Power analysis and sample size determination can be developed for specific purpose. Typically, it is developed 
to detect treatment effect as in clinical trials or to detect the effect of specific risk factor as in regression. Similar 
development can be done to Guastello’s cusp regression model for specific repressor in asymmetry variable 
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( )x  or the bifurcation variable ( )y  if they are linked to multiple regressors or even to the overall goodness- 
of-fit index of 2R . However, we aim to tackle a more complicated problem to determine whether we can detect 
a significant overall cusp model. The complexity of cusp catastrophe model makes it rather challenging, if not 
impossible to derive an analytical formula to determine the statistical power for Guastello’s cusp regression. To 
deal with this difficult, we propose a Monte-Carlo simulation-based approach. In this method the statistical 
power is calculated as the fraction of the times that the specified null-hypothesis of “no cusp” is rejected at the 
given level of type I error. Stated in another way, if there is a cusp, the statistical power will be, among 100 si-
mulations, how many times can we detect the cusp given the sample size and type I error? The detailed steps of 
the simulation-based approach are outlined as follows: 
1) Simulate data with sample size ( )n  (i.e. the number of observations for Guastello’s cusp regression mod-

eling) for the asymmetry variable x , bifurcation variable y  and outcome variable at time 1 (i.e. 1z ). Data 
are generated under required specifications for desired study, such as normal distribution with specific 
means and standard deviations. Guastello’s cusp regression requires that all variables be standardized before 
data analysis and modeling. In this case, the standard normal distribution can be used to generate data for x , 
y  and 1z ; 

2) Specify model parameter effect size ( )0 1 2 3 4 5, , , , ,β β β β β β β=  and the standard deviation σ  of the error 
term of ε  (Equation (2)) obtained from prior knowledge;   

3) Calculate 3 2
2 1 0 1 1 2 1 3 1 4 5z z z z yz x yβ β β β β β ε= + + + + + + +  using the data obtained in the previous two 

Steps. Also generate 2 1 z z z∆ = − ; 
4) Fit the Guastello’s cusp regression model (Equation (2)) with least squares method using the data generated 

for z∆ , x , y , and 1z . After model fitting, a significant test is conducted to determine whether the data fit 
Guastello’s cusp regression model satisfactorily according to the decision rules proposed by Guastello 
(1982): 1) the estimated 1β  for the cubic term and 2) 3β  (for the y  and 1z  interaction term) or 4β  
(for control variable x ) must be are statistically significant; 

5) Repeat Steps 1 to 4 a large number of times (typically 1000) and calculate the proportion of simulations 
which satisfy the Guastello’s decision rules. This proportion then provides an estimate of the statistical pow-
er for the pre-specified sample size and the study specifications given in Steps 1 and 2; 

6) With the above established five steps for power assessment, sample size is then determined to reach a 
pre-specified level of statistical power. This is carried out by running Steps 1 to 5 with a range of sample 
sizes ( )n  first to obtain the corresponding values of statistical power. Then a statistical power curve is con-
structed for these ranges of sample sizes. With this power curve, the sample size is determined through 
back-calculation for a pre-specified power, such as power = 0.85. 

The simulation-based approach described above is implemented in free R  package and the computer pro-
gram is available up request from the authors. 

4. Simulation Study and Real Example 
4.1. Monte-Carlo Simulation Analysis 
4.1.1. Rationale 
To verify the novel approach proposed in Section 3, we simulated four scenarios with 100n =  observations for 
each using Guastello’s cusp polynomial regression model (2). The four scenarios represent four cases of σ  
with different measurement errors (i.e. 1σ = , 2, 3, and 4). We hypothesized that data with smaller measure-
ment errors will fit the cusp model better than the data with larger errors if the Guastello’s cusp polynomial re-
gression method is used to detect cusp catastrophic changes. Consequently, a larger sample size would be 
needed to detect a cusp for data with greater measurement errors.  

4.1.2. Data Generation 
Data are generated with the asymmetry variable x , bifurcation variable y  and outcome variable at time 1 (i.e. 

1z ) being set as standard normal distribution. The parameter effect size vector is set as  
( ) ( )0 1 2 3 4 5, , , , , 0.5,0.5,0.5,0.5,0.5,0.5β β β β β β β= = . To illustrate the impact of measurement errors on sample 

sizes, we generate the error term ε  following the normal distribution as ( )2~ 0,Nε σ  with increasing mea-
surement error standard deviation of 1σ = , 2, 3, and 4 for each of the four scenarios. 
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With the generated x , y  and 1z  along with the input values of β  and σ , z∆  is generated using the 
Guastello’s polynomial regression model. This is achieved by plugging in all values of x , y , 1z , β , σ  
and ε  into the following equation: 

3 2
0 1 1 2 1 3 1 4 5 z z z yz x yβ β β β β β ε∆ = + + + + + +  

Figure 2 illustrates one realization of the data generation with 1σ =  in a pair plot. It can be seen from the 
figure that the distributions for x , y  and 1z  are random (the upper left 3 by 3 plots). Furthermore, z∆  is 
linearly related to x  as seen from the upper right plot. The second plot on the right-side illustrates the linear 
relationship between z∆  and y  under fixed 1z  and the third plot on the right-side illustrates the cubic rela-
tionship between z∆  and 1z . For 2σ = , 3, and 4 (data not shown in figure), the corresponding pair plots 
would have larger variations. 

4.1.3. Simulation Analysis 
Four data sets for the four scenarios (e.g., 1σ = , 2, 3, and 4) are simulated first. The simulated data are then 
fitted with Guastello’s cusp regression model using least squares method. The summary statistics of the analyses 
are given in Table 1. It can be seen from the table that for the Scenario where 1σ = , all the parameters of the 
polynomial regression model are statistically highly significant ( )0.001p <  with 2 0.763R = , indicating ade-
quate data-cusp model fitting and F-statistic = 60.71 indicating highly significance of the polynomial regression 
model. The estimated ˆ 1.053σ = , slightly greater than the true 1σ = . Since 1β , 3β  and 4β  are all highly 
significant, we conclude that the Guastello’s polynomial regression method is sufficient to detect the specified 
cusp. 

Results of other three scenarios in Table 1 indicate that as σ  increases, the goodness of data-model fitting 
declines. In the scenario where 2σ = , the 2R  drops to 0.454, F-statistic drops to 15.61 (still significant), and 
the estimated 2.107σ = , close to the true 2σ = . In this case, both 1β  and 3β  remain significant, indicating  

 

 
Figure 2. Example of simulated data when 1σ =  where the distributions of x  y , 1z  are 
standard normal (the upper left 3 by 3 plots) and the relationships between z∆  to x  (as li-
near), to y  (as linear) and to 1z  (as cubic).                                          
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the existence of a cusp. With regard to Scenario 3 where 3σ = , the 2R  further drops to 0.278 and F-statistic 
to 7.227. The estimated 3.160σ = , again close to its true 3σ = . In this case, only 1β  is highly significant 
and 3β  marginally significant, indicating that a cusp is likely. In Scenario 4 where 4σ = , none of the esti-
mated parameters required to support the cusp is statistically significant. Therefore, we could not be able to de-
termine if the data contain a cusp. A power analysis is needed to assess if the sample size ( )100n =  is ade-
quate. 

4.1.4. Sample Size Estimation 
To demonstrate the proposed novel simulation method, we estimate sample sizes needed for each of the four 
scenarios to achieve 85% statistical power employing this method and the estimated parameter  

( )0 1 2 3 4 5, , , , ,β β β β β β β=  and the estimated σ  from Table 1 in the previous step. Figure 3 summarizes the 
results. Data in Figure 3 indicate that with 85% statistical power to detect the underlying cusp, the required 
sample sizes for Scenarios 1 through 4 are 36, 101, 195 and 293, respectively. The required sample size varies 
proportionately with measurement errors. This result adds more evidence supporting the validity of the simula-
tion-based approach we proposed for power analysis. 

4.1.5. Reverse-Verification 
If the novel simulation-based approach is valid, the sample size estimates for each of the four scenarios de-
scribed in previous section will allow approximately 85% chance to detect the underlying cusp. Therefore, we 
took a reverse approach to compute statistical power by applying the calculated sample size as input for each of 
the four scenarios. Results in Figure 3 indicated that for Scenario 1, a sample size of 36 observations will be 
adequate to detect the cusp with 85% statistical power. 

 

 
Figure 3. Statistical power curves corresponding to 1σ =  in plot a), 2σ =  in plot b), 

3σ =  in plot c) and 4σ =  in plot d). The arrows illustrate the sample size determination 
from power of 0.85 to calculate the sample size required.                                             
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Table 1. Parameter estimates, 2R , Estimated 2σ  and F-Statistic from four simulations with 1σ = , 2, 3 
and 4. The rows bolded are corresponding to the cusp determination.                                    

 1σ =  2σ =  3σ =  4σ =  

0β  (Intercept) 0.487*** 0.473. 0.459 0.446 

( )3
1 1zβ  0.540*** 0.581*** 0.621*** 0.661*** 

( )2
2 1zβ  0.456*** 0.411* 0.367 0.323 

( )3 1y zβ ∗  0.360** 0.221 0.081 −0.058 

( )4 xβ  0.563*** 0.626** 0.689* 0.753 

( )5 yβ  0.468*** 0.435. 0.403 0.371 

2R  0.763 0.454 0.278 0.1856 

Estimated 2σ  1.053 2.107 3.160 4.214 

F-Statistic with df = (5, 94) 60.71*** 15.61*** 7.227*** 4.286* 

Significant codes: *** p-value < 0.00001, **p-value < 0.001, *p-value < 0.01, “.”(p-value < 0.05). 
 

To demonstrate this result, we make use Monte-Carlo procedure and randomly sample 36 observations from 
the simulate data ( )100n =  used for Scenario 1 ( )1σ = . We then fit the data to the Guastello’s cusp regres-
sion model. We use the same criteria (significant 1β , plus either 3β  or 4β ) to assess the detection of a cusp. 
Among 1000 repeats of the Monte-Carlo simulations with sample size 36n = , we found 833 times (83.3%) 
significant. This result indicates that the power analysis of the simulation method we proposed is close to 85%. 
In another word, the method we proposed is slightly conservative, which is good for research design. The tem-
plate is designed so that author affiliations are not repeated each time for multiple authors of the same affiliation. 
Please keep your affiliations as succinct as possible (for example, do NOT post your job titles, positions, aca-
demic degrees, zip codes, names of building/street/district/province/state, etc.). This template was designed for 
two affiliations. 

4.2. Verification with Published Data  
The best approach to demonstrate the validity of the simulation approach would be to test it with observed data. 
To use our approach, we need two sets of data from any reported study: parameter estimates as effect size 

( )0 1 2 3 4 5, , , , ,β β β β β β β=  and estimated mean error of model fitting σ̂ . However, we experienced difficulties 
in finding such data from all the studies we accessed in the published literature database. For example, all β  
coefficients were reported by all studies but 0β  was not; furthermore, data-model fitting error fitting σ̂  was 
never reported in any of the published studies using Guastelle’s cusp polynomial regression method. Fortunately, 
one author of this paper [12] published a study that modeled early sexual initiation among young adolescents 
using this polynomial regression approach.  

Briefly, in Chen’s study participants were 469 virgins in the control group for a randomized controlled trial to 
assess the effect of an HIV behavioral prevention intervention program [22] [23]. The participants in grade 6 in 
the Bahamian public schools were randomly assigned to receive either intervention or control conditions. They 
were followed every 6 months up to 24 months at the time when the analysis was conducted. A participant was 
categorized as having initiated sex if he or she had the first penile-vagina sexual intercourse during the fol-
low-up period. In addition to sexual initiation, the likelihood to initiate sex was also assessed using a 5-point 
rating scale with 1 = very unlikely to have sex in the next 6 months and 5 = very likely to have sex. A sexual 
progression index (SPI) was thus created as the dependent variable for modeling analysis was defined as the first 
time. SPI = 1 for participants who never had sex and reported very unlikely to have sex; SPI = 2 for participants 
who never had sex but unsure if they are going to have sex in the next 6 months; SPI = 3 for participants who 
never had sex but reported very like to have sex in the next 6 months; and SPI = 4 for participants who initiated 
sex. In addition to SPI, age was used as the asymmetry variable x , and self-efficacy not to have sex (scale 
score based on 5 items) was used as the bifurcation y .  
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To verify the simulation-based method, the parameter effect size estimates were obtained from the paper with 
( ) ( )0 1 2 3 4 5, , , , , 0.0309,0.0726, 0.4819, 0.1236,0.0613, 0.2693cβ β β β β β β= = − − − − , and the data-model fitting 

error 0. 33ˆ 50σ =  was obtained by accessing to the original computing records. With these estimates, the simu-
lation-based approach in Section 3.2 is applied. Figure 4 presents the sample size-power curve. From the figure 
it can be seen that the estimated sample size is 153 to achieve 85% power. This sample size is much smaller than 
the sample ( )469n =  in the original study. 

5. Discussions 
In the case where analytical solution to power analysis and sample size determination is difficult, simulation 
represents an ideal alternative as recommended in [16] [17] [24]. In this paper, we reported a novel simulation- 
based approach we developed to estimate the statistical power and to compute sample size for Gustello’s poly-
nomial cusp catastrophe model. The method was developed based on statistical power theory and our under-
standing of Guastello’s cusp polynomial regression modeling approach. The computing method is programmed 
using the R  software. Results from 1000 repeats of Monte Carlo simulation and empirical data analysis sug-
gest that the method we proposed is valid and can be used in practice to conduct power analysis and to estimate 
sample size for Guastello polynomial cusp modeling method. 

With this approach, researchers can compute statistical power and estimate sample size if they plan to conduct 
cusp modeling analysis using Gustallo’s polynomial regression method. A detailed introduction to the method 
can be found in [6] [7] [21]. Data needed for our methods included parameter effect size estimates for the inter-
cept and five model parameters ( )0 1 2 3 4 5, , , , ,β β β β β β  and a data-model fitting error σ  or its estimate. With 
the specification of these data, power can be computed for any given sample sizes. In addition to computer 
power, the commonly used sample size-power curve can be generated to provide a visual presentation between 
sample size and statistical power. With such power curve, sample size can be estimated for specified power in 
design and analysis data from cusp catastrophe model.  

To make the presentation easier, we confined this novel simulation approach to the situation of one regressor 
for each control variable in the cusp model. This approach can be easily adopted and extended to multiple re-
gressors for each of the asymmetric ( )x  and bifurcation ( )y  variables where the Guastello’s cusp polynomial 
regression model would need to be extended. 

 

 
Figure 4. Power curve for Chen et al. (2010). The estimated sample size for power of 0.85 is 153. 
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More and more data suggest the utility of cusp modeling approach in characterizing a number of human be-
haviors, particularly health risk behaviors, such as tobacco smoking, alcohol consumption, hardcore drug use, 
dating violence, and unprotected sex [10] [11] [14] [21] [25] [26]. The methods we reported in this paper pro-
vide a useful tool for researchers to more effectively design their research to investigate these risk behaviors and 
to assess intervention programs for risk reduction.   

By conducting this study, we also note that previous studies published in the literature do not report adequate 
information for power analysis. We highly recommend that journal editors ask authors to report all parameter 
estimates, including 0β , and data-model fitting error (mean square of error). In addition to power analysis and 
sample size estimation, such data are also useful for readers to statistically assess appropriateness of the reported 
results. 

There are a number of strengths with the method we present in this study. The principle and the computing 
process are not difficult to follow; the data used for the computing can be obtained; the computing software is 
written with R , available from the authors by request for collaboration; and the computing does not require 
much time (several seconds to half minutes). We are encouraged on the results from this research and work on 
extending the results into stochastic catastrophe model in [4] [19]. Despite many advantages, further application 
of the method in practice is needed. 
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Abstract 
Clustering Lasso, a new regularization method for linear regressions is proposed in the paper. The 
Clustering Lasso can select variable while keeping the correlation structures among variables. In 
addition, Clustering Lasso encourages selection of clusters of variables, so that variables having 
the same mechanism of predicting the response variable will be selected together in the regres-
sion model. A real microarray data example and simulation studies show that Clustering Lasso 
outperforms Lasso in terms of prediction performance, particularly when there is collinearity 
among variables and/or when the number of predictors is larger than the number of observations. 
The Clustering Lasso paths can be obtained using any established algorithm for Lasso solution. An 
algorithm is proposed to construct variable correlation structures and to compute Clustering Las-
so paths efficiently. 

 
Keywords 
Clustered Variables, Lasso, Principal Component Analysis 

 
 

1. Introduction 
We are often interested in finding important variables that are significantly related to the response variable and 
can be used to predict quantities of interest in regressions and classification problems. Important variables are 
often shown in clusters where variables in the same cluster are highly correlated and have similar pattern 
relating to the response variable. For example, a major application of microarray technology is to discover 
important genes and pathways that are related to clinical outcomes such as the diagnosis of a certain cancer. 
Typically, only a small proportion of genes from a huge bank have significant influence on the clinical outcome 
of interest. In addition, expression data frequently have cluster structures: the genes within a cluster often share 
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the same pathway and are therefore similarly related to the outcome. When regression is adapted in this setting, 
we often face the challenge from multi-collinearity of covariates. An ideal variable selection procedure should 
be able to find all genes of important clusters rather than just some representative genes from the clusters. 
Typically, two characteristics, pointed out by [1], evaluate the quality of a fitted model: accuracy of prediction 
on new data and interpretation of the model. For the latter, the sparse model with fewer selected covariates is 
preferred for interpretation due to its simplicity. However, when multiple variables share the same mechanism 
for explaining the response, all the involved variables should have an equal chance of being selected, and should 
exhibit the same relationship to the outcome in the fitted model, for scientific reasoning. 

It is well known that the ordinary least square estimate (OLS) in linear regression often performs poorly when 
some of the predictors are highly correlated. OLS would generate unstable results where the estimates have 
inflated variances. Regularizations have been proposed to improve OLS. For example, ridge regression [2] 
penalizes the model complexity by the 2l  penalty of the coefficients. This method was proposed to solve the 
collinearity problem by adding a constant to the diagonal terms of X X′ , where X  is the observation or design 
matrix. Ridge regression stabilizes the estimates through the bias-variance trade-off. It can often improve the 
predictions but cannot select variables. [3] proposed the Lasso method by imposing an 1l -penalty on the regre- 
ssion coefficients. Lasso is a promising method, as it can improve prediction and produce sparse models 
simultaneously. However, when high correlations among predictors are present, the predictive performance of 
Lasso is dominated by ridge regression [3]. Moreover, when there is a cluster of variables, in which each 
variable associates with the response variable similarly, Lasso tends to arbitrarily select one variable from the 
cluster instead of identifying the cluster [1]; see also Section 2 for more discussion. Elastic Net, proposed by [1], 
combines both 1l  and 2l  penalties of the coefficients as the regularization criterion. The method is promising 
in that it encourages cluster effects and shows improved predictive performance over Lasso. Elastic Net can 
automatically choose cluster variables and estimate parameters at the same time. Many other methods can be 
used to choose clustered variables, such as principal component analysis (PCA). [4] defined “eigen-arrays” and 
“eigen-genes” in this way. But PCA can not choose sparse models. [5] proposed sparse principal component 
analysis (SPCR), which formulated PCA as a regression-type optimization problem, and then obtained sparse 
loadings by imposing the Elastic Net constraint. SPCR can successfully yield exact zero loadings in principal 
components. However, for each principal component, a regularization parameter has to be selected, which 
results in an overwhelming computational burden when the number of parameters is large. Other penalized 
regression methods have been proposed for group effect [6]-[13]. However, these methods either pre-suppose a 
grouping structure or assume that each predictor in a group shares an identical regression coefficient. 

In practice, we often have some prior knowledge about the structure of variables and would like to make use 
of a priori information in analysis. For example, in gene analysis, we know the pathways and genes involved in 
these pathways. Therefore, we would like to group the involved variables in the same pathway together. Another 
example is in spatial analysis, we would like to keep a certain correlation structure among the spatial error terms. 
For example, sometimes we would like to fit a different coefficient for a certain variable at different regions (e.g., 
if the variable has different effect at different regions) but keep a correlation structure among the coefficients at 
neighborhood regions. The conditional autoregressive model (CAR, [14]) is one of the methods that can be used 
to keep such correlation structure. 

In this paper, we propose a method that encourages cluster variables to be selected together and can 
incorporate available prior information on coefficient structures in variable selection. When there is no prior 
information on coefficient structure, we propose a data augmentation algorithm to find the structure. Moreover, 
the method uses the Lasso regularization to choose sparse models. The proposed method can be solved by any 
efficient Lasso algorithm such as least angle regression (LARS, [15]) and the coordinate-wise descent algorithm 
(CDA, [16]). We call our method the Clustering Lasso (CL). 

The rest of the paper is organized as follows. In Section 2, we review the Lasso method and discuss its 
limitation in identifying clustered variables. Then we propose the Clustering Lasso in a Bayesian setting. Its 
counterparts in the Frequentist setting and computational strategies are discussed in Section 3. Sections 4 and 5 
demonstrate the predictive and explanatory performance of CL through real examples and simulations. Finally, 
conclusions and future work are discussed in Section 6. 

2. Clustering Lasso in Bayesian Setting  
Consider linear regression settings with the response vector ( )1, , ny y ′= y  and n p×  dimensional input 
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matrix X . The y  and columns of X  are centered and standardized to have the same 2l  norm. The Lasso 
estimates lasso

β  are calculated by minimizing  

( ) ( )
=1

1
2

p

j
j

λ β′− − + ∑y Xβ y Xβ                                (1) 

The solution of Lasso can be obtained through LARS or CDA. Compared with ordinary linear regressions, 
Lasso shows superior predictive performance and more stable estimates. Moreover, Lasso can often select 
variables and estimate coefficients simultaneously. 

Group effect has been defined by [1] in the linear regression setting. Let ix  be the i th predictor. The 
estimates of coefficients have the group effect if i jx x=  would result in the estimated coefficients ˆ ˆ

i jβ β= . [1] 
further proved that if the solution for estimation is to minimize the objective function of the form:  

( )( ) ( )1
2

Jλ− − +y Xβ y Xβ β                                (2) 

and the penalty term, ( )J ⋅ , is strictly convex, then the estimates from Equation (2) enjoy the group effect 
property. In Lasso, ( )J ⋅  is 1l  norm of β , which is not strictly convex. Zou and Hastie proved that in this 
case Lasso estimates do not have the group effect. This is also understandable through the Lasso solution path 
from LARS. In LARS, suppose a variable ix  is selected in the model. Its coefficient solution path will move in 
a direction to reduce the correlation between ix  and the current residual, β− y X , until another variable, say 

kx , has the same correlation to the current residual as does ix . At this point, variable kx  is added into the 
model. If jx  is highly correlated with ix , when the correlation between ix  and the residual decreases, so 
does that between jx  and the residual. Therefore, if ix  has been included in the model, Lasso is less likely to 
select the highly correlated variable jx  in the model. Consequently, Lasso cannot select clustered variables. 

In a Bayesian setting, if ix  is the ith row of X , [3] showed that the Lasso solution is identical to the 
posterior mode of the coefficients when the prior distributions of the coefficients are set as independent double 
exponential distributions, where  

( )

( )
2

2

2
2

1

, , , ,   for  1, , ,

e .
2

j

i i i

p

j

y N i n

λ β σ

σ σ

λπ σ
σ=

′ =

=∏

 x β x β

β
 

In Lasso, the penalty term of model complexity is 1
p

jj β
=∑ . Because each coefficient is penalized equally, 

each one can be shrunk to zero independently. When the variables are clustered, an ideal solution path should be 
that the clustered variables are selected together. Therefore, we would like to penalize the coefficients with a 
restriction that keeps the correlation structure among the variables. With the penalization, if the coefficient of 
one variable is nonzero, those variables in the same cluster are less likely to be zero. For this purpose, we 
assume a correlation structure, specified as the structural correlation matrix R , of the coefficients β . 

For simplicity, assume that the variance of the random error, 2σ  ( )0σ > , and the structural correlation 
matrix R  are known. Then the likelihood and prior distributions can be set as: 

( )
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2

2

1
2

2
2

1

, , , ,   for  1, , ,

,  and  
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Therefore, the posterior distribution of β  has the form  

( ) ( )

( )

1 1
2 2

1
2 2 22

1 1

,
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i i
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π π
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− −

−

=

 
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x β R β
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with a vector ( )1, , pV V V′ =  , 
11

p
iiV V

=
= ∑ . The posterior mode of β  in the distribution (3) is the solution 

to  

( ) ( )
1
2

1

1argmin
2β λ

−′− − +y Xβ y Xβ R β                               (4) 

Relating Equation (4) to the Bayesian Lasso solution to (1), we naturally infer the Clustering Lasso in 
Frequentist setting.  

3. Clustering Lasso 
3.1. Clustering Lasso and Its Grouping Effect 
In Frequentist setting, we modify the penalization function in Lasso to retain a presumed correlation structure 
among coefficients. Let 

1
2

−∗ =β R β  and jβ
∗  be the jth element of ∗β . The Clustering Lasso estimate is 

defined as the solution to  

( ) ( )
=1

1
2

p

j
j

λ β ∗′− − + ∑y Xβ y Xβ                                  (5) 

where 0λ ≥  is the regularization parameter. Note that instead of restricting iβ∑ , we restrict iβ
∗∑ . 

Therefore, β ’s are not penalized independently and clustered variables could be chosen. Let 
1
2

j

−
r , with 

dimension 1 p× , be the jth row of 
1
2

−
R  and let 

1 1
1 2 2

j j j

− −−
′ 

=   
 

R r r , a p p×  matrix. The penalty term used in 

expression (5) can also be written as ( )1 21
1

p
jjλ −

=
′∑ β R β , which is intermediate between the 1l  penalty and the  

2l  penalty. When R  is an identity matrix, the Clustering Lasso is identical to the ordinary Lasso method. 
Otherwise, the penalty function is strictly convex. Using Lemma 2 developed by [1], the solution to Expression 
(5) has the group effect. Therefore, Clustering Lasso can select variables by clusters. 

Figure 1 illustrates the Clustering Lasso penalty contours with two predictors. The right figure shows the 
penalty contour when the two predictors are correlated and the left one shows the contour when the two 
predictors are independent, which is identical to the Lasso method. The sums of the squared errors have 
elliptical contours, centered and minimized at the full least squares estimate. The constraint region of Lasso is 
the diamond region 1 2 cβ β+ ≤ , while that for the Clustering Lasso is the parallelogram region defined by  

1 1
2 2

1 2 c
− −

+ ≤r β r β . The optimal estimates are realized at the place where the elliptical contours first hit the  

constraint regions. The sides of the parallelogram are decided by the structural correlation matrix R . 
 

 
Figure 1. Estimation picture for the Clustering Lasso when two predictors are 
independent (left, as lasso) and when two predictors are clustered (right).      
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3.2. Computation 

The Clustering Lasso is an extension of the Lasso method. Let 
1
2∗ =X XR . So the solution to Expression (5) is 

1
2 ∗= β R β , where ∗

β  is  

( ) ( )
1

1argmin
2

p

j
j

β
λ β∗

∗ ∗ ∗ ∗ ∗

=

′− − + ∑y X β y X β                        (6) 

Therefore, all the established algorithms for Lasso solution, such as the least angle regression (LARS, [15]), 
could be used for Clustering Lasso.  

3.3. The Clustering Lasso Algorithm 
We can incorporate prior knowledge of clustering into a structural correlation matrix. For example, Kyoto 
Encyclopedia and Genes and Genomes (KEGG) and many other biological databases can be referred to in gene 
analysis to construct the structural correlation matrix. It is required that the structural correlation matrix be 
symmetric. When no prior information is readily adaptable, a natural method is to use the modified correlation 
matrix of the observed data, meaning that the coefficients should have a correlation structure that is similar to 
how the covariates are correlated. There are several well-established potential choices such as partial correlation 
matrix [17]. In this paper, we propose to use a modified correlation matrix so that if two variables ix  and jx  
are not significantly correlated, ijR , the ith row and jth column element of R , is set to be zero. As the solution  

for β  is 
1
2 ∗= β R β , zero elements in 

1
2R  are desired so that when iβ

∗ s are shrunk to zero, which is possible  
by the Lasso property, some jβ s could also be shrunk to exact zero. 

In detail, we develop Algorithm 1—the Clustering Lasso algorithm. Let valp , 2p , and m , in [ ]0,1  be 
three prespecified numbers, and ORRC  be a p p×  matrix. 

Algorithm 1 Clustering Lasso 
1. For 1, , 1i p= −  
for 2, ,j p=    
do correlation test between ix  and jx , let  

[ ] ( ) ( )valcor , if   value  and cor ,
,

0 . .
i j i jx x p p x x m

ORR i j
o w

 < ≥= 


C  

2. Do eigen decomposition on ORRC  so that ORR ′=C UQU  and let 0iiQ =  if 2

1

ii
p

jjj

Q
p

Q
=

<
∑

 for  

1, ,i p=  . 

3. Let 
1
2 ′=T UQ U  and ∗ =X XT .  

4. Do Lasso on ( ), X ∗y  and get the coefficient solution ∗
β .  

5. T ∗= β β  is the solution to Clustering Lasso.  
Note that only when some elements of T  are set to be zero, could β s be shrunk to exact zero when β ∗ ’s 

are shrunk to zero by Lasso. A special case is when R  is a block diagonal matrix. To choose sparse models, 
we need to identify clusters of covariates, where variables in the same cluster are assumed to be correlated while 
those from different clusters are independent. For this purpose, there are two shrinkage steps in Algorithm 1. 
Step (1) shrinks the correlation coefficients to zero if there is no significant correlation between the pair of 
covariates at the significance level valp  or if the magnitude of correlation is smaller than a pre-set value m . 
When two covariates are not correlated, there is little chance that the two variables relate to the response 
variable with the same underlying pathway. Therefore, the coefficients of the two variables can be estimated 
independently. Step (2) shrinks some eigen-values of ORRC  to zero if the corresponding eigenvector explains 
less than 2p  times the total variance of ORRC . The two shrinkage steps cannot guarantee that some elements 
of T  be zero. Subjective intervention can help for this purpose. One resolution is to cluster the covariates first 



Q. Z. Yu, B. Li 
 

 
819 

and then calculate the correlation matrices for each cluster, which in turn used to build the diagonal blocks of 
R . In addition to building a diagonal block matrix, another resolution is to adapt shrinkage methods in the eigen 

decomposition process of R , so that some loadings of the eigenvectors might degenerate to 0. ScotLASS [18] 
and sparse principal component analysis (Zou et al., 2006) can serve this purpose. However, these methods 
require extra computations for each principal component, which brings in high computational costs. The 
nonzero elements of the jth row of T  imply that the corresponding covariates belong to the jth cluster. Ideally, 
their values should be proportional to the contributions of each covariate to the cluster in explaining the outcome. 
As pointed out by a referee of the paper, clusters in the proposed method are identified by rows of 1 2R , where 

1 2R  is defined as 1 2 ′UQ U  with Q  being the diagonal matrix of eigenvalues and U  columns of eigen- 
vectors of R . As in principal component analysis, the nonzero elements of 1 2R  are difficult to interpret in 
practice. The referee recommends setting the elements of 1 2R  to be 0 or 1 based on the absence or presence of 
non-zero elements, respectively. In the paper, we set the estimate of β  to be zero, if its estimated value is very 
close to zero, i.e. if 0.005iβ < . 

3.4. Choice of Tuning Parameters 
Four parameters, ( )val 2, , ,p m pλ , are to be chosen for Algorithm 1. valp  is the significance level used to 
decide whether the correlations between a pair of covariates should be considered to restrict the estimation of 
their coefficients. We usually select the significance level at 0.05, the traditional significance level. When the 
data set is large, we can reduce the significance level. Since the correlation would be always significant when 
little correlation exists and the number of observations is large, we set another restriction on the magnitude of 
correlation- m , above which we would like to use the correlation as a restriction to the coefficient parameters. 
m  is chosen subjectively by researchers. Algorithm 1 Step (2) is similar to the principal component analysis 
except that the eigen decomposition is based on the correlation matrix modified by Step (1). 2p  specifies the 
minimum proportion of variance explained by the eigen vector, below that, the eigen vector will not be used for 
further analysis. 2p  is set at a small value, typically 0.01 p , where p  is the total number of covariates. 

The last parameter to be tuned is λ . In Lasso, the conventional tuning parameter is the fraction ( )s  of the 
1l -norm. There are well-established methods for choosing s . Tenfold cross-validation (CV) on training data is 

the method we used in this paper. The training dataset is divided into ten folds randomly. One fold of the data is 
used as validation data, on which the prediction error is calculated based on the model fitted from the other nine 
folds of data. s  is tested on a fine grid on [ ]0,1 . It takes the value that minimizes the averaged prediction error 
from CV. We can also use ten-fold CV to tune m  and 2p . We found that only a few representative values for  

2m p×  need to be cross validated to obtain good results, which are { } 0.010,0.5 0,0.05,
p

 
× 
 

. 

4. Microarray Data Example 
We used the proposed method on an Affymetrix gene expression dataset. The data were collected by Singh et al. 
[19] and consists of 12,600 genes, from 52 prostate cancer tumor samples and 50 normal prostate tissue samples. 
The goal is to construct a diagnostic rule based on the 12,600 gene expressions to predict the occurrence of 
prostate cancer. Support vector machine (SVM, [20]), Ridge, Lasso, Elastic Net, Weighted Fusion (w.fusion) 
and Clustering Lasso were all applied to this dataset. We tried four types of Clustering Lasso methods:   

1. CL1: val 0.05p = , 0m = , and 2 0p = ; 
2. CL2: val 0.05p = , 0m = , and 2 0.05p = ; 

3. CL3: val 0.05p = , 0m = , and 2
0.01

# of covariates
p = ; 

4. CL4: val 0.05p = , 0.5m = , and 2 0.05p = . 
To apply these methods, we first coded the presence of prostate cancer as a 0-1 (no and yes) response y . The 

classification function is I  (fitted value 0.5> ), where ( )I ⋅  is the indicator function. For comparison, we 
randomly select 52 samples as training data, based on which the diagnostic rules are constructed, and the rules 
are in turn tested on the remaining 50 samples. 

The dataset was split 20 times. For each repetition, a 1000-gene set was preselected based on the training data 
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to make the computation manageable. The genes are those “most significantly” related to the response, tested by 
individual t-statistics. Figure 2 shows the boxplots of the misclassification rates on the test data sets from 
different classifiers. The misclassification rates are summarized in Table 1. Overall, the misclassification rate 
from Clustering Lasso is competitive with Elastic Net and Ridge, and is better than Lasso, Weighted Fusion, and 
SVM. For the computational time, Clustering Lasso is comparable to the Lasso method and is much more 
efficient than Elastic Net and Weighted Fusion. Within the four Clustering Lasso methods, the ones with more 
restrictions on eigenvalues and the magnitudes of correlations perform a little bit worse. 

Table 2 shows the average number of genes selected from the 20 repetitions based on different methods. The 
analyses were based on 1000 genes and 52 observations. We see that Lasso selected fewer than 52 genes. Elastic 
Net eliminated few genes—the average number of selected genes was close to 1000. Cluster Lasso identified 
about 25% genes as important. However, we do not know whether the chosen genes are, in fact, important or not. 
The efficiency of variable selection is further assessed by simulation studies. 

 

 
Figure 2. Misclassification rates on singh data. ELAS stands for Elastic Net.                            

 
Table 1. Summary of Misclassification Rates on Singh data.                                                     

Methods SVM Ridge Elastic Net Lasso CL1 CL2 CL3 CL4 W. fusion 

Mean 5.75 4.25 4.3 6.05 4.45 4.2 4.2 4.55 8.2 

Median 6 4 4 6 4 4 3.5 4 7.5 

SD 1.48 1.33 0.98 1.79 1.64 1.74 1.64 2.86 4.03 

 
Table 2. Average number of genes selected by each method.                                                     

Methods Elastic Net Lasso CL1 CL2 CL3 CL4 W. fusion 

# of genes 999.25 42.25 278.35 221.50 287.05 160.40 856.65 
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5. Simulation Studies   
We applied Clustering Lasso on some simulations to test its prediction accuracy in regressions when compared 
with Ridge, Lasso, Elastic Net, and Weighted Fusion. The first three simulations are adapted from the Elastic 
Net paper [1]. To begin, datasets are simulated from the true model:  

( ),            0,1y X Nβ σ= +    

For each scenario, we simulated 100 data sets, each consisting of a training data set and an independent test 
data set. Here are the details of the four scenarios. 

1. In example one, we simulated 40  observations as training data and 200 observations as test data. We let 
( )0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85β =  and 3σ = . The pairwise correlation between ix  and jx   

was set to be ( )corr , 0.5 i ji j −= .  
2. In Example two, we simulated 200 training data and 400 testing data. There are 40 predictors such that  

( )
10 10 10 10

0, ,0, 2, , 2,0, ,0, 2, , 2 ,   15, and  corr , 0.5i jβ σ
 

= = = 
 
   

     

3. Example 3 has the group setting that 
15 25

3, ,3,0, ,0β
 

=  
 
 

   and 15σ = , where the predictors are gene- 
rated as  

( )
( )
( )

( )

( )

1 1

2 2

3 3

iid

iid

,   0,1 ,     1, ,5;

,   0,1 ,     6, ,10;

,   0,1 ,     11, ,15;

0,1 ,     16, , 40;

0,0.01 ,     1, ,15.

x
i i

x
i i

x
i i

i

x
i

x z z N i

x z z N i

x z z N i

x N i

N i

= + =

= + =

= + =

=

=

 

 

 

 

 









 

As explained by [1], three groups are equally important groups, and each group contains five covariates. We 
created 100  observations as training data and 400 as testing data.  

The fourth simulation is a modification of the third example to emphasize the group effects. The true model 
has the form 1 20.5y z z= + +   where ( )0,1i N . The predictors we observed are  

( )
( )

( )

( )

1 1

2 2

2

3 3

iid

,   0,1 ,     1, ,5;

,   0,1 ,     6, ,10;

0.6 ,     11, ,15;

,   0,1 ,     16, , 20;

0,0.5 ,     1, , 20.

x
i i

x
i i

x
i i

x
i i

x
i

x z z N i

x z z N i

x z i

x z z N i

N i

= + =

= + =

= + =

= + =

=

 

 



 

 











 

The latent variables, 1z  and 2z , directly relate to the response variable, where 1z  is more important than 
2z . A nuisance variable 3z , does not related to y . ix s  relate to zs  at different levels. In terms of gene 

analysis, we can think of 1z , 2z  and 3z  as underlying pathways, some of which are related to the disease 
measured by y . We observed the gene expression levels, ix , and would like to identify the related pathways. 

We used all four Clustering Lasso methods. In all examples, the results from the four Clustering Lasso 
methods are close to each other. The prediction results from Lasso, CL2, CL4, Elastic Net, Ridge, and Weighted 
Fusion are summarized in Table 3 and Figure 3. In Figure 3, relative MSE was defined as the MSE of the 
corresponding method divided by the minimum MSEs from all the methods. We see that Clustering Lasso 
always performs better than the Lasso method, and it is close to or better than Ridge, Weighted Fusion and 
Elastic Nets, even under collinearity and group effect situations. 

Table 4 shows the results of variable selection. The two numbers in each cell are the proportion of times an 
important factor is chosen and the proportion of times a false factor is chosen, respectively. We see that 
compared with Elastic Net, Weighted Fusion and Lasso, Clustering Lasso is superior at selecting important 
factors. However, like Weighted Fusion, it is more likely to over select variables than Elastic Net. In Example 2,  
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(a)                                        (b) 

 
(c)                                        (d) 

Figure 3. Comparing the simulation results from the four examples. (a)-(d): Example 1-4.            
 

Table 3. Mean (standard deviation) of MSE for the simulated examples based on the 100 iterations.                     

Methods Example 1 Example 2 Example 3 Example 4 

Lasso 11.50 (1.81) 256.40 (19.05) 279.75 (30.08) 1.151 (0.09) 

Elastic Net 11.23 (1.60) 251.01 (18.85) 248.42 (24.45) 1.138 (0.10) 

Ridge regression 10.55 (1.46) 243.47 (15.91) 278.09 (25.81) 1.125 (0.10) 

Clustering Lasso 2 10.68 (1.46) 253.75 (19.11) 265.33 (28.82) 1.097 (0.08) 

Clustering Lasso 4 10.70 (1.35) 250.82 (17.78) 257.33 (23.46) 1.094 (0.08) 

Weighted Fusion 10.68 (1.69) 257.07 (24.22) 287.85 (61.14) 1.141 (0.09) 

 
Table 4. Variable selection results for the simulated examples based on the 100 iterations. In each cell, the first number is the 
proportion of times a true factor is chosen and the second number is the proportion of times a false factor is chosen.         

Methods Example 1 Example 2 Example 3 Example 4 

Lasso 0.840, - 0.811, 0.389 0.235, 0.736 0.544, 0.186 

Elastic Net 0.870, - 0.838, 0.488 0.958, 0.134 0.585, 0.124 

Clustering Lasso 2 0.995, - 1.00, 0.998 1.00, 0.873 0.991, 0.630 

Clustering Lasso 4 0.985, - 1.00, 0.997 1.00, 0.493 0.995, 0.460 

Weighted Fusion 0.990, - 0.992, 0.975 1.00, 0.997 0.792, 0.574 
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since all variables are highly correlated, Clustering Lasso cannot identify the most important variables. In 
comparison, Clustering Lasso performs very well in Examples 3 and 4, when clusters of variables play an 
important role in real model. 

Finally, to show how Clustering Lasso chooses covariates in groups and the behavior of the coefficients for 
the selected variables, we illustrate the differences between Lasso and Clustering Lasso by a modified example 
from [1]. Let 1z , 2z  and 3z  be three independent variables with the uniform ( )0,20  distribution. The 

response variable is generated as ( )1 20.2 ,1y N z z+ . With the random error terms ( )
ind

0,1 16i N , the nine 
observed predictors are  

1 1 1 2 1 2 3 1 3

4 2 4 5 2 5 6 2 6

7 3 7 8 3 8 9 3 9

,     ,     ,
,     ,     ,
,     ,     .

x z x z x z
x z x z x z
x z x z x z

= + = − + = +

= + = − + = +

= + = − + = +

  
  
  

 

The variables 1x , 2x  and 3x  are from group 1, with the direct effect 1z . 4x , 5x  and 6x  are from 
group 2, with the direct effect 2z . The effect from 2z  on y  is much smaller than from 1z —the coefficient 
for 1z  is 1 compared with 0.2 for 2z . Variables 7x , 8x  and 9x  are from 3z , which does not relate to the 
response variable. The within-group correlations are almost 1, while the between group correlations are almost 0. 
Figure 4 shows the solution paths for Lasso, Elastic Net and CL2. 

We also use this simulation to compare the sensitivity and specificity of the listed methods in finding 
significant covariates. The simulation is repeated 100 times. Table 5 summarizes the number of times that the 
coefficients of ix  are not zero. We find that the proposed Clustering Lasso of all versions can uniformly 
identify the important covariates while is less likely to select non-significant covariates than Lasso, Elastic Net 
and Weighted Fusion. 

 

 
Figure 4. Comparing the solution paths from Lasso, Elastic Net and Clustering Lasso.        
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Table 5. Number of times the coefficients are not zero based on the 100 repetitions.                                  

 1x  2x  3x  4x  5x  6x  7x  8x  9x  

Lasso 86 84 89 69 75 64 73 61 66 

Elastic Net 93 93 94 88 91 85 40 42 37 

Clustering Lasso 1 100 100 100 100 100 100 58 59 61 

Clustering Lasso 2 100 100 100 100 100 100 32 31 30 

Clustering Lasso 3 100 100 100 100 100 100 33 35 32 

Clustering Lasso 4 100 100 100 100 100 100 33 33 33 

Weighted Fusion 100 99 100 100 95 100 85 83 85 

6. Conclusions and Future Works 
We find that the Clustering Lasso, is a novel predictive model that produces sparse model with good predictive 
performance, while encouraging group effects. The empirical results from a two-class microarray data classifica- 
tion problem and several simulation studies on regression problems show that Clustering Lasso has very good 
predictive performance and is superior to the Lasso method. 

The method was proposed to encourage group effects so that clustered variables are selected together in a 
model. Clustering Lasso can automatically select groups of variables. If the structural correlation matrix used for 
regularization is block diagonal matrix, Clustering Lasso is equivalent to the group Lasso proposed by [7]. 
However, if the relationships among the variables are complicated, we have to simplify the structural correlation 
matrix to obtain sparse models. We proposed some shrinkage steps to build the desired structural correlation 
matrix. Rotating the eigen vectors or adapting techniques such as sparse component analysis can also help for 
this purpose. As a next step, we will use the Clustering Lasso method in the spatial analysis, so that we can 
maintain the important spatial correlations while selecting sparse models.  
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Abstract 
Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) 
along with its parallel implementation over several processors. Modal clustering techniques are 
especially designed to efficiently extract clusters in high dimensions with arbitrary density shapes. 
Further, clustering is performed over several resolutions and the results are summarized as a 
hierarchical tree, thus providing a model based multi resolution cluster analysis. Finally we im-
plement a novel parallel implementation of HMAC which performs the clustering job over several 
processors thereby dramatically increasing the speed of clustering procedure especially for large 
data sets. This package also provides a number of functions for visualizing clusters in high dimen-
sions, which can also be used with other clustering softwares. 
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1. Introduction 
Cluster analysis is a ubiquitous technique in statistical analysis that has been widely used in multiple disciplines 
for many years. Historically cluster analysis techniques have been approached from either a fully parametric 
view, e.g. mixture model based clustering, or a distribution free approach, e.g. linkage based hierarchical 
clustering. While the parametric paradigm provides the inferential framework and accounts for the sampling 
variability, it often lacks the flexibility to accommodate complex clusters and are often not scalable to high 
dimensional data. On the other hand, the distribution free approaches are usually fast and capable of uncovering 
complex clusters by making use of different distance measures. However, the inferential framework is distinctly 
missing in the distribution free clustering techniques. Accordingly most clustering packages in R also fall under 
the two above mentioned groups of clustering techniques. 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2014.410078
http://dx.doi.org/10.4236/ojs.2014.410078
http://www.scirp.org/
mailto:yansong.x.cheng@gsk.com
mailto:surajit.ray@glasgow.ac.uk
http://creativecommons.org/licenses/by/4.0/
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This paper describes a software program for cluster analysis that can knead the strengths of these two 
seemingly different approaches and develop a framework of parallel implementation for clustering techniques. 
For most model based approaches to clustering, the following limitations are well recognized in the literature: 1) 
the number of clusters has to be specified; 2) the mixing densities have to be specified, and as estimating the 
parameters of the mixture models is often computationally very expensive, we are often forced to limit our 
choices to simple distributions such as Gaussian; 3) computational speed is inadequate especially in high 
dimensions and this coupled with the complexity of the proposed model often limits the use of model-based 
techniques either theoretically or computationally; 4) it is not straightforward to extend model-based clustering 
to uncover heterogeneity at multiple resolutions, similar to the one offered by to the model free linkage based 
hierarchical clustering. 

Influential work towards resolving the first three issues has been carried out in [1]-[7]. Many previous 
approaches have focused on model selection of mixtures by choosing the number of components, merging 
existing components or by determining the covariance structure of the mixture density under consideration, see 
[8]-[10]. They work efficiently if the underlying distribution is chosen correctly, but none of these model based 
approaches is designed to handle a completely arbitrary underlying distribution (see Figure 5 for one such 
example). That is, we think that limitations due to issues (3) and (4), above often necessitate the use of model- 
free techniques. 

This paper describes a software program for cluster analysis that can knead the strengths of these two 
seemingly different approaches and develop a framework of parallel implementation for clustering techniques. 
The hierarchical mode association clustering—HMAC [11], which is constructed by first determining modes of 
the high-dimensional density and then associating sample points to those modes, is the first multivariate model 
based clustering approach resolving many of the drawbacks of standard model-based clustering. Specifically, it 
can accommodate flexible subpopulation structures at multiple resolutions while retaining the desired natural 
inferential framework of parametric mixtures. [12] developed the inference procedure to the number of clusters 
of this approach. Modalclust is the package implemented in R (R Development Core Team, 2010) for carrying 
out HMAC along with its parallel implementation (PHMAC) over several processors. Though mode-counting or 
mode hunting has been extensively used as a clustering technique, most implementation are limited to univariate 
data. Generalization to higher dimensions was limited both due to the computational complexity of finding 
modes in higher dimension and the lack of any natural framework to study the inferential properties of modes in 
higher dimensions. The HMAC provides a computationally fast iterative algorithm for calculating the modes 
and thereby providing a clustering approach which is scalable to high dimensions. This article provides the 
description of the R package that implements HMAC and additionally provides an wide array visualization tools 
for representing clusters in high dimensions. Further, we propose a novel parallel implementation of the 
approach which dramatically reduces the computational time especially for large data sets, both in data dimen- 
sions and the number of observations. 

This paper is organized as follows: Section 2 briefly introduces the algorithm of Modal Expectation Maximi- 
zation (MEM) and builds the notion of mode association clustering technique. Section 3 describes a parallel 
computing framework of HMAC along with computing time comparisons. Section 4 illustrates the implemen- 
tation of clustering functions in the R package Modalclust along with examples of the plotting functions 
especially designed for objects of class hmac. Section 5 provides the conclusion and discussion. Comparison of 
Modal clustering with other popular model based and model free techniques are provided in the supplementary 
document. 

2. Modal EM and HMAC 
The main challenge for using mode-based clustering in high dimensions is the cost of computing modes, which 
are mathematically evaluated as local maximas of the density function with support on D

 , D  being the data 
dimension. Traditional techniques of finding local maxima, such as “hill climbing” works well for univariate 
data. But multivariate hill climbing is computationally expensive thereby limiting its use in high dimensions. [9] 
proposed an algorithm that solves a local maximum of a kernel density by ascending iterations starting from the 
data points. Since the algorithm is very similar to Expectation Maximization (EM) algorithm, it is named as  
Modal Expectation Maximization (MEM). Define the mixture density as ( ) ( )1π

K
i iif x f x

=
= ∑ . Now, given any  

initial value ( )0x , the MEM solves a local maximum of the mixture density by alternating the following two 
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steps until it meets some user defined stopping criterion. 

1. Let 
( )( )

( )( )
π

,     1, ,
r

i i
i r

f x
p i n

f x
= =    

2. Update ( ) ( )1

1
argmax log

n
r

x i i
i

x p f x+

=

= ∑  

Details of convergence of the MEM approach can be found in [11]. The above iterative steps provide a 
computationally simpler approach than grid search method for “hillclimbing” from any starting point Dx∈  
by exploiting the properties of density functions.Given a multivariate kernel K , let the density of the data be 
given by  

( ) ( )1

1n
iif x K x x

n=
Σ = − Σ∑  

where Σ  is the matrix of smoothing parameters. Further, in the special case of Gaussian kernels, i.e.,  

( ) ( ),i iK x x x xφ− Σ = Σ  

where ( )φ ⋅  is the pdf of a Gaussian distribution, the update of ( )1rx +  is simply  

( )1

1

n
r

i i
i

x p x+

=

= ∑  

allowing us to avoid the numerical optimization of Step 2. 
Now we present the HMAC algorithm. First we scale the data and use a kernel density estimator, with a 

normal kernel to estimate the density of the data. The variance of the kernel, Σ  is a diagonal matrix with all 
entries 2σ  denoted by ( )2D σ , thus 2σ  is the single smoothing parameter for all the dimensions. The choice 
of the smoothing parameter is an area of research in itself. In the present version of the program we incorporate 
the strategy of using pseudo degrees of freedom, proposed in [13]. Their strategy provides us with a range of 
smoothing parameters and exploring them from finest to coarsest resolution provides the user with the desired 
hierarchical clustering. First we describe the steps of Mode Association Clustering (MAC) for a single band- 
width 2σ . 

1. Given a set of data { }1 2, , , nS x x x=  , d
ix ∈  form kernel density  

( ) ( )( )2 2

1

1, ,
n

i
i

f x S x x D
n

σ φ σ
=

= ∑                             (1.1) 

2. Use ( )2,f x S σ  as the density function. Use each ix , 1, 2, ,i n=  , as the initial value in the MEM 
algorithm and find one mode of ( )2,f x S σ  for each ix . Let the mode identified by starting from ix  be 

( )ixσ . 
3. Extract distinctive values from the set ( ){ }, 1, 2, ,ix i nσ =   to form a set G . Label the elements in G  

from 1 to G . In practice, due to finite precision, two modes are regarded equal if their distance is below a 
threshold κ . In our package, we use 410κ −= . 

4. If ( )ixσ  equals the thk  element in G , ix  is put in the thk  cluster.  
We note that when the bandwidth σ  increases, the kernel density estimator ( )2,f x S σ  in (1.1) becomes 

smoother, and thus more points tend to climb to the same mode. This suggests a natural approach for hierar- 
chical organization (or “nesting”) of our MAC clusters. Thus, given a range of bandwidths 1 2 Lσ σ σ< < < , 
The clustering can be performed in the following bottom-up manner. Define the lG  as the collection of all the 
distinct modes obtained by MAC using the lσ . First we perform MAC at the smallest bandwidth 1σ . At any 
bandwidth lσ , the elements in 1lG −  obtained from the preceding bandwidth are fed into MAC using the 
density ( )2, lf x S σ . The modes identified at this level form a new set of cluster is lG . This procedure is 
repeated across all lσ ’s. This preserves the hierarchy of clusters and thus the name Hierarchical Mode 
Association Clustering (HMAC). To summarize we present the HMAC procedure in the following box. 

1. Start with the data { }0 1, , nG x x=   and set level 0l =  and initialize the mode association of the thi  
data point as ( )0 ix i= .  

2. 1l l← + .  
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3. Form kernel density as in (1.1) using 2
lσ . 

4. Cluster the elements in 1lG −  by using density ( )2, lf x S σ . Let the set of distinct modes obtained be lG .  
5. If ( )1l ix k− =  and the thk  element in 1lG −  is clustered to the thk ′  mode in lG , then ( )l ix k ′= . In 

another word, the cluster of ix  at level l  is determined by its cluster representative in 1lG − . 
6. Stop if l L= , otherwise go to Step 2.  

3. Parallel HMAC 
In this section we develop the method of parallel computing of HMAC (PHMAC) and its application together 
with some comparisons of performance of the parallel and non-parallel approach. The MAC approach is 
computationally expensive when the number of objects n  becomes large. It requires that we use the MEM for 
each data point to find its local mamximum of the density. Note that for the HMAC, the steps for the level 2l =  
onwards only need to start the MEM from the modes of the previous level 1lG − , and hence the computational 
cost does not increase at the rate of n . Fortunately the MAC approach provides a natural framework for a 
“divide and conquer” clustering algorithm. One can simply divide the data into m  partitions, perform modal 
clustering on each of those partitions, and pool the modes obtained from each of these partitions to form a 
collection G  and apply the HMAC onward. If the user has access to several computing cores of the same 
machine or several processors of a shared memory computing cluster, the “divide and conquer” algorithm can be 
seamlessly parallelized. The PHMAC procedure is summarized as follows:  

Step 1. Sphering transform the data X  to form a new data set Y .  
Step 2. Let { }0 1, , nG y y=  . Divide the data ( n  objects) into m  partitions j

oG  randomly, 1, 2, ,j m=  .  
Step 3. Perform HMAC on each of these subsets at the lowest resolution, i.e., using 1h  and get the modes 

1
jG , 1, 2, ,j m=  .  

Step 4. Pool the modes from each subset of data to form 1 1
1

m
j

j
G G

=

=


.  

Step 5. Perform HMAC starting from Step 2 and obtain the final hierarchical clustering. 
Step 6. Transform Y  back to X . 
Figure 1 shows one PHMAC example on the graph. In this figure, (a) shows the simulated data with four 

clusters along with the contour plot, where the color indicates the final clustering using PHMAC; (b) shows the 
four random partitions of the unlabeled data along with the modes (red asterisks) at each partition; (c) shows the 
mode obtained from the four partitions; (d) shows the final modes (green triangles) starting from the modes of 
the partitioned data. A demonstration of different steps of parallel clustering with four random partitions is given 
in Figure 1. The original data set is partitioned into 4 random subsets, and initial modal clustering is performed 
within the partitions. In the next step, the modes of each of these partitions are merged to form the overall modal 
clusters in Figure 1(c). 

Modes have a natural hierarchy and it is computationally easy to merge modes from different partitions. In 
practice, we need to decide the best choice of the partition and how many partitions to use. In this section, we 
provide some guidelines regarding the choices, without exploring their quality in details. In the absence of any 
other knowledge, one should randomly partition the data. Other choices include partitioning data based on 
certain coordinates which form a natural clustering, and then taking products of a few of those coordinates to 
build the overall partition. This strategy might increase the computational speed by restricting the modes within 
a relatively homogeneous set of observations. Another choice might be to sample the data and build partitions 
based on the modes of the sampled data. 

The PHMAC we proposed uses parallel computing at the first level of HMAC and then use non-parallel 
computing from the second level onwards. Therefore, the number of partitions to minimize the computational 
time is a complex function of the number of available processors, the number of observations and the bandwidth 
parameter of the KDE. If one uses too many partitions, one might speed up the first step, but would have the risk 
of ending up with too many modes for the next level, where the hill climbing is done from the collection of 
modes from each partition with respect to the overall density. In contrast, for a large n , if one chooses too few 
partitions or no partitions, this would lead to a huge computational cost at the first step. Moverover, the choice 
of the smoothing parameter will also determine how many modes one needs to start from at the merged level. 

We compare the computing speed of parallel versus serial clustering using 1, 2, 4, 8 and 12 multi-core 
processors. Tests were performed on a 64 bits 4 Quad Core AMD 8384 (2.7 Ghz each core), with 16 GB RAM  
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Figure 1. Steps in parallel HMAC procedure for a simulated data set.                                              

 
running Linux Centos 5 and R version 2.11.0 From Table 1, it is clear to observe that parallel computing 
significantly increases the computing speed. Because the KDE is a sum of kernels centered at every data point, 
the amount of computation needed to identify the mode associated with a single point grows linearly with n . 
The computational complexity of clustering all the data by MAC is thus quadratic in n . Suppose we have p  
processors, then the computing complexity for the MAC is 2n  and for parallel computing of MAC is thus 
( )2n p . However, as discussed before, we can see that the computational speed is not a monotone decreasing 
function of the number of processors. Theoretically, it is true that more processors can reduce the computing 
complexity at the initial step. However, in practice, if the data set is not sufficiently large, using more processors 
may not save time, as it may produce a large number of modes for the next level of HMAC. When the 

10,000n =  or 50,000n = , including more processors provides a dramatic decrease in computing time, 
whereas for 2,000n = , there is no clear decrease in time elapsed when using 4 or 8 processors instead of the  



Y. S. Cheng, S. Ray 
 

 
831 

Table 1. Comparison of computing time (elapsed time in seconds) using different number of processors.                  

  Number of processors 

Data dimensions 1 2 4 8 12 

n = 2000 d = 2 56.58 17.01 7.84 6.91 8.02 

n = 2000 d = 20 323.16 128.13 112.42 190.11 250.22 

n = 2000 d = 40 730.18 560.16 687.79 764.29 753.36 

n = 10,000 d = 2 3849.83 871.33 276.88 145.61 131.22 

n = 10,000 d = 20 8410.96 1694.82 585.33 536.32 459.88 

n = 50,000 d = 2 210295.29 71152.82 23383.61 11959.24 4875.64 

 
maximum 12 processors. For 50,000n = , the decrease in computing time from 1 processor to using 12 
processors is more than 40 fold (see Figure 2), but even if the user is able to use just two processors, the 
computing time is reduced to 1/3 of how long a single processor would take. Even for 20,000n = , the 
advantage of using 12 processors is almost 30 fold, whereas for 2,000n = , the advantage is only 8 folds. In 
fact, the lowest time is actually clocked by 8 processors for 20,000n = , but using all 12 processors does not 
increase the time significantly. These comparisons show the potential for parallelizing the modal clustering 
algorithm and its inherent use for clustering high throughput data. 

The R package Modalclust was created to implement the HMAC and PHMAC. There are also some plotting 
tools that give the user a comprehensive visual and understanding of the clustering result. Sources, binaries and 
documentation of Modalclust are available for download from the Comprehensive R Archive Network  
http://cran.r-project.org/ under the GNU Public License. 

4. Example of Using R Package Modalclust 
In this section, we demonstrate the usage of the functions and plotting tools that are available in the Modalclust 
package.  

4.1. Modal Clustering 
First, we provide an example of performing modal clustering to extract the subpopulations in the logcta20 data. 
The description of the dataset is given in the package. The scatter plot, along with its smooth density, is 
provided in Figure 3. First, we use the following command to download and install the package: 

R > install.packages (“Modalclust”) 
R > library (“Modalclust”) 
Using the following command, we can get the standard (serial) HMAC and parallel HMAC using two pro- 

cessors for logctA20 data. 
R > logcta20.hmac < −phmac(logcta20,npart=1,parallel=FALSE) 
R > logcta20p2.hmac < −phmac(logcta20,npart=2,parallel=TRUE) 
Both implementation results are given in Figure 4, which clearly identifies the three distinct subpopulations. 

Other model-based clustering methods, such as EM-clustering or K-means, could not capture the subpopulation 
structure, as the individual subpopulation is not a normal density. Distance based clustering method e.g., 
hierarchical clustering, with a range of linkage functions performed even worse. 

By default, the function selects an interesting range of smoothing parameters with ten 2σ  values, and the 
final clustering only shows the results from the levels which produced merging from the previous level. For 
example, for the logcta20, the smoothing parameters chosen automatically are 

R > logcta20.hmac$sigma 
[1] 0.26 0.29 0.31 0.34 0.38 0.43 0.49 0.58 0.72 0.94, 

which are chosen using the spectral degrees of freedom criterion introduced in [10]. Though we started with 10 
different smoothing levels, the final clustering shows only 6 different levels along with a decreasing number of 
hierarchical cluster. 

http://cran.r-project.org/
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Figure 2. Comparison of fold increase in time for clustering two dimensional 
data of different sample sizes with respect to using 12 processors.            

 

 
Figure 3. Smoothing scatter plot of logctA20 data.          

 

 
Figure 4. HMAC output of logctA20 data.                
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R > logcta20.hmac$level 
[1] 1 2 3 3 3 4 4 4 5 6 
R > logcta20.hmac$n.cluster 
[1] 11 7 5 5 5 3 3 3 2 1 
The user can also provide smoothing levels using the option sigmaselect in phmac. There is also the option of 

starting the algorithm from user defined modes instead of the original data points. This option becomes handy if 
the user wishes to merge clusters obtained from other clustering methods, e.g., EM-clustering or K-means. 

4.2. Some Examples of Plotting 
There are several plotting functions in Modalclust, which can be used to visualize the output from the function 
phmac. The plotting functions are defined on object class hmac, which is the default class of a phmac output. 
These plot functions will be illustrated through a data set named disc2d, which has 400 observations displaying 
the shape of two half discs. The scatter plot of disc2d along with its contour plot are given in Figure 5. 

First, we introduce the standard plot function for an object of class “hmac”. This unique and informative plot 
shows the hierarchical tree obtained from modal clustering. It can be obtained by 

R > data (“disc2d.hmac”) 
R > plot (disc2d.hmac) 
The dendrogram obtained from the disc2d data is given in Figure 6. The y -axis gives the different levels, 

and the tree displays the merging at different levels. There are several options available for drawing the tree,  
 

 
Figure 5. The scatter plot of disc2d data along with its 
probability contours.                                

 

 
Figure 6. Hierarchical tree (Dendrogram) of disc2d data showing the clustering at four levels of smoothing. 
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including starting the tree from a specific level, drawing the tree only up to a desired number of clusters, and 
comparing the clustering results with user defined clusters. 

There are some other plotting functions that are designed mainly for visualizing clustering results for two 
dimensional data, although one can provide multivariate extensions of the functions by considering all possible 
pairwise dimensions. One can obtain the hard clustering of the data for each level using the command 

R > hard.hmac(disc2d.hmac) 
Alternatively, the user can specify the hierarchical level or the number of desired clusters, and obtain the 

corresponding cluster membership (hard clustering) of the data. For example, the plot in Figure 7 can be 
obtained by either of the following two commands: 

R > hard.hmac (disc2d.hmac, n.cluster=2) 
R > hard.hmac (disc2d.hmac, level=3) 
Another function, which allows the user to visualize the soft clustering of the data, is based on the posterior 

probabilities of each observation belonging to the clusters at a specified level. For example, the plot in Figure 8 
can be obtained using 

R > soft.hmac (disc2d.hmac, n.cluster=3) 
 

 
Figure 7. Hard clustering for disc2d data at level 3.     

 

 
Figure 8. Soft clustering for disc2d data at level 2.      
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The plot enables us to visualize the probabilistic clustering of the three cluster model. A user can specify a 
probability threshold for assigning observations which clearly belong to a cluster or lie in the “boundary” of 
more than one cluster. Points having posterior probability below the user specified boundlevel (default value 0.4) 
are assigned as boundary points and colored in gray. In Figure 8, we have five boundary points among the 400 
original observations. Additionally, at any specified level or cluster size, the plot=FALSE option in hard.hmac 
returns the cluster membership. Similarly, plot=FALSE option in soft.hmac returns a list that contains the 
posterior probability of each observation and boundary points. 

R > disc2d.2clust < −hard.hmac (disc2d.hmac,n.cluster=2, plot=FALSE) 
R > disc2d.2clust.soft < −soft.hmac (disc2d.hmac,n.cluster=2, plot=FALSE) 

5. Discussion 
Modalclust performs a hierarchical model based clustering allowing for arbitrary density shapes. Parallel 
computing can dramatically increase the computing speed by splitting the data and running the HMAC simul- 
taneously on multi-core processors. Plotting functions give the user a comprehensive visualizing and under- 
standing of the clustering result. One future work from this stage would be to increase computing speed, 
especially for large data set. From the discussion in Section 3, it is clear to see, parallel computing increases the 
computing speed a lot. That relies on the computing equipment. If one user has no multicore or a few multicore 
processors available, it will take a lot of the computing resources when clustering large data sets. One potential 
way to solve the computing speed problem is using k-means or other faster clustering techniques initially, and 
using the HMAC from the centers of each cluster of initial clustering results. For example, if we have a data set 
with 20,000 observations, we can use k-means clustering and choose a certain number of centers, like 200 
centers and run k-means clustering first. And then we start from the centers of 200 clusters and clustering by 
HMAC. Theoretically it is a sub-optimal way compared with running HMAC for all points. In practice, it is very 
useful to reduce the computing costs and still obtain the right clustering. 

In addition, we are currently working on an implementation of modal clustering for online or streaming data, 
where the goal would be to update an existing cluster with the new data without storing all the original data 
points and allowing for creation of new clusters and merging of existing clusters. 

Sources, binaries and documentation of Modalclust are available for download from the Comprehensive R 
Archive Network http://cran.r-project.org/ under the GNU Public License.   
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Abstract 
Using the theory shown, Cores Optimal Criterion, three factors from which hierarchical aggrega-
tion of variables under study was built, as well as hierarchical cores showing the level of use of 
pocket computing technologies by students. The principal factors influencing the level of use of 
pocket computing technologies among higher education students are analyzed from a theoretical 
aggregation development based on hierarchical cores. The theoretical part includes the develop-
ment of an algorithm used to obtain an interesting class or partition from a hierarchy. The expe-
rimental work carried out included design, preparation and application of a questionnaire to 
higher education students in Mexico. A pilot test was carried out to check timing and repetition of 
questions. Data was recorded, validated, and mathematically and statistically analyzed. 

 
Keywords 
Use of Technologies, Higher Education, Questionnaire, Pocket Calculators, Hierarchical Cores 

 
 

1. Introduction 
The purpose of this work is to statistically analyze the level of use of pocket computing technologies amongst 
higher education students in Mexico, in order to quantify the degree of influence of marketing and training fac-
tors on the demand of calculators with CAS (Computer Algebraic Systems) technology. Experimental work was 
carried out by González Meneses, M.S. [1], and included the use of a couple of questionnaires, one for students, 
and one for teachers, in Technological Institutes in Mexico. 

The incorporation of new technologies in Middle and Higher Education is one of the principal purposes for 
amending syllabuses. Nowadays, there is a wide range of new technologies, from distance education to didactic 
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software for classrooms. Particularly in teaching mathematics, there are many resources to help the teach-
ing-learning experience. One of such resources is the use of calculators with CAS technology (Computer Alge-
braic Systems). The market for calculators sale is limited to three or four brands who are distributed directly 
from companies, and there exists the possibility to generate micro and small companies devoted to education 
and provision of various services such as: didactic aids, syllabus design, and training for teachers, among others, 
depending on the technological development and implementation of new technologies in the classroom [2]. 

This topic has been looked at by J. R. Rodríguez and L. F. Flores López, from the Technological Institute of 
Los Mochis, Sonora México by means of a didactic proposal for calculation using Texas Instruments Voyage 
200 calculators, where the use of CAS technology calculators is shown to improve learning of Differential Cal-
culus [3]. Since Latin America is highly interested in the implementation of new technologies in syllabuses, the 
following analysis allows us to know factors enabling the proposal of market technologies from regional to na-
tional levels, with the potential for making proposals at a Latin American scale [4] [5].  

2. Theoretical Development of Hierarchy by Cores 
Based on the fact that factorial correspondence analysis represents, on the same graphic, both sets comprising a 
tabular correspondence arrangement; sets I of individuals and Q of classes defined for each variable J, and that 
when such must be taxonomized, a rigid class system must be fixed, then the global and spatial vision provided 
by factorial analysis allows us establish, through some kind of aggregation method, a type of hierarchy of the 
data under analysis. 

The method herein shown is tributary to three options: 1) calculation of distance between elements where 
factorial coordinates are known; 2) juxtaposition of mass or weight to each element; and 3) calculation of a dis-
tance between element classes, depending on an aggregation criterion based on cores. Since our data includes 
factorial values related to Q classes, we shall retain a small number of A cardinality factors, not higher than 75% 
of factorial data. 

Let us define factorial set of values through set: ( ){ } and F q q Q Aα α∈ ∈ , with which it is possible to cal- 

culate many tabular arrangements for distances between elements. In our case, we shall introduce the following 
distance. Let q and q' be two classes of a variable j ∈ J such that q and q' ∈ Q. Classes q and q' belong to a 
normed factorial space with a fixed set of coordinates. If :d F →   then (F, d) is a metric space. Factorial 
distance between ( )F q  and ( )F q′  is the addition of lengths of projections of line segment between factorial 
values on the axes system. This is mathematically expressed as follows: 

( ) ( ) ( )( )222 , , Ad q q q q F q F qα αα∈
′ ′ ′= = −∑                            (1) 

where q and q' are classes of variable j ∈ J, d is the distance between classes, α is the axis, A is the set of axes 
and ( )F qα  and ( )F qα ′  are factorial values of classes.  

In accordance with the second option of the aggregation method defined, the distance between classes is jux-
taposed by inertia λ of the set of dots along axis α, which is represented by the own value related to the corres-
ponding axis, because of this Equation (1) may be re-expressed as follows: 

( ) ( ) ( )( )222 1, , Ad q q q q F q F qα α αα λ−
∈

′ ′ ′= = −∑                        (2) 

where q and q' are the classes of variable j ∈ J, d is the distance between classes, α is the axis, 1
αλ
−  is the in-

verse of distance between classes on axis α and ( )F qα  represents factorial value of class q on axis α [6]. 
Once the distance between values has been defined, the diameter index of nodes of classification ν of such 

hierarchy must be calculated, through: 

( ) ( ) ( ) 2a b

a b

f f
n F a F b n Nodo

f f α αν − ∀ ∈
+
∗

=                        (3) 

where a and b are barycenter’s of elements of the index, fa and fb are the mass in a and b barycenter’s, and 
( )F aα  and ( )F bα  are factorial values of a and b barycenter’s. In addition, a b n=  and Φa b = .  

Every time, the distance between elements that are hierarchized must be recalculated with those to be hierar-
chized, because of this the following diameter index ( )nν  is: 
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( ) ( ) ( )
21 1a b

a b

f f
n F a F b n Nodo

f f α α α αν λ λ− −= − ∀
+
∗

∈                       (4) 

where ( )nν  is diameter index, af  and bf  are masses of a and b barycenter’s, ( )F aα  and ( )F bα  are fac-
torial values of a and b barycenter’s, and 1

αλ
−  is the square root of total distance of the A set of dots, along axis 

α. 
Now, from Equation (3) it may be seen that the addition of values of diameter indexes is equal to the addition 

of total distance λ of the set of dots along α axis, that is: 

( )n Nodo An ααν λ
∈ ∈

=∑ ∑                                     (5) 

where ( )nν  diameter is index and λα is total distance of the set of axes. From Equation (4) it may be seen that 
the addition of values of diameter indexes is equal to A’s cardinality. 

( ) ( )n Nodo n Card Aν
∈

=∑                                    (6) 

The Algorithm 
Classification algorithm looks for two minimum values of the table of factors of classes to be hierarchized. 

( ) ( ) ( ) 2
, ,q q

q q

f f
q q F q F q q q Q

f f α αδ ′

′

′ ′ ′= −
∗

∀ ∈
+

                        (7) 

From this aggregation, defined as k q q′=  , a new partition or core of the set of Q classes must be updated  
making: { } { },Q k q q′= − . Distances between this new element k and q′′  are recalculated, showing the 

following minimum value of the factors table, through Formula (3), thus making ( ) ( ),n a bν δ= . The mini-
mum of the new table is investigated, aggregated and a new partition is updated below. The above is carried out 
until there is no more than the two last cores to be added, taking into account that the link is the base set [7] and [8]. 

Theorem Cores Optimal Criterion. If aggregation cores are groups of factors with same cardinality and Ω the 
space of cores, optimal election criterion is: 

( ) ( )1, k
i iid L P d A P

=
= −∑  

where L is the total set of cores, Ai is the ith core containing a certain number of objects of P population. 
Demonstration. Let { }1, , hL A A=  , iA ⊂   be the ith core containing q elements of population. 
{ }1, , hP P P=   is partition of space Ωinto k-classes. Let k  be the set of kth cores and k  the set of parti- 

tions of Ω cores space into classes. ( ),i id A   measures dissimilarities between core Ai and class i . Based on 
the above, the principal problem is to look for a kL∗ ⊂   and a population k⊂   that minimize d dissimi- 
larity. 

Let ( )1 2,d q q  be a measure for dissimilarities between couples of individuals or classes. Let us suppose that: 

( ) ( )
1 21 2 1 2, q X q Yd q q d q q
∈ ∈

= −∑ ∑  

where X and Y are parts of the set of Ω individuals, then: 

{ }( ) ( ) { }( ) ( )2 1 1 1 1and, , , ,d q q d Y q d q Y d q Y= =  

In case that cores are groups of individuals, the algorithm shall be specified, since such is basedon choosing 
two functions: assignation function and representation function. 

For the assignation function, given the cores { }1, , hA A , partition { }1, , hP P P=   deducted is defined by: 

( ) ( ){ }1 1 1Ω , , ,i i jP q d A q d A q i j= ∈ ≤ ∀  

In case of equality, 1q  shall be assigned to the lowest index class. Partitions P thus deducted from L are  
shown by ( )P f L= , where f is an application of k  in k ; that is: : k kf →  , and it is called assignation  
function. 

For the representation function, given partition P, { }1, , hL A A=   cores are deducted as: 
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{ } ( ){ }1 1 1wich produce lowest possible dissimilarity ,i iA q q q d q= ∈ ∈                (8) 

In order to ensure the unit of Ai, the set of q elements of Ω space minimizing ( )
1 1, Ω

i i iq A d q
∈

∀ ⊂∑   , ex- 
ists and is unique. Therefore, the representation function exists. 

QED  
Observation 1. It is possible to define representation function from a given 1 : k kf − →  , such that 

( ) { }1
1, ,  hLP A Af − ==  , since Ai are defined from { }1, , hP P P=   with (8). 

Observation 2. With the Theorem of Cores Optimal Criterion and Observation 1, the algorithm implies alter- 
natively implementing f and 1f −  from a partition or kth core randomly estimated. Every iteration implies ap- 
plying function f from and kL∈  element or function 1f −  from a kP∈  element. 

3. Application 
The attachment shows the questionnaire developed for application on the student population. The survey was 
partially national (center and north of the country) due, mainly, to the features of the student population (at this 
education level, the student population in Mexico is 10,803,868—both males and females—between 18 and 22 
years old) and null financial support available for calculation of a probabilistic sample and its application (trip 
expenses of specialized survey personnel). The questionnaire was applied with the consent of the student, and 
students came from various higher education institutions (public and private) professors interested in the topic 
were also surveyed [9].  

3.1. Data under Analysis 

Data used and analyzed is a data table I J× , with tabular arrangement: ( ){ }, ,IJk k i j i I j J= ∀ ∈ ∈  [10],  
where I is the set of questionnaires with cardinality 1839 and the set of questions with cardinality 16. The defini-
tion of variables is shown in chart I.2 of the Annex, and its frequency structure is the following. 

The use of the questionnaire with students of bachelor degrees of the public education system shows a log- 
normal distribution, the most participative students where those of mechatronics, while the less participative 
were those of mathematics. This is rather logical, since seeing a mathematician with a calculator is as horrible as 
seeing a software developer exploring a computer with a screwdriver. The semester variable shows a bimodal 
behavior where the most participative are freshmen. The variable grouping current type of calculator of the stu- 
dent, shows a leptokurtic distribution, where Casio calculators have the highest percentage, 55.07%, while Sharp 
calculators have the lowest percentage, 6.65%. The place of purchase of equipment variable shows the same 
leptokurtic distribution, where department stores have the highest percentage of sales of such equipment’s. The 
influence on purchase by brand shows a behavior not defined. To study it, it has been defined in percentages 
where 50.9% of people in the survey answers that the name of the equipment influences 80% the purchase. The 
influence on purchase, due to its technical features, shows a distribution J, where 66.27% answers that it does 
influence in 80% [11].  

3.2. Correlations 
Since it is a well-known theory, its development is not shown here, we only mention that the calculation of cor- 
relations or degree of association among variables has been carried out based on ordinary Euclidian distance 
( ),d j j′  among variables j and j'. Besides, it must be remembered that, if two variables are strongly correlated, 

those are near to each other ( )1jjc ′ =  or, on the contrary, as far as possible from each other ( )1jjc ′ = − , as linear 
relationship linking them is direct or inverse, and that when 0jjc ′ =  those are at middle distance or that j and j'  
are orthogonal. In box (k, j) there is ( )Cov ,k jx x . The kth diagonal term is ( )Var kx . It should be noticed that 

symmetry of matrix: ( ) ( )C ,v ,o Covk j j kx x x x= . Regarding interpretation, variables with strongest correlation  

are brand and price, with 0.438, Table 1. Calculator brand and type of calculator, with −0.311, are correlated below. 
Table 2 shows values obtained from the multiple correlation analysis of variables under study. Here, no vari- 

able shows a high multiple correlations. Most variables multiply correlated to 0.5 correlative values are: influ- 
ence of make, price and type of calculating machine. 
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Table 1. Correlations between variables of use of technologies level among higher education students.                   

 N1 N2 N3 N4 N5 N6 N7 N8 N9 M1 M2 M3 M4 M5 M6 M7 

N1 1.000                

N2 −0.121 1.000               

N3 −0.029 −0.137 1.000              

N4 −0.032 −0.005 0.309 1.000             

N5 0.052 0.008 −0.018 −0.066 1.000            

N6 0.026 0.024 0.075 0.025 0.438 1.000           

N7 −0.005 0.030 0.019 −0.070 0.266 0.230 1.000          

N8 0.046 0.033 0.068 −0.015 0.010 0.063 0.011 1.000         

N9 −0.167 0.205 −0.311 −0.041 0.041 −0.039 0.049 −0.140 1.000        

M1 0.067 −0.089 0.050 0.001 0.088 0.052 0.143 0.027 −0.194 1.000       

M2 −0.085 −0.055 0.057 0.082 −0.031 −0.014 −0.059 −0.151 0.072 0.019 1.000      

M3 −0.107 0.018 0.005 0.011 0.092 0.058 0.093 −0.049 −0.041 0.057 0.025 1.000     

M4 −0.034 −0.012 0.080 0.069 −0.069 0.045 −0.060 0.014 −0.033 0.015 −0.000 −0.020 1.000    

M5 0.066 −0.081 0.050 −0.017 0.058 −0.008 0.019 0.027 −0.054 −0.003 0.020 −0.116 0.023 1.000   

M6 0.106 −0.123 0.053 −0.025 −0.031 0.026 −0.022 0.120 −0.087 −0.041 −0.008 −0.135 0.045 0.085 1.000  

M7 −0.010 0.065 0.053 −0.007 0.046 0.028 0.052 0.015 −0.036 −0.032 −0.064 0.007 −0.008 0.106 0.113 1.000 

 
Table 2. Multiple correlations of variables under study.                                                         

N1 N2 N3 N4 N5 N6 N7 N8 N9 M1 M2 M3 M4 M5 M6 M7 

0.275 0.301 0.361 0.157 0.498 0.478 0.351 0.249 0.456 0.278 0.240 0.248 0.165 0.215 0.279 0.207 

3.3. Principal Components Analysis  
Let us now see the results of the Principal Component Analysis, PCA, on a tabular arrangement of gross data 
I J×  (1839 × 16) on a correlations matrix. The theoretical description of the method is shown in [12], pp. 65- 
78.  

Interpretation of correlations circle 1 - 2, Figure 1(a) and Figure 1(b), shows that the first two principal 
components explain 11.0% and 10.5%, respectively, that is, the first correlations circle contains 21.5% of gross 
data, and shows a contraposition between the type of calculator currently owned by a student (without knowing 
which type of calculator it is) and the semester he/she is in (without knowing in whish semester he/she is 
enrolled), versus brand, technical features of the equipment, price (every figure in percentage), and how much 
he/she uses the applications on his/her equipment. Regarding the second correlations circle, where the principal 
components 1 - 3 intervene, and which explains 18.9% of gross data (10.5% and 8.4%, respectively), it shows 
contraposition regarding the first component of type of calculator currently owned by the student (without 
knowing which type of calculator it is) and the information consulted before the purchase (without knowing if 
such includes brochures, recommendation or Internet), versus brand, technical features of the equipment, price 
(every figure in percentage), how much he/she uses the applications of his/her equipment, the type of calculator 
he/she currently owns and the calculator he/she would like to buy, as well as the knowledge he/she has about 
Texas Instrument calculators. 

3.4. Hierarchical Ascending Classification with Euclidean Distance 
The hierarchical dendrogram, built based on Euclidean distance, is composed of 3 branches, Figure 2. Reading 
and interpretation run from right to left, for hierarchical reasons [13]. 
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(a) 

 
(b) 

Figure 1. Correlations circle. a) Principal Components 1 - 2; b) Principal Compo-
nents 1 - 3.                                                            
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Figure 2. Hierarchical dendrogram of the use of technologies in higher edu-
cation based on Euclidean distance (see Table 2, attachment, for definition of 
variables).                                                                

 
The dendrogram shows two aggregations of variables, the first one agglutinates variables making the first one 

a principal component: brand, price, technical features of the equipment and how much he/she uses the applica- 
tions of his/her equipment. The second aggregation is composed by the remaining variables under study. 

3.5. Factorial Analysis on Gross Data  
The factorial method chosen to describe data under study is the Correspondence Analysis, CA, method. This 
method allows a direct search for the best simultaneous representation of sets under study; I questionnaires 
completed by students, and J variables describing the use of micro computing technologies in teaching practice. 
The CA applied to gross data IJK  has the following factorial features: variances on the principal three axes or 
own values are: X1 = 0.0502, X2 = 0.0341 and X3 = 0.0307, while percentages of habit explained by such axes 
are, respectively: 35.5%, 24.1% and 21.7%. The first factorial plane 1 - 2 has no defined shape and origin mass 
center. Variables of highest importance are brand, price, technical features of equipment and use of applications, 
with values ranging from 21.18 through 24.81. The first factorial axis is defined by the four variables mentioned 
above, of the highest importance in this study. The second factorial axis is defined by technical features in the 
purchase of the equipment and in its use. The third factor is defined by brand and price of the equipment. 

3.6. Classes of Variables’ Cut and Its Factors 
Since the PCA and CA used on data do not show any relationship whatsoever between variables, it was neces-
sary to fragment the first data table in a class table, [12], Chapter III. Let 

( ),  and  be classes of  such that  and 1, ,nj
rk i c i I c I j J r m∀ ∈ ∈ = 

 

that is, for every element I in the set of answers to variables determining the level of use of technologies in the 
practice of teaching mathematics, there is a set of variables J whose elements each contain a subset C called  
classes cr, such that for each variable there are tabular arrangements ( ), for 1, ,nj

rk i c r m= 
 with whole values  

between 1 and m. Ranges in which variables were fragmented are shown in Chart A.2, Annex I. 
A table of generalized contingency has been created, based on the classes table ibid p. 28, Chapter III. The 

tabular arrangement created has a dimension of 1839 × 67 elements. Classes of highest importance in this study 
are: has not taken courses to use his/her calculator; technical features and price influence on purchase from 25% to 
50%; already has a scientific calculator and is not interested in purchasing a new one. The less important ones in 
the study are: chemistry, materials and pure mathematics students, which is rather logical, since they are students 
of scientific specialty who do not need a calculator to carry out their professional studies. 

The first factorial plane of the table in classes of the level of use of technologies among students of higher 
education has only 8% of data and has a slight parabolic structure, Figure 3. The first factor is composed by 
students of fourth semester, who use Texas Instruments symbolic calculators, students of mechatronics, who  
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Figure 3. First factorial plane of use of technologies among higher education students in Mexico.                       

 
have taken courses to use such and know their benefits. The second factor is composed by influence of brand, 
weight and technical features of calculators for all percentages. The third factor is composed by students of fifth 
and sixth semester of all careers, who need an additional graph maker. 

4. Use of Technologies Dendrogram 
The hierarchical dendrogram built under the aggregation criterion of the central moment of order two, is com- 
posed by five branches, Figure 4. Reading and interpretation go from left to right; the hierarchical level scale 
has a maximum of 16 hierarchical units and the symbol near the 15th unit means a jump of scale units. In the 
bottom of the hierarchical structure the definition of class are briefly recorded. 

The first hierarchical branch is composed of the second factor of factorial analysis, as well as some classes 
which do not show up in the analysis, such as the mechatronics and computing students then in the fourth and 
sixth semester of the career, who know how to use the equipment’s under analysis. The second hierarchical 
branch is composed by three sub-branches: first, the most important classes in this study, that is, the chemistry 
and industrial engineering students who have a scientific calculator in first semester. The second sub-branch is 
composed by electronic, foods and civil engineering students in third semester, who know the benefits of such 
equipment’s and are certain that the school and the teachers promote their use and purchase. The third 
sub-branch is composed by mechanics, applied mathematics and industrial chemistry students, who get the tech- 
nical information with friends and show that the influence of price is 75%. The fourth and fifth hierarchical 
branches are rather a single branch, since their final aggregation comes after the cut and, put together, constitute 
the first factor. 

5. Discussion of Results 
This work is presented in accordance with its development. The theory developed on hierarchical cores is shown, 
where the method shown is tributary to three options: 1) calculation of distance between elements where factori-
al coordinates are known; 2) juxtaposition of mass or weight to each element; and 3) calculation of a distance 
between element classes, depending on an aggregation criterion based on hierarchical cores. 
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Figure 4. Dendrogram of use of technologies among higher level students.                                          

 
Development of a proper data collection vehicle and its pilot test, provide enough data for national application 

and subsequent statistical analysis which allows constructing hierarchical cores based on an ascending hierar- 
chical classification. 

Results provided by linear statistical part are not enough to obtain conclusions on factors influencing quanti- 
fication of CAS calculator’s demand, basic fact influencing theoretical development. The first factorial plane of 
technologies use by higher education students in Mexico accounts for the path of classes making factors, which 
subsequently define hierarchical cores. 

6. Conclusions 
From the point of view of theory developed, it may be seen that from various starting points, the problem of 
looking for stable classes may be resolved. Starting points may be chosen by the user, with the help of a hierar-
chical classification. 

The theorem demonstrated and called Cores Optimal Criterion Theorem allows implementing f and 1f −  
functions from a kth core randomly estimated with the algorithm. 

The purpose of analyzing and defining factors influencing the use of new technologies in the practice of 
teaching mathematical calculations in Mexico is achieved, since, as has been explained in the statistical analysis 
of data, it has been observed that the most important classes in this study are: 1) no courses to use the calculator; 
influence of technical features and price on the purchase; 2) 20% to 50% already has a scientific calculator and 
is not interested in purchasing a new one. The less important classes in this study are: chemistry, materials, and 
pure mathematics students. This is rather logical, since such are students of scientific specialty who do not need 
a calculator to carry out their professional studies. 

The first factor is composed by mid-term engineering students using Texas Instruments symbolic calculators, 
who have taken courses to use them and know their benefits well. The second factor is composed by the influ- 
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ence of brand, weight and technical features of such calculation equipment’s. The third factor is composed by 
students in the second half of the career, who need an additional graph maker. 

From the point of view of hierarchical classification, the first branch is composed by the second factor of fac- 
torial analysis, as well as some classes which do not show up in the analysis, such as the engineering students 
who are halfway through their degree, who know how to use the equipment under analysis. The second hierar- 
chical branch is composed by three sub-branches: first, the most important class in this study is the engineering 
students who have a scientific calculator in first semesters. The second sub-branch is composed by engineering 
students in third semester, who know the benefits of such equipment’s and are certain that the school and the 
teachers promote their use and purchase. The third sub-branch is composed by engineering students, who get the 
technical information with friends and show that the influence of price is 75%. 
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Annex I Questionnaire 
Data obtained from this questionnaire aims at determining the level of use of new technologies in teaching 

mathematics and developing a marketing proposal for some calculator models Texas Instruments.  
BRAND PRODUCT 

Bachelor’s degree in engineering: ____ Semester: ____ Age: _______ Do you work? ______ 
 
1. What calculator do you have now?   Texas Instruments   Casio   HP   Sharp   Other:  
 
2. Where did you buy your current calculator?                                         

PLACEMENT OF PRODUCT 
 I don’t have one  Authorized distributor  Department store  From an acquaintance  Other  
 
3. What percentage influences you to buy a calculator? 

Brand product ___________ (0% - 100%) BRAND PRODUCT 
Price _______________________ (0% - 100%) PRICE 

Technical features________ (0% - 100%) USE OF PRODUCT 
 
4. Have you taken any course to use a calculator?  Yes  No   TRAINING 
 
5. Choose the type of calculator you currently have (no matter the make, only the features of the model) 

USE OF PRODUCT 

 
 
6. How many of the calculator’s applications do you use? TRAINING 
     Basic operations, statistics ____________ (0% - 100%) 
     Basic operations, statistics, graph making, programming, matrixes ____________ (0% - 100%) 
     Basic operations, geometry, graph making, programming, differential and integral calculus, statistics, 

finance, word processor, simultaneous equations, polynomial roots, ______(0% - 100%) 
 
7. When you buy a calculator, which data do you consult?  ADVERTISEMENT 
 Pamphlets       Acquaintances    School        Internet        Other _______________ 
 
8. Which type of calculator would you like to buy (even if you already have one)?  PRICE 

 
 
9. If you would buy any of the above calculators, how would you pay it?     Cash      Credit 

SELLING PLANS 
 
10. Mark if your teachers  
 Promote use of graph making calculators or symbolic calculation calculators in any subject. 
 Always                        Sometimes                  Never 

PROMOTION 
 
11. Do you know the benefits offered by Texas Instruments regarding technical support? 
 Yes                             No  

ADVERTISEMENT 
 
12. Does your school promote the visit or calculator promoters?       Yes           No 

PROMOTION, SELLING PLANS 

SCIENTIFIC  
Any model  
 

GRAPHICS 
Any model. 
Casio, HP, TI 
 

SIMBOLIC 
TI89, TI92, Voyage 200  
Casio, ClassPad 300 
 

GRAPHICS 
Approx. price 
150 USD  
 

SIMBOLIC 
Approx. price 
200 USD  
 

None 
 
 
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Table Annex I.1. Statistical parameters of variables under study.                                     

Variable Max. 
value Min. value Arithmetical 

mean 
Standard 
deviation 

Variation  
coefficient 

Symmetry  
coefficient 

Kurtosis  
coefficient 

N1 1 13 4.381 3.155 71.967 0.7409 2.829 

N2 1 6 2.568 1.751 68.163 0.496 2.135 

N3 1 5 2.524 1.051 41.644 1.134 3.503 

N4 1 5 3.365 0.910 27.033 0.040 2.544 

N5 1 100 65.292 30.161 46.167 0.640 2.546 

N6 0 100 64.450 29.968 46.471 0.425 2.460 

N7 0 100 75.479 30.236 40.035 1.682 3.588 

N8 1 2 1.940 0.236 12.200 13.843 14.843 

N9 1 3 1.232 0.552 44.792 5.275 7.062 

M1 5 100 70.380 22.949 32.588 0.371 2.494 

M2 1 5 2.749 1.254 45.606 0.006 1.988 

M3 1 3 2.548 0.682 26.748 1.445 3.112 

M4 1 2 1.547 0.498 32.175 0.003 1.035 

M5 1 3 2.108 0.645 30.594 0.011 2.371 

M6 1 2 1.778 0.415 23.358 1.795 2.795 

M7 1 2 1.897 0.303 15.984 6.870 7.870 

 
Table Annex I.2. Classes’ cut of variables of use of technologies in higher education.                    

Variable No. of 
classes 

Mnemonics  
of class Value of class Elements of class 

N1. Bachelor’s degree 13 N11 Mechatronics 189 

  N12 Chemistry Mechatronics 149 

  N13 Industrial Engineering 132 

  N14 Electro mechanics 102 

  N15 Mechanics 74 

  N16 Civil Engineering 72 

  N17 Agronomy 68 

  N18 Computing 64 

  N19 Foods 56 

  N01 Applied mathematics 37 

  N02 Industrial chemistry 34 

  N03 Materials 29 

  N04 Pure mathematics 28 

N2. Semester 6 N21 1st semester 401 

  N22 2nd semester 76 

  N23 3rd semester 179 
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Continued 

  N24 4th semester 83 

  N25 5th semester 92 

  N26 6th semester 98 

N3. Current calculator 5 N31 Texas Instruments 88 

  N32 Casio 477 

  N33 HP 187 

  N34 Sharp 70 

  N35 Other 92 

N4. Place of purchase of  
current calculator 

5 N41 Does not have 22 

 N42 Authorized dealer 133 

 N43 Department store 401 

  N44 Someone known 232 

  N45 Other 126 

N5. % of brand influence 4 N51 0% - 25% 143 

  N52 >25% - 50% 175 

  N53 >50% - 75% 139 

  N54 >75% - 100% 442 

N6. % of price influence 4 N61 0% - 25% 134 

  N62 >25% - 50% 222 

  N63 >50% to 75% 145 

  N64 >-75% to 100% 398 

N7. % of technical features influence 4 N71 0% - 25% 105 

  N72 >25% - 50% 118 

  N73 >50% - 75% 105 

  N74 >75% - 100% 571 

N8. Has taken courses to  
use the calculator 

2 N81 Has taken a course 65 

 N82 Has not taken courses 804 

N9. Type of current calculator 3 N91 Scientific 712 

  N92 Graph maker 104 

  N93 Symbolic 68 

M1. How much he/she uses  
his/her current calculator 

4 M11 Statistical operations 54 

 M12 M11 + graph making 214 

 M13 M12 + matrixes 171 

  M14 M13 + text editor 460 

M2. Which information  
he/she consulted to purchase 

5 M21 Brochures 200 

 M22 A friend 176 
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Continued 

 
 M23 School 262 

 M24 Internet 186 

  M25 Other 90 

M3. Which additional  
calculator would you like to buy? 

3 M31 $2000.00 graph maker 106 

 M32 $3000.00 symbolic calculator 212 

  M33 None 566 

M4. How would you pay the new one? 2 M41 Cash 395 

  M42 Credit 474 

M5. Do teachers promote the  
use of pocket calculators? 

3 M51 Always 149 

 M52 Sometimes 495 

 M53 Never 240 

M6. Do you know its benefits? 2 M61 Does know benefits 200 

  M62 Does not know benefits 667 

M7. Does the school promote such 
equipment? 

2 M71 Yes, it promotes such 101 

 M72 
No, it does not promote such 

767 
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Abstract 
This paper develops a parameter-expanded Monte Carlo EM (PX-MCEM) algorithm to perform 
maximum likelihood estimation in a multivariate sample selection model. In contrast to the cur- 
rent methods of estimation, the proposed algorithm does not directly depend on the observed-da- 
ta likelihood, the evaluation of which requires intractable multivariate integrations over normal 
densities. Moreover, the algorithm is simple to implement and involves only quantities that are 
easy to simulate or have closed form expressions. 

 
Keywords 

Multivariate Sample Selection, Heckman Correction, Incidental Truncation, Expectation  
Maximization 

 
 

1. Introduction 
Sample selection models, pioneered in [1]-[3], are indispensable to researchers who use observational data for 
statistical inference. Among the many variants of these types of models, there is a growing interest in multiva- 
riate sample selection models. These are used to model a system of two or more seemingly unrelated equations, 
where the outcome variable for each equation may be non-randomly missing or censored according to its own 
stochastic selection variable. Applications range from modeling systems of demand equations [4] [5] to house- 
hold vehicle usage [6]-[8]. A common specification is to assume a correlated multivariate normal distribution 
underlying both the outcomes of interest and the latent variables in the system. 

There are two dominant approaches in the current literature to estimate these models. One approach is to use 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2014.410080
http://dx.doi.org/10.4236/ojs.2014.410080
http://www.scirp.org/
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maximum likelihood (ML) estimation. However, as noted in the literature, a major hurdle in evaluating the like- 
lihood is that it requires computations of multivariate integrals over normal densities, which do not generally 
have closed form solutions. [9] discusses the ML estimation of these models and proposes to use the popular 
Geweke, Hajivassiliou, and Keane (GHK) algorithm to approximate these integrals in a simulated ML frame- 
work. While this strategy works reasonably well, the GHK algorithm can be difficult to implement. Another 
popular approach is to use two-step estimation (see [10] for a survey). In general, there is a tradeoff in the statis-
tical properties and the computational simplicity for these estimators. If efficiency and consistency are of pri- 
mary concern, then ML estimation should be preferred over two-step estimation. 

The objective of this paper is to develop a simple ML estimation algorithm for a commonly used multivariate 
sample selection model. In particular, this paper develops a parameter-expanded Monte Carlo expectation 
maximization (PX-MCEM) algorithm that differs from [9] in a few important ways. First, the PX-MCEM algo- 
rithm does not use the observed-data likelihood directly, so it avoids the aforementioned integrations. Second, 
the proposed iterative algorithm does not require the evaluations of gradients or Hessians, which become increa- 
singly difficult to evaluate with more parameters and equations. Third, the algorithm is straightforward to im-
plement. It only depends on quantities that are either easy to simulate or have closed form expressions. This last 
point is especially appealing when estimating the covariance matrix parameter since there are non-standard re-
strictions imposed onto it for identification. 

This paper is organized as follows. The multivariate sample selection model (MSSM) is formulated in Section 
2. Section 3 begins with a brief overview of the EM algorithm for the MSSM and continues with the develop- 
ment of the PX-MCEM algorithm. Methods to obtain the standard errors are discussed. Section 4 offers some 
concluding remarks. 

2. Multivariate Sample Selection Model 
The MSSM is  

, , ,i j i j j i jy x β∗ ′= +                                           (1) 

, , ,i j i j j i js w γ ν∗ ′= +                                          (2) 

( ), , 0i j i js s∗= >                                           (3) 

, ,
,

,

if  1
missing if  0

i j i j
i j

i j

y s
y

s

∗ ==  =
                                 (4) 

for observations 1, ,i N=  , and equations 1, ,j J=  . In the previous expressions, ,i jy∗  is the continuous 
outcome of interest for observation i  and equation j . Using similar indexing notation, ,i js∗  is the latent  
variable underlying the binary selection variable ( ), , 0i j i js s∗= > , where ( )A  denotes an indicator function  

that equals 1  if event A  is true and 0 otherwise. Sample selection is incorporated by assuming that ,i jy∗  is  

missing when , 0i js = . Otherwise, ,i jy∗  is observed and equal to ,i jy . For later use, define ( ),1 ,, ,i i i Js s s ′=   

and ( ),1 ,, ,i i i Js s s∗ ∗ ∗ ′=  , where the prime symbol in is , is∗ , and in the rest of this paper is used to denote matrix  

transpose. 
Furthermore, ,i jx  and ,i jw  are column vectors of exogenous covariates, and jβ  and jγ  are conforming  

vectors of parameters. Define ( )1 2, , , Jβ β β β
′′ ′ ′=   and ( )1 2, , ,

J
γ γ γ γ

′′ ′ ′=  . For identification, ,i jw  must  

contain at least one exogenous covariate that does not overlap with ,i jx  (refer to [11] for these exclusion res-  

trictions). The unobserved errors ( ),1 ,2 ,, , ,i i i i J
′=      and ( ),1 ,2 ,, , ,i i i i Jν ν ν ν ′=   are jointly distributed as a  

J2 -dimensional multivariate normal with a mean vector of zeros and an unknown covariance matrix of Ω . 

Formally, ( ) ( )2, 0,
iid

i i Jν
′′ ′ ∼ Ω   with  
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( )

( )

J J

J J

ν

ν νν

×

×

Ω Ω 
 Ω =  ′Ω Ω 
 

 


.                                        (5) 

The submatrix ννΩ  is restricted to be in correlation form to identify the parameters corresponding to the latent 
variables [9]. The other elements of Ω  are restricted such that the matrix is symmetric and positive definite.  

The covariates and binary selection variables are always observed. Without loss of generality, assume that the 
outcomes for any observation i  are only missing for the first im  equations, where 0 im J≤ ≤ . Define  

( ),obs , 1 ,, ,
ii i m i Jy y y+

′=  , and let { }obs ,obs 1
,

N
i i i

y y s
=

=  denote the observed data. The observed-data likelihood 

derived from (1) through (5) is denoted as ( )obs , ,f y β γ Ω . See [9] for an exact expression of this likelihood. 

3. Estimation  
3.1. Overview of the EM Algorithm 
The PX-MCEM algorithm is based on the EM algorithm of [12]. The basic idea behind the EM algorithm is to 
first augment obsy  with a set of “missing data” misy  such that the observed-data likelihood is preserved when 
the missing data are integrated out of the complete-data likelihood. Formally, the missing data must satisfy  

( ) ( )obs mis obs, , , , ,f y f y yβ γ β γ Ω = Ω  ,                          (6) 

where ( )mis obs, , ,f y y β γ Ω  is the complete-data likelihood to be defined later. 

The EM algorithm then proceeds iteratively between an expectation step (E-step) and a maximization step 
(M-step) as follows. In iteration ( )1t +  of the algorithm, compute in the E-step  

( ) ( ) ( )( ) ( )( )mis obs, , , , log , , ,t t tQ f y yβ γ β γ β γ Ω Ω = Ω  ,                  (7) 

where the expectation is taken with respect to the conditional predictive distribution for the missing data,  
( ) ( ) ( )( )mis obs, , ,t t ty yπ β γ Ω , and in the M-step, find  

( ) ( ) ( )( )
, ,

arg max , , , ,t t tQ
β γ

β γ β γ
Ω

Ω Ω .                             (8) 

Denote the maximal values as ( )1tβ + , ( )1tγ + , and ( )1t+Ω , and continue on with the algorithm until convergence. 
The final maximal values are at least local maxima of the observed-data likelihood function. 

For the MSSM, misy  consists of all the missing outcomes and latent variables. Specifically,  

{ }mis ,mis 1
,

N

i i i
y y s∗

=
= , where ( ),mis ,1 ,= , ,

ii i i my y y∗ ∗ ′
 . Furthermore, denote ( ),com ,mis ,obs= , ,i i i iy y y s∗

′′′ ′  as the vector  

of complete data, iX  as a block-diagonal matrix with the rows of covariates corresponding to the elements of 
,comiy  on its block diagonals, and ( )= ,θ β γ ′′ ′ . The complete-data likelihood for the MSSM is given by  

( ) ( ) ( )mis obs ,com ,com
1

, , , , ,
N

i i i
i

f y y f y p s yβ γ β γ
=

Ω = Ω∏                    (9) 

with ( ) ( ),com 2 ,com, , ,i J i if y y Xβ γ φ θΩ = Ω  which is a density function for a 2J -dimensional multivariate  

normal with mean iX θ  and covariance Ω , and  

( ) ( ) ( ) ( ) ( ){ },com , , , ,
1

1 0 0 0
J

i i i j i j i j i j
j

p s y s s s s∗ ∗

=

= = > + = ≤∏     .              (10) 

Equation (10) is a degenerate density since conditioning on is∗  in ,comiy  determines is  from (3). Note that 
the observed-data likelihood from [9] is obtained when misy  is integrated out of (9), hence the condition in (6) 
holds.  
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3.2. PX-MCEM Algorithm  
The standard EM algorithm using (7) and (8) is difficult to implement for the MSSM as the E-step and M-step 
are intractable. The PX-MCEM algorithm addresses this issue by modifying the E-step in two ways and leads to 
an M-step that can be evaluated with closed form quantities. Stated succinctly, the PX-MCEM algorithm is as 
follows. 

1. Initialize ( )0β , ( )0γ , ( )0Ω , and the number of Gibbs sampling draws G . 
At iteration 1t + :  
2. Draw G  sets of missing data, denoted by ( ) ( )1

mis mis, , Gy y , from ( ) ( ) ( )( )mis obsπ , , ,t t ty y β γ Ω  using Gibbs 
sampling.  

3. PX-MC E-step: Estimate ( ) ( ) ( )( ), , , ,t t tQ α δ β γΣ Ω  as  

( ) ( ) ( )( ) ( )( )( )mis obs
1

1, , , , log , , ,
G

t t t g
G

g
Q f y y

G
α δ β γ α δ

=

Σ Ω = Σ∑ .                  (11) 

4. PX-MC M-step: Maximize ( ) ( ) ( )( ), , , ,t t t
GQ α δ β γΣ Ω  with iterative generalized least squares (IGLS) to  

obtain the maximizing parameters ( )1tα + , ( )1tδ + , and ( )1t+Σ .  
5. Reduction step: Apply reduction functions to ( )1tα + , ( )1tδ + , and ( )1t+Σ  to obtain ( )1tβ + , ( )1tγ + , and 
( )1t+Ω .  
6. Repeat Steps 2 through 5 until convergence. The converged values are the ML estimates β̂ , γ̂ , and Ω̂ . 
Each step is described in more detail in the subsequent sections.  

3.2.1. PX-MC E-Step 
Following [13], the first modification is to expand the parameter space of the complete-data likelihood function 
from ( ), ,β γ Ω  to ( ), ,α δ Σ . The expanded parameters play similar roles as the original parameters, however 
Σ  is expanded into a standard covariance matrix without the correlation restrictions. The parameter-expanded 
complete-data likelihood function is  

( ) ( ) ( )mis obs ,com ,com
1

, , , , ,
N

i i i
i

f y y f y p s yα δ α δ
=

Σ = Σ∏                       (12) 

with ( ) ( ),com 2 ,com, , ,i J i if y y Xα δ φΣ = Θ Σ , where ( ),α δ ′′ ′Θ = , and ( )1 , , Jα α α
′′ ′=   and ( )1 , , Jδ δ δ

′′ ′=    

are defined analogously to β  and γ . The advantage of using (12) instead of (9) is that Σ  is easier to work 
with in the PX-MC M-step. 

Second, instead of computing ( ) ( ) ( )( ) ( )( )mis obs, , , , log , , ,t t tQ f y yα δ β γ α δ Σ Ω = Σ   analytically, it is 

approximated as (11) with Monte Carlo methods and Gibbs sampling. To draw from  
( ) ( ) ( )( )mis obs , , ,t t ty yπ β γ Ω , simply draw ,misiy  and is∗  from the conditional distribution  

( ) ( ) ( )( ),mis ,obs, , , , ,t t t
i i i iy s y sπ β γ∗ Ω  for 1, ,i N=  . From (9), we have that  

( ) ( ) ( )( ) ( ) ( )( ) ( ),mis ,obs 2 ,com ,com, , , , , ,t t t t t
i i i i J i i i iy s y s y X p s yπ β γ φ θ∗ Ω ∝ Ω ,            (13) 

where ( ) ( ) ( )( ),t t tθ β γ
′′ ′= . For the missing outcomes, it is easy to see from (13) that  

( )
( ) ( ) ( )

( ) ( )( )2
, ,obs 1,mis , ,, , , , , , ,t t t

i j i i ii j i j j i j jy y s y s β γ µ σ∗ ∗
− − −Ω                    (14) 

for 1, , ij m=  , where ( ),misi jy −  is equivalent to ,misiy  with ,i jy∗  removed, and ( ),i j jµ −  and ( )
2
,i j jσ −  are 

respectively the conditional mean and variance of ,i jy∗  given all other elements in ,comiy  from  
( ) ( )( )2 ,com ,t t

J i iy Xφ θ Ω . 

Similarly, for the latent variables,  
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( )
( ) ( ) ( )

( ) ( )( ),

2
, ,mis ,obs, , ,, , , , , , ,

i j

t t t
i j i i i Bi j i j j i j js s y y s β γ λ ω∗ ∗

− − −Ω                   (15) 

for 1, ,j J=  , where ( )2,A a b  denotes a univariate normal distribution with mean a  and variance 2b  

truncated to the region A . In (15), ( ),i js∗ −  is is∗  with ,i js∗  removed, ,i jB  is the interval ( ],0−∞  if , 0i js =  

and ( )0,+∞  otherwise, and ( ),i j jλ −  and ( )
2
,i j jω −  are respectively the conditional mean and variance of ,i js∗  

given all other elements of ,comiy  from ( ) ( )( )2 ,com ,t t
J i iy Xφ θ Ω . 

The Gibbs sampler recursively samples from the full conditional distributions in (14) and (15) in the usual 
way. After a sufficient burn-in period, the last G  draws are used in (11).  

3.2.2. PX-MC M-Step and Reduction Step 
By recognizing that (11) is proportional to the log-likelihood function of a seemingly unrelated regression model 
with NG  observations and 2J  equations, the maximization can be performed with IGLS. IGLS utilizes the 
quantities  

( )
1

1 1
,com

1 1 1 1

G N G N
g

i i i i
g i g i

X X X y
−

− −

= = = =

   ′ ′Θ = Σ Σ   
   
∑∑ ∑∑                            (16) 

and  

( )( ) ( )( ),com ,com
1 1

1 G N
g g

i i i i
g i

y X y X
NG = =

′Σ = − Θ − Θ∑∑   ,                        (17) 

where ( )
,com
g

iy  is equivalent to ,comiy  with ( )
,mis
g

iy  and ( )g
is∗ . First evaluate (16) with 1−Σ  removed, which 

amounts to estimating Θ  equation by equation, and then evaluate (17) based on Θ . Proceed by iterating (16)  
and (17) recursively until convergence. Denote the converged values as ( )1tα + , ( )1tδ + , and ( )1t+Σ . 

In the reduction step, set ( ) ( )1 1t tβ α+ += , ( ) ( )1 1t t
j j J jdγ δ+ +

+=  ( )1 j J≤ ≤ , and ( ) ( )1 11 1t tD D+ +− −Ω = Σ , where 

( )1 2diag 1, ,1, , ,J JD d d+=    is a 2 2J J×  diagonal matrix with the first J  diagonals equal to 1 and the re-  
maining J  diagonals equal to the square root of the last J  diagonals of ( )1t+Σ . The previous transformations 
are referred to as the reduction functions, and they are needed because (12) is used instead of (9) in the 
algorithm [13].  

3.3. Standard Errors  
The observed information matrix is  

( )( ) ( )( )2
mis obs mis obslog , , , log , , ,f y y f y yβ γ β γ   ∂ Ω ∂ Ω   − −   ′∂Ψ∂Ψ ∂Ψ      

  ,            (18) 

where ( ), ,β γ ′′ ′ ′Ψ = Ξ , and Ξ  is a column vector denoting the unique elements in Ω . Evaluate (18) at the 

ML estimates, and take the expectation and variance with respect to ( )mis obs
ˆ ˆˆ, , ,y yπ β γ Ω . These moments are  

estimated by taking additional draws from the Gibbs sampler and constructing their Monte Carlo analogs. The 
standard errors are the square roots of the diagonals of the inverse estimated quantity in (18).  

4. Concluding Remarks 
A new and simple ML estimation algorithm is developed for multivariate sample selection models. Roughly 
speaking, the implementation of this algorithm only involves iteratively drawing sets of missing data from well- 
known distributions and using IGLS on the complete data, both of which are inexpensive to perform. By using 
parameter expansion and Monte Carlo methods, the algorithm only depends on quantities with closed form 
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expressions, even when estimating the covariance matrix parameter with correlation restrictions. This algorithm 
is readily extendable to other types of selection models, including extensions to various types of outcome and 
selection variables with an underlying normal structure, and modifications to time-series or panel data.  
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Abstract 
Objective: The purpose of this paper is to critique the list of independent variables commonly used 
in observational research and test the impact of variables for prior use and treatment history on 
estimates of treatment effects. Methods: Using data from the California Medicaid program, this 
study generated a series of OLS estimates of the effect of atypical antipsychotic medications on 
costs and duration of therapy to illustrate the impact of alternative model specifications on treat-
ment effects. The first sequence of estimates consisted of six model specifications, the last of which 
included variables reflecting the type of episode defined according to prior treatment history and 
compliance. The second sequences repeated the specification of the first 6 models but were car-
ried out separately by episode type to examine the heterogeneity of treatment effect. The second 
sequence of models documented the impact of additional drug history variables. Results: Esti-
mates of the impact of atypical antipsychotic use on total costs and duration on initial drug were 
statistically significant in the first 6 models. Estimates changed significantly when dummy va-
riables indicating prior use of inpatient service and nursing home care were included in the model 
specification. Estimated effects changed substantially when prior total cost was included in cost 
analysis, or when prior treatment duration was included in duration analysis. Significant variation 
also existed in estimated effects across episode types, and it was particularly pronounced before 
controlling for prior cost/duration. Conclusion: It is important to add prior measures of the out-
come variable to control for unobserved bias in retrospective studies. Also, the accuracy and utili-
ty of results to clinicians can be improved significantly if analyses are performed by episode type. 
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1. Introduction 
Clinicians and policy makers require medical evidence with which to effectively integrate new technologies into 
real-world practice. This need is especially acute when new treatment alternatives are introduced into competi-
tion with older, well established treatments. In the case of new medications, these data come from two sources: 
the clinical trials required for FDA and other registry approvals and observational studies that establish the “es-
sential need” for a new treatment alternative [1]. Both sources of medical evidence are necessary to estimate the 
cost-effectiveness of a new technology at product launch.  

Efforts to document the essential need for a new technology actually begin very early in product development. 
Product innovators assess how well older, competing therapies are meeting the therapeutic needs of patients 
treated in the real world. Therapeutic gaps with older treatments typically arise when patient adherence to cur-
rent therapies is sub-optimal or treatment efficacy for compliant patients is limited. Other sources of essential 
need are high treatment costs or high indirect cost to the patient and their caregivers [2]. These indirect costs 
may include the costs of side effects, caregiver time, reductions in the quality of life and the like. Essential need 
data are used in a series of “go/no go” decisions that are made as the product is developed and tested.  

If the evolving data on essential need are promising and/or the new product is efficacious, the new technology 
will move through the required registry trials testing safety and efficacy. These studies use experimental re-
search designs [RCTs] which maximize the internal validity through random assignment and other techniques 
[e.g., blinding] [1]. However, the generalizability [external validity] of results from randomized clinical trials is 
limited: 

1. RCTs are limited to a small, homogeneous study population due to cost and patient safety concerns. Data 
on treatment outcomes for high risk patients may be missing or, conversely, it may be ethical to only include 
very high risk patients who have no remaining treatment options, as in cancer trials.  

2. Patient outcomes are measured over a limited time, again due to cost and to patient burden and risk of dro-
pout. This mis-match between study duration and time to potential treatment effect is most acute for drug thera-
pies intended to manage chronic disease such as hypertension or hyperlipidemia.  

3. By design, RCTs cannot measure patient adherence to treatment under real-world conditions. RCTs employ 
significant effort and resources to insure patient adherence to the study protocol. 

4. Finally, FDA-registration RCTs may require only placebo-controlled trials or the list of active comparators 
may be constrained due to cost concerns.  

Conversely, essential need studies based on retrospective data can provide CE evidence for the full range of 
treatment alternatives, and reflect real-world clinical practice and real-world adherence. The patients included in 
an essential need study also include risk groups not studied in the RCT environment. Finally, retrospective ob-
servational studies can provide evidence on long term outcomes and the [rare] clinical risk associated with ex-
isting therapies.  

Drug companies combine data from real-world essential need studies and registry RCT into an initial com-
puter-based CE model to support product marketing at launch. These models project the impact of the new 
technology in clinical use. However, the accuracy of the initial CE models is limited by the gaps in research on 
real-world adherence for the new drug, long term patient outcomes using the new drug and outcomes achieved 
by patient sub-groups not included in the product’s clinical trials [poor external validity]. While retrospective 
essential need studies fill in some of these gaps, the statistical validity of observational studies can be questiona-
ble if not executed well. Of equal concern, physicians, P & T committees and government program administra-
tors may not fully understand the complexity and pitfalls of the statistical methods use in observational research.  

The purpose of this paper is to critique the statistical methods commonly used in observational research by 
presenting a sequence of analyses which document how statistical results can change significantly as more care 
is taken to maximize the use of available data. Specifically, we will present a sequence of models moving from 
simple models to models using explanatory variables that are rarely derived from available claims data. The pa-
per also documents the impact of alternative estimation strategies. 

2. Statistical Challenges in Observational Research 
Satisfactory internal validity can only be achieved in observational research by controlling for confounding fac-
tors associated with both treatment selection and patient outcomes. For example, it is challenging to measure the 
impact of a new medication relative to competing older drugs if the new medication is reserved for high risk pa-
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tients, or if the new medication is used initially to treat patients who failed therapy using the older alternatives 
[3]. This bias can be reduced using multivariate statistical methods that adjust statistically for the impact of ob-
servable factors on treatment outcomes. However, treatment selection bias will continue to exist if important 
factors are missing from the multivariate statistical models. In the econometrics literature, this is referred to as 
missing variable bias. In comparative effectiveness research, missing variable bias is referred to as unobserved 
treatment selection bias [UTSB].  

UTSB is often a function of the data available for analysis. For example, data from a health insurance pro-
gram or government program [e.g., Medicare] includes the paid claim for common laboratory tests but provides 
no information concerning the laboratory result itself. Fortunately, the growing availability of electronic medical 
records [EMR] data will provide increasing opportunities for reducing the impact of UTSB in observational stu-
dies in medicine. 

The first line of defense against UTSB is to use the available data to document all factors that may impact 
both treatment selection and patient outcomes. Researchers often ignore episodes of drug therapy initiated fol-
lowing the first observed treatment episode which is concerning since patient outcomes can be radically differ-
ent for the second or third treatment attempt using the same drug, or for episodes of switching therapies, epi-
sodes of augmentation therapy or episodes involving combination therapy. Moreover, the later episodes contain 
more information about the treatment history of the patients, such as prior compliance behavior, which could 
significantly impact patient outcomes. This expanded use of available pharmacy data may be particularly im-
portant when newly approved medications are significantly less likely to be used as first therapy in treatment 
naïve patient.  

Alternative model specifications make better use of available data and will also be investigated. Both differ-
ence-in-difference models (DD) [4] and fixed effects models (FE) [4] assume that UTSB is invariant across time 
periods (e.g. pre-treatment and post-treatment). For example, genetic factors which affect disease severity or re-
sponse to drug treatment are invariant across time, and they are usually unobservable to researchers. Diff-in-diff 
models are popular in analysis of panel data. By differencing out fixed effects or controlling for them using 
dummy variables representing clusters, these models eliminate the effects of the time-invariant UTSB. But the 
time-invariant assumption of UTSB does not necessarily hold in practice. Even though time-invariant effects can 
be removed using such techniques, potential bias caused by time-varying confounding factors is still left unre-
solved. For instance, some clinical symptoms and health behavior are not captured by automated data systems, 
yet they are unlikely to remain exactly the same across time periods. 

3. Methods 
3.1. Data Sources 
This study conducts a series of retrospective analyses of the impact of atypical antipsychotic medications to illu-
strate the impact of alternative model specifications and estimation methods on treatment effects. The study uses 
an existing California Medicaid (Medi-Cal) data set which was derived for a string of earlier studies [5] [6] from 
paid claims data from the fee-for-service portion of Medi-Cal. The data cover the period of 1994-2003 during 
which Medi-Cal revoked its restriction on the use of typical antipsychotics to patients who had failed at least 
two previous treatment attempts using typical antipsychotics. This formulary restriction was lifted in October 
1997, three years after the introduction of risperidone in 1994 and exactly one year after the approval of olanza-
pine in 1996. Quetiapine was approved by the FDA in October 1997 and was immediately available to Medi-Cal 
patients without restrictions. This formulary expansion resulted in an immediate increase in the diffusion of 
atypical antipsychotics which are now accepted as first line drug therapy for these patients [7]. 

Initial inclusion criteria required that patients have a paid claim with a recorded diagnosis of schizophrenia 
(ICD-9 code = 295.xx) or bipolar disorder (ICD-9 codes = 296.4 - 296.8) and with at least one prescription for 
an antipsychotic medication. Additional exclusion criteria were applied once all episodes of care were identified. 

3.2. Definition of the Unit of Analysis 
The “standard of practice” for the unit of analysis in a retrospective CE research design data mirrors the RCT 
design: The episode of treatment. In the case of observational studies, the data of randomization is replaced by 
an “index date” defined based on the patient’s first prescription of one of the study drugs. Like most RCTs, the 
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patient is typically subjected to a “wash-out” period by requiring that the patient has not filled a prescription of 
any study drug prior to their initial prescription. Wash-out periods vary in length and 6 months to a year are 
common. Most studies then limit their analysis to these “first episodes” and ignore any subsequent use of related 
drugs such as augmentation therapy or the switching to an alternative medication. Limiting the analysis to first 
episodes excludes a large majority of treatment episodes. Moreover, new medications are seldom used as the 
first drug of choice and are regulated to treating “treatment failures” or providing augmentation therapy. 

The data set used here includes all episodes of psychotropic drug therapy initiated by patients. An episode of 
treatment was defined each time a patient started a drug treatment using an antipsychotic, antidepressant or 
mood stabilizer not used previously or restarted an earlier drug treatment after a gap that was at least 15 days. 
The 15-day gap was defined in collaboration with the Medi-Cal program and was to comply with earlier finding 
by Weiden et al. [8], who reported that the risk of hospitalization increased substantially after breaks in therapy 
as short as 10 days.  

The follow up period was the 12 months after the month of initiation. The 12-month follow up period was 
specified for the measurement of treatment outcomes which mimics intent to treat methods implemented in 
clinical trials. Patient episodes were then screened for eligibility during the entire pre- and post-treatment period. 
The amount paid for all services were inflation adjusted to 2004 using service specific rates of fee inflation from 
the Medi-Cal program.  

Many patients had more than one treatment episode, which is very common in schizophrenia and bipolar dis-
orders as patients switched from one antipsychotic to another or start and stop therapy. While this approach vi-
olates the usual assumption of independence across units of analysis, excluding subsequent episodes initiated by 
the patient was judged to generate stronger bias than hypothetical independence of sampling units [6] [9] [10]. 
Excluding these follow-on episodes severely restricts the utility of the analysis to clinicians who required data 
on treatment effects for a wide range of treatment histories.  

3.3. Covariates and Model Sequencing 
The focus of the proposed study is to examine how the use of an expanded list of unconventional independent 
variables impacts estimates of total costs and duration of therapy using standard ordinary least squares (OLS) 
regressions. Specifically, the following sequence of models will be estimated: 

Model 1: The basic models include only age [categories with an interval of 10], gender, county population 
density [urban/rural/urban-rural-mix] and Medi-Cal aid categories 

Model 2: The second set of models adds dichotomous variables based on non-mental health comorbidities 
based on ICD-9 diagnoses at baseline. 

Model 3: Mental health diagnoses were added to the model specification separately to test the impact of di-
agnostic mix data related directly to the disease state under study.   

Model 4: The list of independent variables was extended to include two dichotomous variables indicating 
whether or not the patient used inpatient hospital services or nursing home services in the 6 months prior to the 
episode start date.  

Model 5: Pre-treatment measures of the outcome variables [total costs, duration of therapy] were added in this 
model. This specification is mathematically equivalent to difference-in-difference modeling which re-defines the 
outcome variable by differencing the value of the outcome measure before and after treatment.  

Models 6: This model is the first to used data on the drug history of the patient at the time of treatment. The 
initial drug history covariates are dichotomous variable for episode type. Five types of episodes were defined in 
this data set:  

1. First Observed Episode: The “first” episode was defined based on the patient’s first psychotropic drug 
therapy attempt.  

2. Restart Episodes: A restart episode was defined if the patient was not on active psychotropic drug therapy 
for 15 days or longer and initiated therapy with the medication used in their most recent episode [intermittent 
use].  

3. Switching Episodes: A switching episode was defined if a patient changed medication while still on active 
therapy or within 15 days of terminating a previous therapy, and discontinued use of all previous medications 
within 60 days. 

4. Delayed Switching Episodes: A delayed switching episode was defined if a patient changed drug therapy 
after a break in therapy in excess of 15 days. 



Y. W. Jiang, J. McCombs 
 

 
861 

5. Augmentation Episodes: An augmentation episode was defined when a patient added a second medication 
while continuing to purchase one or more of their previous medications beyond 60 days. 

This analysis excludes first observed treatment episodes due to the lack of data on patient treatment history. 
The following analyses only used restart, delayed switching, switching, and augmentation episodes. In order to 
facilitate comparisons to Models 1 - 6, first episodes were also excluded from the sample of episodes included in 
these models. 

Models 7 - 12: The remaining drug treatment history variables are entered sequentially in Models 7 - 12: 
count of the number of prior treatment attempts, monotherapy vs. combination therapy, days off therapy (for 
restart and delayed switching episodes), and prior use of related drugs [typical and atypical antipsychotics, mood 
stabilizers, antidepressants, depot-formulated drugs]. At this point, the analyses are conducted by episode type 
primarily because episode type is a significant predictor of cost and duration of therapy [Model 6]. It follows 
that clinicians will require information on the CE of atypical vs. typical antipsychotics by episode type. 

4. Results 
Results for the first six models for the impact of using atypical antipsychotics that used all episodes are summa-
rized in Table 1. The outcome variables used in these models are total cost over the first post-treatment year and 
duration of therapy on the ‘initial’ drug of the episode. For example, in the case of augmentation episode, the in-
itial drug is the augmenting drug. In addition to the impacts of atypical use, we also include the estimates of the 
effects of episode type indicators on cost and duration in Model 6 which are also included in Table 1. 

Estimates of the impact of atypical antipsychotic use on total costs and duration on initial drug are statistically 
significant in the first 6 models. In Models 1 - 3, the estimated impact of using an atypical antipsychotic range 
from $1230 to $1399, and the estimates of the impacts on duration range from 90.2 to 95.9 days. Estimates 
changed significantly when dummy variables indicating prior inpatient service use and prior nursing home use 
were included in the model specification. The effect of atypical use on total cost decreased to $398 whereas the 
effect on duration only slightly changed to 89.1 days. Equally important, the R2 of the model for total cost in-
creased substantially (0.182 to 0.571).  

 
Table 1. Impact of atypical antipsychotic use on total cost and duration of therapy: all episode types (N = 731,236).         

 Total Cost First Post-Treatment Year Duration of Drug Therapy 

Model Model Specification OLS 
(SE) 

R-squared 
In OLS 

OLS 
(SE) 

R-squared 
In OLS 

1 Demographic variables only 1350*** 

(63.7) 0.095 95.9*** 

(0.8) 0.037 

2 Add: Medical 
Diagnostic Mix 

1399*** 
(62.0) 0.160 93.0*** 

(0.8) 0.046 

3 Add: Mental Health 
Diagnostic Mix 

1230*** 
(61.6) 0.182 90.2*** 

(0.8) 0.060 

4 Add: Prior Use of Hospital and Nursing Home Care 398*** 
(44.6) 0.571 89.1*** 

(0.8) 0.063 

5 Add: Pre-Treatment Costs and Duration of Therapy 615*** 
(36.7) 0.710 76.4*** 

(0.8) 0.130 

6 Add: Episode Type 751*** 
(37.8) 0.712 55.0*** 

(0.8) 0.157 

Estimated Impact of Episode Type on Total Cost and  
Duration of Drug Therapy in Model 6     

Estimated Impact of Episode Type on Total Cost and  
Duration of Drug Therapy in Model 6 (Restart as baseline)     

Switching 1221*** 
(65.3)  136.9*** 

(1.4)  

Delayed switching 1360*** 
(55.3)  73.8*** 

(1.2)  

Augmentation 2237*** 
(58.3)  −75.9*** 

(1.2)  

OLS results are presented as estimate (SE). Abbreviations: N, number of episodes; OLS, ordinary least squares; SE, standard error. 
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Difference-in-difference modeling is frequently used in observational research testing the effect of new treat-
ments or policy changes on patient outcomes. When prior total cost was included in cost analysis [Model 5], the 
estimated effect of atypical use increased from $398 to $615 and the R2 further increased from 0.571 to 0.710. 
Similarly, when prior treatment duration was included in duration analysis, the estimated effect of atypical use 
decreased from 89 days to 76 days and the R2 doubled from 0.063 to 0.130.  

Model 6 estimates the impact of atypical use controlling for episode type. The results from this model demon-
strate the importance of drug use history when estimating the impact of atypical antipsychotics on cost and dura-
tion of therapy in two ways. First, the estimated effect of atypical use changed to $751 while the estimated effect 
on duration decreased to 55 days. But more importantly, episode type has very significant impacts of costs and 
duration. Compared with restart episodes, switching episodes, delayed switching episodes, and augmentation 
episodes increased total cost by $1221, $1360, and $2237, respectively. However, the impacts of the episode 
type on duration were not uniformly positive. Switching and delayed switching episodes lasted an additional 137 
days, 74 days relative to re-start episodes. Conversely, the use of the initial drug decreased by 76 days in aug-
mentation episodes relative to re-start episodes, possibly reflecting intended short term use of augmentation 
therapy. 

The results from Model 6 provide an estimate of the average impact of using an atypical antipsychotic on cost 
and duration of therapy controlling for how atypical antipsychotic drugs are used by episode type. However, cli-
nicians need to know how these new drugs perform by episode type, not on average. This dictates that these 
analyses be conducted separately by episode type. Conducting analyses by episode type also allows researchers 
to add other treatment history variables to the analyses which can vary by episode type. Our analyses of use and 
cost by episode type are displayed in Tables 2-5. The results for the average impact of atypical use derived in 
Model 6 using data for all episode types is also listed in these tables as a reference.  

 
Table 2. Impact of atypical antipsychotic use on total cost and duration of therapy: restart episodes (N = 445,258).          

  Total Cost First Post-Treatment Year Duration of Drug Therapy 

Model Model Specification OLS 
(SE) 

R-squared 
In OLS 

OLS 
(SE) 

R-squared 
In OLS 

1 Demographic variables 2301*** 
(77.3) 0.098 38.2*** 

(0.9) 0.018 

2 Demo + Medical Diagnosis 2616*** 
(75.6) 0.166 33.0*** 

(0.9) 0.026 

3 Demo + MedicalDx + MHDx 2485*** 
(75.7) 0.185 28.1*** 

(0.9) 0.039 

4 +prior hospitalization 
+prior long term care 

1077*** 
(53.9) 0.588 26.2*** 

(0.9) 0.043 

5 +prior and switch total costs/prior  
episode duration 

384*** 
(42.8) 0.740 24.4*** 

(0.9) 0.056 

6 Model 6 Specification Using Data 
for All Episodes 

751*** 
(37.8) 0.712 55.0*** 

(0.8) 0.157 

7 Add: prior episode count 500*** 
(43.3) 0.741 22.2*** 

(0.9) 0.060 

8 Add: mono/poly 493*** 
(43.4) 0.741 21.7*** 

(0.9) 0.060 

9 Add: prior depot use indicator 497*** 
(43.5) 0.741 21.7*** 

(0.9) 0.060 

10 Add: time off Rx 567*** 
(44.2) 0.741 20.3*** 

(0.9) 0.060 

11 Add: prior Rx mix 563*** 
(111.3) 0.741 24.2*** 

(2.3) 0.062 

OLS results are presented as estimate (SE). Abbreviations: N, number of episodes; OLS, ordinary least squares; SE, standard error. 
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Table 3. Impact of atypical antipsychotic use on total cost and duration of therapy: switching episodes (N = 71,917).        

  Total Cost First Post-Treatment Year Duration of Drug Therapy 

Model Model Specification OLS 
(SE) 

R-squared 
In OLS 

OLS 
(SE) 

R-squared 
In OLS 

1 Demographic variables 1678*** 
(217.4) 0.147 107.0*** 

(4.0) 0.037 

2 Demo + Medical Diagnosis 1796*** 
(211) 0.203 106.1*** 

(4.0) 0.053 

3 Demo + MedicalDx + MHDx 1901*** 
(208.8) 0.220 108.0*** 

(3.9) 0.068 

4 +prior hospitalization 
+prior long term care 

1289*** 
(154.9) 0.571 106.6*** 

(3.9) 0.071 

5 +prior and switch total costs/prior 
episode duration 

1171*** 
(136.4) 0.667 24.6*** 

(3.1) 0.453 

6 Model 6 Specification Using Data  
for All Episodes 

751*** 
(37.8) 0.712 55.0*** 

(0.8) 0.157 

7 Add: prior episode count 1128*** 
(145.4) 0.670 26.3*** 

(3.2) 0.453 

8 Add: mono/poly 1122*** 
(145.6) 0.670 25.4*** 

(3.2) 0.454 

9 Add: prior depot use indicator 1270*** 
(149.1) 0.670 26.4*** 

(3.2) 0.454 

10 Add: time off Rx     

11 Add: prior Rx mix 1262*** 
(152.2) 0.670 37.2*** 

(3.2) 0.459 

OLS results are presented as estimate (SE). Abbreviations: N, number of episodes; OLS, ordinary least squares; SE, standard error. 
 

Table 4. Impact of atypical antipsychotic use on total cost and duration of therapy: delayed switching episodes (N = 97,704).  

  Total Cost First Post-Treatment Year Duration of Drug Therapy 

Model Model Specification OLS 
(SE) 

R-squared 
In OLS 

OLS 
(SE) 

R-squared 
In OLS 

1 Demographic variables 1140*** 
(185.1) 0.161 95.9*** 

(2.8) 0.032 

2 Demo + Medical Diagnosis 1487*** 
(179.7) 0.219 93.0*** 

(2.8) 0.045 

3 Demo + MedicalDx + MHDx 1454*** 
(178.2) 0.236 93.4*** 

(2.8) 0.061 

4 +prior hospitalization 
+prior long term care 

1128*** 
(131.2) 0.586 92.2*** 

(2.8) 0.069 

5 +prior and switch total costs/prior  
episode duration 

1179*** 
(117.6) 0.667 88.6*** 

(2.85) 0.075 

6 Model 6 Specification Using Data  
for All Episodes 

751*** 
(37.8) 0.712 55.0*** 

(0.8) 0.157 

7 Add: prior episode count 1217*** 
(121.9) 0.671 86.6*** 

(2.9) 0.076 

8 Add: mono/poly 1231*** 
(123.5) 0.671 84.0*** 

(2.9) 0.076 

9 Add: prior depot use indicator 1287*** 
(126.7) 0.671 84.2*** 

(2.9) 0.076 

10 Add: time off Rx 1283*** 
(127) 0.671 84.3*** 

(2.9) 0.076 

11 Add: prior Rx mix 1120*** 
(137.1) 0.672 91.7*** 

(3.1) 0.077 

OLS results are presented as estimate (SE). Abbreviations: N, number of episodes; OLS, ordinary least squares; SE, standard error. 
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Table 5. Impact of atypical antipsychotic use on total cost and duration of therapy: augmentation episodes (N = 116,357).     

  Total Cost First Post-Treatment Year Duration of Drug Therapy 

Model Model Specification OLS 
(SE) 

R-squared 
In OLS 

OLS 
(SE) 

R-squared 
In OLS 

1 Demographic variables −4936*** 
(185.1) 0.105 170.0*** 

(2.1) 0.075 

2 Demo + Medical Diagnosis −4549*** 
(180.8) 0.152 168.7*** 

(2.1) 0.086 

3 Demo + MedicalDx + MHDx −4390*** 
(179.9) 0.165 168.6*** 

(2.1) 
0.095 

 

4 +prior hospitalization 
+prior long term care 

−1741*** 
(136.6) 0.520 167.6*** 

(2.1) 0.096 

5 +prior and switch total costs/prior  
episode duration 

−289** 
(112.2) 0.677 146.7*** 

(2.1) 0.171 

6 Model 6 Specification Using Data  
for All Episodes 

751*** 
(37.8) 0.712 55.0*** 

(0.8) 0.157 

7 Add: prior episode count 66 
(115.4) 0.676 142.6*** 

(2.1) 0.173 

8 Add: mono/poly 65 
(115.6) 0.676 143.3*** 

(2.1) 0.174 

9 Add: prior depot use indicator 74 
(118.7) 0.676 143.4*** 

(2.1) 0.174 

10 Add: time off Rx     

11 Add: prior Rx mix −156 
(122.0) 0.677 155.7*** 

(2.2) 0.179 

OLS results are presented as estimate (SE). Abbreviations: N, number of episodes; OLS, ordinary least squares; SE, standard error. 
 

Table 2 presents the results using restart episodes starting with the original set of independent variable used in 
Model 1. Models 5 and 6 are equivalent when estimated using only restart episodes. In models 1 - 3 using restart 
episodes, the estimated effects of atypical antipsychotic use on total cost range from $2301 to $2616. Including 
prior inpatient services use and prior nursing home use decreased the estimated effect to $1077. It further de-
creased to $384 after controlling for prior total cost. The estimated effect remained stable across Models 7 - 11 
($493 - $567). The R2 increased significantly at the stages of Model 4 (0.185 to 0.588) and Model 5 (0.588 to 
0.740). The estimated effects of atypical antipsychotic use on duration is much more stable than estimated for 
cost across all models using restart episodes are between 20.3 and 38.2 days. Also, the increase in the R2 was 
modest from Model 1 to Model 11 (0.018 to 0.062). 

Table 3 presents the results of analyses using switching episodes. In Models 1 - 3 using switching episodes, 
the estimated effects of atypical antipsychotic use on total cost are between $1678 and $1901. Including prior 
inpatient services use and prior nursing home use in the model decreased the estimated effect to $1289. Includ-
ing prior total cost changed the estimated effect to $1171. The estimated effects on total costs are between $1122 
and $1270 in Models 7 - 11. The R2 increased by a large amount at the stages of Model 4 (0.220 to 0.571) and 
Model 5 (0.571 to 0.667). The estimated effects of atypical antipsychotic use on duration in Models 1 - 4 are 
between 106.1 and 108.0 days. But the estimated effect of atypical use dropped significantly to 24.6 days after 
controlling for prior treatment duration. In Models 7 - 11, the estimated effects are between 25.4 days and 37.2 
days. The R2 increased from 0.071 to 0.453 at the stage of Model 5. 

Table 4 lists the results of analyses using delayed switching episodes. Throughout the 10 models, the esti-
mated effects of atypical antipsychotic use on total cost range from $1120 to $1487, and the estimated effects on 
duration range from 84.0 to 95.9 days. The R2 in the cost analysis increased from 0.236 to 0.586 at the stage of 
Model 4 and increased from 0.586 to 0.667 at the stage of Model 5. However, the R2 in duration analysis only 
increased modestly from 0.031 in Model 1 to 0.077 in Model 11. 

Finally, the results of analyses using augmentation episodes are included in Table 5. In Models 1 - 3, the es-
timated effects of atypical antipsychotic use on total cost are between −$4936 and −$4390. The estimated effect 
changed to −$1741 after controlling for prior inpatient services use and prior nursing home use, and further 
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changed to −$289 after controlling for prior total costs. In Models 7 - 11, the estimated effects on total costs are 
between −$156 and $74 and are all statistically insignificant. These are the only set of insignificant estimates in 
all analyses in the current study. The estimated effects on duration are between 142.6 days and 170.0 days for all 
10 models. The R2 in the cost analysis increased from 0.165 to 0.520 at the stage of Model 4 and increased from 
0.520 to 0.677 at the stage of Model 5. Likewise, the R2 in duration analysis increased from 0.096 to 0.171 at the 
stage of Model 5. 

5. Discussion and Conclusion 
The purpose of this study was to investigate the changes in estimated treatment effects in response to a series of 
explanatory variables, some of which are rarely derived from claims databases. The results from this series of 
estimates are illustrated in Figure 1 [Total Cost] and Figure 2 [Duration of Therapy]. Two statistical effects are 
evident. First, controlling for prior total cost/treatment duration led to significant changes of estimates in most 
analyses, and the results for the impact of using atypical antipsychotics [treatment effect] tended to settle down 
across model specifications after that stage. This result validates the value of adding prior measures of the out-
come variable which corresponds to the popular difference-in-difference estimation technique. Second, it is evi-
dent that great variation exists in estimated effects of atypical antipsychotic use across episode types which 
persists across model specification and is particularly pronounced before adding prior total cost/treatment dura-
tion to the model specification. But as an added bonus, conducting the analysis of treatment effects by episode 
type significantly increases the utility of study results to clinicians who are looking for guidance as to what 
works best for patients with different treatment history.  

Episode type can significantly impact the estimated treatment effects because episode type has a major impact 
on treatment outcomes. Accordingly, comparative effectiveness research should take into account the differen-
tial treatment effects in episode-type subgroups.  

A major limitation of observational result to measure treatment effects stems from the nature of claims data-
bases. Claims databases do not usually capture important information such as disease severity and clinical 
symptoms. Although we controlled a long list of variables and used various model specifications in the regres-
sions, potential bias due to unmeasured covariates could not be ruled out thoroughly. However, the future of 

 

 
Figure 1. Impact of using atypical antipsychotics on total cost in first post-treatment year.                  
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Figure 2. Impact of using atypical antipsychotics on duration of therapy.                               

 
observational research in comparative effectiveness research is bright as data from electronic medical record 
[EMR] systems become more available. The internal validity of estimated differences between alternative 
treatments will only improve as better clinically relevant data are available. 
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Abstract 
In this paper, we consider the problem of variable selection and model detection in additive mod-
els with longitudinal data. Our approach is based on spline approximation for the components 
aided by two Smoothly Clipped Absolute Deviation (SCAD) penalty terms. It can perform model 
selection (finding both zero and linear components) and estimation simultaneously. With appro-
priate selection of the tuning parameters, we show that the proposed procedure is consistent in 
both variable selection and linear components selection. Besides, being theoretically justified, the 
proposed method is easy to understand and straightforward to implement. Extensive simulation 
studies as well as a real dataset are used to illustrate the performances. 

 
Keywords 
Additive Model, Model Detection, Variable Selection, SCAD Penalty 

 
 

1. Introduction 
Longitudinal data arise frequently in biological and economic applications. The challenge in analyzing 
longitudinal data is that the likelihood function is difficult to specify or formulate for non-normal responses with 
large cluster size. To allow richer and more flexible model structures, an effective semi-parametric regression 
tool is the additive model introduced by [1], which stipulates that  

( )( )
1

,
d

l
l

l
Y m Xµ ε

=

= + +∑                                      (1) 

where Y  is a varaible of interest and ( ) ( )( )1 , ,
TdX X X=   is a vector of predictor variables, µ  is a      
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unknown constant, and ( ) ( )( )1
d l

llm X m X
=

= ∑  are unknown nonparametric functions. As in most work on 

nonparametric smoothing, estimation of the non-parametric functions ( ) ( )( )1
d l

llm X m X
=

= ∑  is conducted on a 

compact support. Without loss of generality, let the compact set be [ ]0,1 d=X  and also impose the condition 
( )( ) 0l

lE m X  =   which is required for identifiability of model (1.1), 1, ,l d=  . We propose a penalized  

method for variable selection and model detection in model (1.1) and show that the proposed method can 
correctly select the nonzero components with probability approaching one as the sample size goes to infinity. 

Statistical inference of additive models with longitudinal data has also been considered by some authors. By 
extending the generalized estimating equations approach, [2] studied the estimation of additive model with 
longitudinal data. [3] focuses on a nonparametric additive time-varying regression model for longitudinal data. 
[4] considered the generalized additive model when responses from the same cluster are correlated. However, in 
semiparametric regression modeling, it is generally difficult to determine which covariates should enter as 
nonparametric components and which should enter as linear components. The commonly adopted strategy in 
practice is just to consider continuous entering as nonparametric components and discrete covariates entering as 
parametric. Traditional method uses hypothesis testing to identify the linear and zero component. But this might 
be cumbersome to perform in practice whether there are more than just a few predictor to test. [5] proposed a 
penalized procedure via the LASSO penalty; [6] presented a unified variable selection method via the adaptive 
LASSO. But these methods are for the varying coefficient models. [7] established a model selection and 
semiparametric estimation method for additive quantile regression models by two-fold penalty. To our know- 
ledge, the model selection and variable selection simultaneously with longitudinal data have not been investi- 
gated. We make several novel contributions: 1) We develop a new strategies for model selection and variable 
selection in additive model with longitudinal data; 2) We develop theoretical properties for our procedure. 

In the next section, we will propose the two-fold SCAD penalization procedure based on QIF and compu- 
tational algorithm; furthermore we present its theoretical properties. In particular, we show that the procedure 
can select the true model with probability approaching one, and show that newly proposed method estimates the 
non-zero function components in the model with the same optimal mean square convergence rate as the standard 
spline estimators. Simulation studies and an application of proposed methods in a real data example are included 
in Sections 3 and 4, respectively. Technical lemmas and proofs are given in Appendix. 

2. Methodology and Asymptotic Properties 
2.1. Additive Models with Two Fold Penalized Splines 

Consider a longitudinal study with n  subjects and in  observations over time for the ith subject ( )1, ,i n=   

for a total of 1
n

iiN n
=

= ∑  observation. Each observation consists of a response variable ijY  and a covariate  
vector d

ijX R∈  taken from the ith subject at time ijt . We assume that the full data set  

( ){ }, , 1, , , 1, ,ij ij iX Y i n j n= =   

is observed and can be modelled as  

( )( )
1

,    1, , , 1, , ,
d

l
ij l ij ij i

l
Y m X i n j nµ ε

=

= + + = =∑                           (2) 

where ijε  is random error with ( ) 0ij ijE Xε =  and 2
εσ . 

At the start of the analysis, we do not know which component functions in model (1.1) are linear or actually 

zero. We adopt the centered B-spline basis, where ( ) ( ){ }T
, :1 ,1s l lB x l d s J= ≤ ≤ ≤ ≤B X  is a basis system 

( ) ( ) ( ) ( ){ } ( ), 1, 1, 1, 1, ls l l s l l s l l l xB x K b x E b E b b+ +
 = −   and ( ) ( ) 1

d
l l

x x
=

= . Equally-spaced knots are used in this  

article for simplicity of proof. Other regular knot sequences can also be used, with similar asymptotic results. 
Suppose that ( )lm ⋅  can be approximated well by a spline function, so that  
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( )( ) ( )( ) ( )( ),
1

.
J

l l lsp
l l sl s l

s
m x m x B xβ

=

≈ = ∑                               (3) 

To simplify notation, we first assume equal cluster size in m= < ∞ , and let ( )T
1 , ,l l Jlβ β β=  ,  

{ }TT T
00 1 1

, , , d Jd
β β β β

+
=   be the collection of the coefficients in (2.3), and 00µ β= , denote  

( ) ( )( ) ( )( ){ }T

1, ,
1

, ,l l l
ij l ij J l ij

J
B X B X

×
=B   and ( ) ( ){ }

( )

T1 T T

1 1
1, , , d

ij ij ij Jd + ×
=B B B , then we have an approximation  

( ) T
ij ijmµ β+ =X B . We can also write the approximation of (2.1) in matrix notation as  

T ,i i iβ ε= +Y B                                        (4) 

where { } ( )

T
,1 1
, ,

i
i i im n Jd× +
=B B B , { }T

1 2, , ,i i i imY Y Y=Y   and { }T
1 2, , ,i i i imε ε ε ε=  . [8] introduced the QIF that 

approximates the inverse of R  by a linear combination of some basis matrixes, i.e.  
1

0 1 1 ,K Ka a a− ≈ + + +R I M M  

where I  is the identity and iM  are known symmetric basis matrices and 0 1, , , Ka a a  are unknown 
constants. The advantage of the QIF approach is that it does not require the estimation of the linear coefficients 

ia 's associated with the working correlation matrix, which are treated as nuisance parameters here.  

( ) ( )

{ }
{ }

{ }

T 1

T 1 2 1 2
1

1 1
T 1 2 1 2

1 1 .

i i i i
n n

i i i i i
n i

i i

i i K i i i

n n

β
β

β β

β

−

− −

= =
− −

 −
 

− = =  
  − 

∑ ∑

B A Y B
B A M A Y B

G g

B A M A Y B


                    (5) 

The vector ( )n βG  contains more estimating equations than parameters, but these estimating equations can 
be combined optimally using the generalised method of the moment. So according to [8], the QIF approach 
estimates β  by setting nG  as close to zero as possible, in the sense of minimizing the quadratic inference 
function ( )n βQ .  

( ) ( ) ( ) ( )T 1 ,n n n nnβ β β β−=Q G C G                               (6) 

where  

( ) ( ) ( )1

1

1 .
n

T
n i i

in
β β β−

=

= ∑C g g  

Our main goal is to find both zero components (i.e., 0jm ≡ ) and linear compoents (i.e., jm  is a linear  
function). The former can be achieved by shrinking sp

jm  to zero. For the latter, we want to shrink the second 

derivative ( )sp ''
jm  to zero instead. This suggests the following minimization problem  

( ) ( ) ( )( )1 2
1

ˆ arg min ,
d d

sp ''sp
n l l

l l l
n p m n p mλ λβ

β β
= =

= + +∑ ∑Q                      (7) 

where ( )
1

pλ ⋅  and ( )
2

pλ ⋅  are two penalties used to find zero and linear coefficients respectively, with two 

regularization parameters 1λ  and 2λ , and ( )T lsp
l lm β= B , ( ) { }T

1, 2, ,, , ,l
l l J lB B B=B  . Note that since  

( ) ( )( ) ( )( )22 Tˆ dlsp
l l kl kl k l k lk km B x B x xβ β β ′ ′′= = ∑ ∑∫B  and  

( ) ( ) ( ) ( ) ( ) ( )
2 2Tˆ d ,sp '' l '' ''

l l kl kl k l k l
k k

m B x B x xβ β β ′ ′
′

  = =   
  
∑ ∑∫B  

sp
lm  and ( )sp ''

lm  can be equivalently written as T

ll l l lβ β β=D D  and T

ll l l lβ β β=E E  respectively, 
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with ( ),k k ′  entry of lD  being ( ) ( )1

0
dkl k lB x B x x′∫ . 

2.2. Asymptotic Properties 

To study the rate of convergence for µ̂  and β̂ , we first introduce some notations and present regularity 
conditions. We assume equal cluster sizes ( )in m= < ∞ , and ( ), , 1, ,i iY X i n=   are i.i.d. from ( ),Y X  with 

( )T
1, ,i i imY Y=Y  , and ( )TT

1 , , T
i i imX X=X  . For convenience, we assume that ( )jm ⋅  is truly nonparametric  

for 11 j d≤ ≤ , is linear for 1 1 21d j d d s+ ≤ ≤ + = , and is zero for djs ≤≤+1 . The asymptotic result still 
hold for data with unequal cluster sizes im  using a cluster-specific transformation as discuss in [4]. For any 
matrix A , A  denotes the modulus of the largest singular value of A . To prove the theoretical arguments, 
we need the following assumptions: 

(A1) The covariates { }TT T
1 , ,i i imX X=X   are compactly supported, and without loss of generality, we 

assume that each T
ijX  has support [ ]0,1 dχ = . The density of T

ijX , denoted by ( )jf x , is absolutely conti- 

nuous and there exist constants 1C  and 2C  such that ( )1 20 min jC f Cχ∈< ≤ ≤ < ∞x x  for all 1, ,j m=  . 

(A2) Let ( )e Y mµ= − − X . Then TEeeΣ =  is positive definite and for some 0δ > , 2E e δ+ < +∞ .   

(A3) For each 1, ,l d=  , ( )lm ⋅  has r  continuous derivatives for some 2r ≥ .  

(A4) ( )

T 1 2 1 2
1

0
T 1 2 1 2

1lim .
i i i i

n n

i i K i i

E J
n

β

− −

→∞
− −

 
 

= = 
 
 

B A M A B
G

B A M A B


                                             (8) 

(A5) Let ( )TT T
0 , , k=M M M . Assume the modular of the singular value of M  is bounded away from 0 

and infinity.  
(A6) The matrix A  defined in Theorem 3 is positive definite.  
Theorem 1. Suppose that the regularity conditions A1-A5 hold and the number of knots ( )( )1 2 1r

pK O n += , 

1 2, 0λ λ → . Then there exists a local minimizer of (2.7) such that  
( )( )2 1

0ˆ ,r r
pO nµ µ − +− =  

( ) ( ){ } ( )( )2 2 2 1

1 1 1

1 ˆmax .
imn

r r
l l pl d i j

m x m x O n
n

− +

≤ ≤ = =

− =∑∑  

For 1im m= = , it reduces to a special case where the responses are i.i.d. The rate of convergence given here 
is the same optimal rate as that obtain for polynomial spline regression for independent data [9] [10]. The main 
advantage of the QIF approach is that it incorporates within-cluster correlation by optimally combing estimating 
equations without estimating the correlation parameters. the estimator of two fold penalized QIF achieve the 
same rate of convergence as un-penalized estimator. Furthermore, we prove that the penalized estimators 
{ }

1
ˆ d

l l
β

=
 in Theorem 1 possess the sparsity property, ˆ 0lm =  almost surely for 1, ,l s d= +  . The sparsity 

property ensures that the proposed model selection is consistent, that is, it selects the correct variables with 
probability tending to 1 as the sample size goes to infinity. 

Theorem 2. Under the same assumptions of Theorem 1, and if the tuning parameter ( ) { }2 1
1 2min ,r rn λ λ+ → ∞ . 

Then with probability approaching 1. 
a) ˆ 0, 1jm s j d≡ + ≤ ≤  
b) ˆ jm  is a linear function for 1 1d j s+ ≤ ≤  
Theorem 2 also implies that above additive model selection possesses the consistency property. The results in 

Theorems 2 are similar to semiparametric estimation of additive quantile regression model in [7]. However, the 
theoretical proof is very different from the penalized quantile loss function due to the two fold penalty and 
longitudinal data. 
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Finally, in the same spirit of that [11], we come to the question of whether the SIC can identify the true model 
in our setting.  

Theorem 3. Suppose that the regularity conditions A1-A5 hold and the number of knots ( )( )1 2 1r
pK O n +=   

as assumed in Theorem 1, The parameters 1̂λ  and 2λ̂  selected by SIC can select the true model with pro- 
bability tending to 1. 

3. Simulation Study 
In this section, we conducted Monte Carlo studies for the following longitudinal data and additive model. the 
continuous responses { }ijY  are generated from  

( )( )
1

,  1, , ,  1, ,5
d

l
ij l ij ij

l
Y m X n jε

=

= + =∑                           (9) 

where 10d =  and the number of clusters 100,250,500n = . The additive functions are  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2
1 2 3 4 55sin 2π 2 sin 2π , 8 0.5 , 2 , ,m x x x m x x m x x m x x m x x= − = − = = = − . Thus the last 5 

variables in this model are null variables and do not contribute the model. The covariates ( ) ( )( )T1 10, ,ij ij ijX X=X   

are generated independently from uniform. The error ( )T
1 6, ,i i iε ε ε=   follows a multivariate normal distribu-  

tion with mean 0, a common marginal variance 2 1σ = , it has first-order autoregressive (AR-1) and an com- 
pound symmetry (CS) correlation (i.e. exchangeable correlation) structure with different within correlation 
coefficient, and consider 0.8ρ =  and 0.3ρ =  representing a strong and weak within correlation structure.  

The predictors ( ) ( )( )T1 10, ,ij ij ijX X=X   are generated by ( ) ( )( )l l
ij ijX Z= Φ , ( ) ( )( ) ( )1 , , 0,l

ij ij ijZ Z N= ΣZ   ,  

1, , , 1, ,i n j m= =  , where Φ  is the standard normal c.d.f. and ( ) ( )
T1 d dd dr r×Σ = − +I 1 1 . The parameter 

( )0 1r r≤ <  controls the correlation between ( ) ( ),1l
ijZ l d≤ ≤ . 

To illustrate the effect on estimation efficiency, we compare the penalized QIF approach in [4] (PQIF) and an 
Oracle model (ORACLE). here the full model consists of all ten variable, and oracle model only contains the 
first five relevant variables and we know it’s a partial additive model. The oracle model is only available in 
simulation studies where the true information is known. In all simulation, the number of replications is 100 and 
the result are summarized in Table 1 and Table 2. In Table 1, the model selection result for both our procedure  

 
Table 1. The estimation results for our estimator (TFPQIF) and sparse additive estimator (PQIF) and ORACLE esitmator.     

n Correlation Method µ  
1m  2m  3m  4m  5m  

100 CS PQIF 0.32 0.42 0.3 0.29 0.31 0.26 
  TFPQIF 0.3 0.46 0.28 0.25 0.23 0.22 
  ORACLE 0.14 0.14 0.15 0.15 0.13 0.12 
 AR(1) PQIF 0.36 0.39 0.32 0.3 0.29 0.25 
  TFPQIF 0.29 0.39 0.35 0.2 0.25 0.22 
  ORACLE 0.13 0.15 0.22 0.14 0.12 0.1 

250 CS PQIF 0.25 0.29 0.25 0.24 0.19 0.15 
  TFPQIF 0.22 0.31 0.26 0.14 0.16 0.15 
  ORACLE 0.12 0.11 0.19 0.097 0.098 0.09 
 AR(1) PQIF 0.28 0.24 0.31 0.33 0.28 0.19 
  TFPQIF 0.20 0.2 0.27 0.24 0.14 0.15 
  ORACLE 0.1 0.11 0.13 0.21 0.1 0.096 

500 CS PQIF 0.15 0.14 0.25 0.23 0.2 0.17 
  TFPQIF 0.15 0.3 0.26 0.11 0.12 0.1 
  ORACLE 0.09 0.13 0.12 0.07 0.07 0.07 
 AR(1) PQIF 0.18 0.3 0.26 0.13 0.12 0.14 
  TFPQIF 0.16 0.23 0.25 0.09 0.09 0.09 
  ORACLE 0.08 0.13 0.12 0.077 0.081 0.07 
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Table 2. Model selction results for our estimator (TFPQIF) and sparse additive estimator (PQIF) and ORACLE esitmator.    

0λ  1λ  
CS AR(1) 

NCC NNT NLC NLT NCC NNT NLC NLT 
100 PQIF 5.96 2 0 0 5.83 2 0 0 

 TFPQIF 2.64 2 2.58 2.36 2.52 2 2.63 2.46 
 ORACLE 2 2 3 3 2 2 3 3 

250 PQIF 5.63 2 0 0 5.45 2 0 0 
 TFPQIF 2.34 2 2.66 2.65 2.41 2 2.59 2.5 
 ORACLE 2 2 3 3 2 2 3 3 

500 PQIF 5.35 2 0 0 5.2 2 0 0 
 TFPQIF 2.04 2 2.93 2.93 2.1 2 2.89 2.86 
 ORACLE 2 2 3 3 2 2 3 3 

 
with the one penalty QIF when the error are Gaussian, and we also list the oracle model as a benchmark, the 
oracle model is only available in simulation studies where the true information is known in Table 1, in which 
the column labeled “NNC” presents the average number of nonparametric components selected, the column 
“NNT” depicts the average number of nonparametric components selected that are truly nonparametric (truly 
nonzero for one penalty QIF), “NLC” presents the average number of linear components, “NLT” depicts the 
average number of linear components selected that are truly linear. 

In Table 2, we conduct some simulations to evaluate finite sample performance of the proposed method. Let 

( )ˆ km ⋅  be the estimator of a nonparametric function ( )km ⋅  and { } 1

M
s s

u
=

 be the grid points, the performance of  
estimator ( )ˆ jm ⋅  will be assessed by using the square root of average square errors(RASE), we compare the 
performance of above estimators. On the nonparametric coponents, the errors for estimators with a single 
penalty and our procedure are similar, and both are qualitatively close to those of the oracle estimator. However, 
for the parametric components, our estimator is obviously more efficient,leading to about 40% - 50% reduction 
in RASE.  

( ) ( )
1 2

2

1 1

1 ˆ .
M d

k s k s
s k

RASE m u m u
M = =

  = −   
∑∑  

4. Real Data Analysis 
In this subsection, we analyze data from the Multi-Center AIDS Cohort Study. The dataset contains the human 
immunodeficiency virus, HIV, status of 283 homosexual men who were infected with HIV during the follow-up 
period between 1984 and 1991. All individuals were scheduled to have their measurements made during semi- 
annual visits. Here , 1, , , 1, ,ij it i n j m= =   denotes the time length in years between seroconversion and the 
j-th measurement of the i-th individual after the infection. [12] analyzed the dataset using partial linear models. 
The primary interest was to describe the trend of the mean CD4 percentage depletion over time and to evaluate 
the effects of cigarette smoking, pre-HIV infection CD4 percentage, and age at infection on the mean CD4 cell 
percentage after the infection. 

In our analysis, the response variable is the CD4 cell percentage of a subject at distinct time points after HIV 
infection. We take four covariates for this study: 1X , the CD4 cell percentage level before HIV infection; and 

2X , age at HIV infection; 3X  the individual’s smoking status, which takes binary values 1 or 0, according to 
whether a individual is a smoker or nonsmoker; ijT  denote 1, , , 1, ,i n j m= =  , denotes the time length in 
years between seroconversion and the j -th measurement of the i -th individual after the infection. We construct 
the following additive model;  

( )( ) ( )( ) ( ) ( )2 3
1 2 3 01 .ij

ij ij ij ij ijY m X m X m T Xµ β= + + + + +   

the partially linear additive models instead of additive model because of the binaray variable ( )3X , but we not 
select the linear component. using our procedure, we wang to ensure which is linear component and which is 
zero in the non-parametirc function. For implement our procedure, linear transformation be used to the variable 

( ) ( )1 2, ,X X T . The result of our procedure select the 1m  is zero function and select the 2m  is a linear function, 
3m  is a non-parametric. As shown in Figure 1, we see that the mean baseline CD4 percentage of the population  
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Figure 1. The estimator of ( )3m x .                                                 

 
depletes rather quickly at the beginning of HIV infection, but the rate of depletion appears to be slowing down at 
four years after the infection. This result is the same as before [13]. 

5. Concluding Remark 
In summary, we present a two-fold penalty variable selection procedure in this paper, which can select linear 
component and significant covariate and estimate unknown coefficient function simultaneously. The simulation 
study shows that the proposed model selection method is consistent with both variable selection and linear 
components selection. Besides, being theoretically justified, the proposed method is easy to understand and 
straightforward to implement. Further study of the problem is how to use the multi-fold penalty to solve the 
model selection and variable selection in generalized additive partial linear models with longitudinal data. 
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Appendix: Proofs of Theorems  
For convenience and simplicity, let C  denote a positive constant that may be different at each appearance 
throughout this paper. Before we prove our main theorems, we list some regularity conditions that are used in 
this paper. 

Lemma 1. Under the conditions (A1)-(A6), minimizing the no penalty QIF ( )arg min nβ
β β= Q . Then 

2
2 1

0 ,
r

rO nµ µ
−

+
 

− =   
 

  ( ) ( ){ } ( )( )2 2 2 1
1 11

1max .n m r ri
l ij l ij pi jl d

m x m x O n
n

− +
= =≤ ≤

− =∑ ∑   

Proof: According to [14], for each 1, ,l d=  , we can get 
1

d
llm mµ

=
= +∑  satisfying the condition (4). 

There exists a constant 0C >  and a spline function nm∈ G , such that rm m CK −
∞

− ≤ . Using the triangular 

in equality ( ) ( ){ } ( )( ){ } ( )22 0 2
1 1 1 1

1 2 .i in m n m r
l ij l ij l ij l li j i jm x m x x O K

n n
β β −

= = = =
− ≤ − +∑ ∑ ∑ ∑ B 

  Therefore, it is su- 

fficient to show that ( ) ( )( ){ } ( )220 0 1
1 1

1 .in m
l l l l ij l l pi jn

x O n K
n

β β β β −
= =

− = − =∑ ∑B B   According to [8] entail 

that for any 0> . exists sufficiently large 0C > . such that ∞→n  
( ) ( )

( ) ( )
1 20 0inf 1 ,

n

n n
C K n

p
β β

β β
− ≤

  > > − 
  B

Q Q


  

therefore ( )
1 2

0 .pn

Kp O
n

β β
    − =         

B   Furthermore, for each 1, ,l d=  . There exists a constant 0C > . 

such that ( ) ( )
1 2

2 20 0 .l l pn n

KC O
n

β β β β
  − ≤ − =      

B B   

Proof of Theorem 1. Let  

( ) ( ) ( ) ( )1 2
1 1

d d

n n j j
j j

n p m n p mλ λβ β
= =

′′= + +∑ ∑L Q    

be the object function in (2.7), where T

j
j j j jβ β β=

D
D  and T

j
j j j jβ β β=

E
E , as a special case of no 

penalty QIF. Let ( )arg min nβ
β β= Q , and T

j jm β= B 

 , well known result is ( ) ( )T
0 pn

O K nβ β− =B  , we 

want to show that for large n  and any 0ε > , there exist a constant C  large enough such that  

( ) ( )
( ) ( )1 2T 1

0:
inf 1 .n n

C nK
p

β β β
β β

−−− =

  > ≥ − 
  B

L L


                          (A1) 

As a result, this implies that ( )n ⋅L  has a local minimum in the ball ( ){ }T:β β β−B  . Thus,  

( ) ( )T 11pn
O nKβ β −− =B  . Further, the triangular inequality gives ( )( )1 2T 1ˆ .r

pn
m O nK Kβ

−− −− = +B  

To show (A1), For convenience, we assume that jm  is truly nonparametric for 11 j d≤ ≤  is linear for 

1 1 21d j s d d+ ≤ ≤ = +  and zero for 1s j d+ ≤ ≤ .  

( ) ( ) ( ) ( ) 1 1

1

2 2

1

1

ˆ

.

j j

j j

s

n n j n n j j j
j

d

j j
j

n p p

n p p

λ λ

λ λ

β β β β β β

β β

=

=

   − ≥ − + −       

   + −       

∑

∑

D D

E E

L L Q Q 





         (A2) 

Since 0
ˆ

j j n
β β− . Since ( )1 2, 1oλ λ = . We have 

1 1
1

j j
j jp p pλ λβ β    = →        D D

 . If 1 2i s d d≤ = + , 
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similarly, 
2 2

1
j j

j jp p pλ λβ β    = →        E E
 . If 1l d≤ . These facts imply that  

1 11 1 0
j j

d d
j jj jn p n pλ λβ β

= =
   − ≥      ∑ ∑D D
  and 

2 21 1 0
j j

d d
j jj jn p n pλ λβ β

= =
   − ≥      ∑ ∑E E
  with probability 

tending to 1. If ( )1 2, 1oλ λ = , ( )max
j

j jC Dβ λ≥
D

, ( )max
j

j jC Eβ λ≥
E

 , for 1, ,i d=  . Therefore, when n 

is large enough,  

1 1

1 2
1 1

1
0

j j

d

j j j j nj j
n p p C nKλ λβ β λ β β−

=

    − = − →       
∑ ∑D D

   

2 2

1 2
2 2

1
0

j j

d

j j j j nj j
n p p C nKλ λβ β λ β β−

=

    − = − →       
∑ ∑E E

   

By the definition of SCAD penalty function, removing the regularizing terms in (A2)  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }T T1 1 1
2n n j n j n poβ β β β β β β β β β− = − + − − +Q Q Q Q                   (A3) 

with nQ  and nQ  being the gradient vector and hessian matrix nQ , respectively. Following [8], and Lemma 

A1 in supplement, for any β  with ( ) ( ) 1 2T 1

n
C nKβ β

−−− =B  , one has  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
T T T 1 1 1j n j j n j n j n j pn n o O Kβ β β β β β β β−− = − + =Q G C G        

and  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ){ } ( )
T T T 1 1 1j n j j j n j n j n j j pn o O Kβ β β β β β β β β β β β−− − = − − + =Q G C G           

where nG  is the first order derivative of nG . Therefore, by choosing C  large enough, the second term on 
(A3) dominates its first term. therefore (A1) holds when C and n are large enough. This completes the proof of 
Theorem 1.  

Proof of Theorem 2. We only show part (b), as an illustration and part (a) is similar. Suppose for some 
1d j s< ≤ , T ˆ

j jB β  does not represent a linear function. Define ˆ
jβ   to be the same as β̂  except that ˆ

jβ  is 
replaced by its projection onto the subspace { T:j j jBβ β  represents a linear function}, we have  

( ) ( ) ( ) ( ) 1 1

2 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ .

j j

j j

n n j n n j j j
j

j j
j

n p p

n p p

λ λ

λ λ

β β β β β β

β β

    − = − + −    
    

    + −    
    

∑

∑

D D

E E

L L Q Q

 



 

As in the proof of Theorem 1, we have 
1 1

ˆ ˆ 1
j j

j jP p pλ λβ β    − →        D D

  and thus with probability ap- 

proaching 1  

( ) ( ) ( ) ( ) 2
ˆ ˆ ˆ0 .

j
n n j n n j j

j
n pλβ β β β β ≥ − = − +  

 
∑

E
L L Q Q                      (A4) 

( ) ( ) ( )
1 2

TT
0 0 2

ˆ ˆ ˆ ˆ ˆ .
j

j j j j j j j j j p
KO o
n

β β β β β β β λ
  = = − − = =     E

E E  
2 2

ˆ
j j

j jpλ β λ β  = 
 E E

, with 

probability tending to 1. by the definition of SCAD penalty. ( )Tˆ ˆ ˆ ˆ ,j j p j j jO Kβ β β β− = E   

( )2

T T
2

ˆ ˆ ˆ ˆ .j j j j j jnp n Kλ β β λ β β=E E  Therefore, similar to the proof of Theorem 1, by choosing C  large 

enough, the second term on the right had side of (A4) dominates its first term.   
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Proof of Theorem 3. For any regularization parameters ( )1 2,λ λ λ= , we denote the estimator of two fold 
penalty ˆ

λβ , and denote by β̂  the minimizer when the optimal sequence of regularization parameters is 
chosen. There are four separate cases to consider 

CASE 1: j jB λβ  represents a linear component for some 1j d≤ . Similar to the proof of Theorems 1 and 2, 
we have  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }T T1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1 1 .
2n n n n poλ λ λ λ λβ β β β β β β β β β− = − + − − +Q Q Q Q   

Since true jm  not linear and ˆ
jβ  is consistent in model selection, 

ˆ ˆ

K
λβ β−

 is bounded away form zero, 

thus ( ) ( ) ( ) ( )
1 2

log1 1ˆ ˆlog log ,
2n n

n
C K C

n n nλβ β   − > +   
   

Q Q  for any 1 20 ,C C d≤ ≤ , with probability tending 

to 1 and the SIC cannot select such λ . 
CASE 2: ˆ

jλβ  is zero for some 1 j s≤ ≤ . The proof is very similar with CASE 1 and therefore omitted. 
CASE 3: ˆ

j jβB  represents a nonlinear component for some 1d j s< ≤ . Here when considering CASE 3, we 
implicity exclude all previous cases that no underfitting cases. β
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CASE 4: ˆ
jλβ  is nonzero for j s≥ . The case is similar to case 3. Thus the proof is omitted. 
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