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ABSTRACT 

Bayesian quantile regression has drawn more attention in widespread applications recently. Yu and Moyeed (2001) 
proposed an asymmetric Laplace distribution to provide likelihood based mechanism for Bayesian inference of quantile 
regression models. In this work, the primary objective is to evaluate the performance of Bayesian quantile regression 
compared with simple regression and quantile regression through simulation and with application to a crime dataset 
from 50 USA states for assessing the effect of potential risk factors on the violent crime rate. This paper also explores 
improper priors, and conducts sensitivity analysis on the parameter estimates. The data analysis reveals that the percent 
of population that are single parents always has a significant positive influence on violent crimes occurrence, and 
Bayesian quantile regression provides more comprehensive statistical description of this association. 
 
Keywords: Bayesian Quantile Regression; Asymmetric Laplace Distribution; Improper Priors; Sensitivity; Ordinary 

Least Square 

1. Introduction 

Crime has been a major and long-standing issue in the 
United States. Since 1964, the US crime rate has in- 
creased by as high as 350% [1]. In most cases, the crime 
rate is measured by the number of offenses being re- 
ported per 100,000 people. The overall crime rate is dis- 
played in fifty states referring to the violent crime and the 
property crime in combination. Crime rates vary greatly 
across the states. For instance, New England always has 
the lowest crime rate for both violent and property cri- 
mes, while Dallas is in the opposite direction [2]. Also, 
there exist a lot of risk factors having great impact on 
crime rates in the Unites States. Here, we consider one 
historical crime data appeared in Statistical Methods for 
Social Sciences by Agresti and Finlay (1997) to identity 
risk factors on violent crime rate, where the most interest 
covariates are the percent of population that are single 
parents and the percent of population living under pov- 
erty line [3]. 

In previous literatures, a simple linear regression was 
applied for analysis, but this classic approach does not 
perform satisfactorily when outliers exist or the condi- 
tional distribution of the outcome given the covariates is 
not symmetric [4]. In this work, to achieve our objective 
of interest, we consider Bayesian quantile regression 
analysis. As well is known, quantile regression can pro- 
vide the complete relationship between the outcome and  

the covariates [5]. Beyond this, Bayesian approach pos- 
sesses various advantages: 1) Markov Chain Monte Carlo 
(MCMC) method can be easily used to obtain the poste- 
rior distributions even in complex situations; 2) Bayesian 
inference provide the entire posterior distribution of the 
parameters of interest; 3) Bayesian inference allows for 
parameter uncertainty to be taken into account when 
making prediction [6]. Therefore, we propose the combi- 
nation of quantile regression and Bayesian method for com- 
parison by simultaneously taking those advantages into ac- 
count. Here, we refer to the paper by Yu and Moyeed 
(2001), which studied Bayesian quantile regression by 
employing the idea of a likelihood function based on an 
asymmetric Laplace distribution which can be easily im- 
plemented in available software [7]. In Section 2, I define 
the models of interest, and describe key assumptions and 
theoretical results. In Section 3, simulation results are 
provided to assess the performance of our proposal under 
various scenarios considering different prior specifica- 
tions. In Section 4, Bayesian quantile method is illustrat- 
ed by a historical crime data in comparison with the other 
simpler models. We provide discussion in Section 5. 

2. Methodology 

In this section, we will briefly introduce three models, sim- 
ple linear regression, quantile regression and Bayesian 
quantile regression. Here, we denote Y as the dependent 
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variable, X is the explanatory variable matrix, and β 
represents the vector of the parameters of interest. 

2.1. Simple Linear Regression 

A linear regression is the simplest way to fit continuous 
outcomes, which can be written as 

 , 0E   TY X  . 

The model assumes all the observations are indepen- 
dent from each other, and the design matrix X must have 
full rank without measurement error. The estimates are 
often fitted using least-square approach, where the sim- 
plest way is ordinary least square (OLS). Mostly, the dis- 
tribution of the residual   is assumed Gaussian or sym- 
metric; however, this model does not perform well for 
conditional skewed distribution, and is sensitive to out- 
liers, so sometime it is not sufficient to predict the rela- 
tionship between Y and X [4]. 

2.2. Quantile Regression 

Quantile regression focuses on the conditional quantiles 
of Y given X rather than the conditional mean of Y given 
X, which can obtain a more comprehensive and robust 
analysis [5]. The linear quantile regression can be simply 
written as follows: 

   
    y X p

 p
thp

  0p I  

 0,1p

,

inf :

T
Y

Y

Q p X X p

Q p X y P Y



 
 

where  is a vector of coefficients depending on p. 
The aim is to estimate the  conditional quantile of Y 
given X to explore the complete relationship between Y 
and X, for example, median regression model with p = 
0.5. The parameter estimates are achieved by minimizing 
the loss function defined as bellows: 

   
1

arg min ,
n

T
p p i i pR

i

Y X


   




   

Quantile regression implements a general technique of 
loss-function based methods for estimating families of 
conditional quantile function, and performs more robust 
in response to large outliers. Also, for , under 
some regularity conditions, ̂  is asymptotically nor- 
mal. 

2.3. Bayesian Quantile Regression 

Bayesian inference is quite standard and popularly used 
these days. This advantageous approach can lead to exact 
inference as opposed to the asymptotic inference from 
the traditional methods as well as taking parameter un- 
certainty into account [6]. For Bayesian quantile regres- 
sion, we consider the same quantile regression model as  

above: 

   
    

,

inf : .

T
Y

Y

Q p X X p

Q p X y P Y y X p



  

 , , , n

 

Given the observations, 1 2y y y y  , the pos- 
terior distribution of  p  is given by 

     π πy L y    

 π  p  and   is prior distribution of where 
 L y   is the likelihood function. Yu and Moyeed 

(2001) has developed the Bayesian approach by consid- 
ering this asymmetric Laplace likelihood function [7]. 
Another alternative is proposed by Kottas and Gelfand 
(2001) by employing a mixture model for errors and the 
likelihood based on a parametric family of skewed dis- 
tributions [8]. However, here we only consider the for- 
mer approach by introducing asymmetric Laplace distri- 
bution firstly. A random variableU is said to follow the 
asymmetric Laplace distribution if its probability density 
is given by: 

     1 exp ,0 1p pf p p p       . 

 pWe can notice several properties: 1)    is de-
fined as the same as the loss function; 2) It is a standard 
symmetric Laplace function; however, it is asymmetric 
except p = 0.5; 3) the expected value is  

      1 2 1E U p p p  

 

 and the variance is  

    22 2Var 1 2 2 1U p p p p   

 

; 4) If the loca- 

tion and scale parameters µ and σ are incorporated, the 
density function will be: 

 1
, , expp p

p p u
f u

  
 
       

  
 

Therefore, based on asymmetric Laplace distribution, 
the likelihood function  L y can be written as: 

     
1

1 , .exp 0 1
n

T
p i

n

i
n

i

L Y X py p p  

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



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The advantages are it is easily shown that the minimi- 
zation of the loss function is exactly equivalent to the 
maximization of the likelihood function  L y  , and 
no extra parameters besides regression parameter   are 
included. The fact is that there are no standard conjugate 
prior distributions available for the quantile regression 
formulation. Without any realistic information, improper 
independent uniform prior distributions for i  s could be 
a reasonable choice, but we can also try other priors to 
conduct sensitivity analysis. Monte Carlo Markov Chain 
(MCMC) method can extract the posterior distribution of 
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parameters of interest given any prior distribution and 
then do statistical inference. 

3. Simulation Studies 

To evaluate the performance of Bayesian qunatile re- 
gression, we conduct extensive simulation studies with 
the underlying model as below: 

 , , 100n 

 0,1i N 
 ~ Gamma 0,1

,  1,2i iY i    . 

We consider two scenarios, the first one assuming µ = 
5.0 and , and the second one with µ = 5.0 
and i . Quantile regression is, p = 0.05, 
0.25, 0.75, 0.95. Also, two simple prior distributions are 
specified for both scenarios:  and 



 Unif 0,1  2N 0,10 . 
The Metropolis-Hastings algorithm can be applied to 
generate simulated realizations from the posterior distri- 
butions, and the procedures are as follows: 
 Set initial values  0 . 
 For 1,2, ,T , repeat the following steps t

 1t  


1) Set ; 
2) Generate a new candidate parameter values    

from a proposal distribution  q   ; 
3) Calculate 

   
   

π
min 1,

π


y q

y q

  

  

  
   

 t

 ; 

4) Update     t with probability α, or    
where Random walk metropolis is a special case of the 
Metropolis-Hastings algorithm assuming symmetric pro-  

posal of    q q      . Then, the acceptance  

probability can be simplified as: 
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Hence,  log A 

 T T
p i iY X

, where A given uniform 
prior distribution is written as:
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Similarly, given norm prior distribution, A is shown 
as: 
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A usual proposal of this type is    ,q N    

 seq 0.5,10,0.1 

, 
where the covariance φ controls the convergence speed 
of the algorithm. Small values of φ results in high accep- 
tance rates and slow convergence, and high values of φ 
results in low acceptance rates and a large number of 

iterations with the same values. The optimal acceptance 
rate according to Roberts and gelman (1997) is around 
25% [9]. In order to specify a well value of φ, several 
runs of the above algorithm on  
needs to be checked until an acceptance rate close to 0.25 
is achieved. Here, 6000 realizations are generated from 
MCMC method, and based on the trace plot of β, the first 
1000 runs are burned in, and thus 5000 sample values are 
collected from the posterior of β. 

From Table 1, we can see the statistical inference of 
the parameter estimate for p = 0.05, 0.25, 0.75, 0.975 
under different priors for two scenario set-ups. Also, for 
the first scenario, the trace plots and histograms of the 
posterior when the prior is uniform are shown in Figure 
1, while those under normal prior can be seen from Fig- 
ure 2. Partial trace plots and histograms of the posterior 
(i.e., p = 0.05, 0.95) for the second one under uniform 
and normal priors are seen from Figure 3. 

We can find out that the mean and standard deviation 
of the posterior for uniform prior is similar to those for 
normal prior, and also do not deviate too much from the 
true value, which means that the improper uniform prior 
works well when no information is known about the pa- 
rameters beforehand. In addition, the results perform 
satisfactory for linear models with normal errors as well 
as other error distribution, such as gamma distribution. 
Furthermore, the use of an asymmetric Laplace distribu- 
tion to model the quantile regression parameters are at- 
tainable. 

4. Data Application 

4.1. Data Description 

The crime data is collected from 50 US states [3]. All 
 
Table 1. Posterior means, standard deviation (SD) of β(p). 

 Uniform prior Norm prior  

p Mean(p) SD(p) Mean(p) SD(p) True(p)

First Scenario 

0.05 3.214 0.370 3.194 0.384 3.355 

0.25 4.349 0.194 4.354 0.191 4.326 

0.75 5.465 0.147 5.465 0.147 5.674 

0.95 6.350 0.312 6.342 0.309 6.645 

Second Scenario 

0.05 4.990 0.224 4.994 0.226 5.051 

0.25 5.378 0.133 5.377 0.135 5.287 

0.75 6.401 0.216 6.402 0.216 6.386 

0.95 8.654 0.504 8.629 0.498 7.996 
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Figure 1. Trace plots and histograms of β for the first scenario with uniform prior distribution. 
 

 

Figure 2. Trace plots and histograms of β for the first scenario with normal prior distribution. 
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Figure 3. Trace plots and histograms of β for the second scenario with uniform (upper panel) and normal (below panel) prior 
distributions. 
 
the variables included in the data are listed in Table 2 
with mean and standard deviation. To compare with pre- 
vious literatures and also focus on our covariates of inter- 
est, we concentrate on two variables, the percent of popu- 
lation that are single parents (single) and that are living 
under poverty line (poverty) to investigate their potential 
effects on violent crime rate (crime). 

4.2. Data Analysis and Results 

We first check the histogram of the crime outcome 
shown in Figure 4, and find out that the distribution of 
crime is somewhat skewed. In addition, based on the 
residuals from simple linear regression in Figure 5, we 
can see that outliers exist, such as observations 9, 25, and 
46 corresponding to state Florida, Mississippi and Ver- 
mont. However, the outliers are not due to a data entry 
error, so it is not feasible to simply ignore these obser- 
vations or exclude them from analysis because this may 
lead to substantially changes on the estimate of coeffi- 
cients, and thus simple linear regression may not be fea- 
sible. In the following, I will discuss Bayesian quantile 
regression as well as simple linear regression, quantile  

Table 2. Variable description for crime data (N = 50). 

Variable Label Mean(SD)

sid state id  

state state name  

crime violent crimes per 100,000 566.7(441.1)

murder murders per 1,000,000 7.3(10.7)

pctmetro 
the pct of the population living in 
metropolitan areas 

66.7(21.7)

pctwhite 
pcths 

the percent of the population that is white 
the percent of population with a high  
school education or above 

85.2(11.1)
76.3(5.6)

poverty 
the percent of population living under  
poverty line 

14.0(4.3)

single 
the percent of population that are single 
parents 

11.1(1.5)

 
regression for comparison. 

Based on the linear model 0 1crime poverty   
single

 

2   we get that poverty is not statistically sig- 
nificant with p-value 0.37, while single has significant 
effect on crime with p-value less than 0.0001. After drop- 
ping off poverty, the final linear regression model is  
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Figure 4. The histogram for the response variable crime. 
 

 
 

 

Figure 5. The residual plots based on linear regression 
lm(crime poverty + single). 
 
refitted, and the variable single is still significant with 
p-value less than 0.0001, which means that the percent of 
single parents has positive effect on crime. For quantile 
regression, the final fitted model for p = 0.05, 0.25, 0.75, 
0.95. 

   crime 0singleQ p p    1 singlep  . 

From Table 3, we can see that the coefficient esti- 
mates for single given p are quite different with that 
based on linear regression, which means quantile regres- 
sion is more reasonable. At the lower quantile, i.e., p = 
0.05, violent crime rate increases as the percent of single 
parents increase, and at the higher qunatile, i.e., p = 0.25,  

Table 3. Results of estimation for three regression models. 

Regression Models  intercept β0 single β1 

Simple Linear  −878.86 130.11 

p = 0.05 −530.92 65.64 

p = 0.25 −1038.00 133.33 

p = 0.50 −995.74 138.10 

p = 0.75 −1308.40 181.60 

Quantile 

p = 0.95 −865.96 155.52 

 Mean(SD) Mean(SD) 

p = 0.05 −523.90 (11.40) 64.90 (0.98)

p = 0.25 −1034.00 (12.32) 132.70 (1.24)

p = 0.50 −1017.00 (15.55) 140.10 (1.45)

p = 0.75 −1314.00 (11.70) 182.0 (1.12)

Bayesian Quantile

p = 0.95 −854.90 (17.56) 154.80 (1.49)

 
0.50, 0.75, this positive effect of single parents on violent 
crimes will be increased as much as 181.60, while when 
given p = 0.95, this positive relationship between single 
and crime tends to decrease. The fitted curves and esti- 
mates of intercept and single as well 95% confidence 
bands are shown in Figure 6. 

In addition, we also consider Bayesian quantile ap- 
proach using MCMC method, and also try uniform and 
normal priors (Due to the similar results, we only show 
the plots and results under uniform priors). The trace 
plots and histograms for intercept and single given p = 
0.05, 0.25, 0.50, 0.75 can be seen in Figure 7 indicating 
the convergence has been attained. The fitting results 
from Table 3 shows that the mean of the posteriors are 
similar to those based on quantile regression indicating 
our approach is practical and parameter uncertainty has 
been incorporated. If extra information is known about 
the parameters, Bayesian quantile regression could pro- 
vide more efficient estimates of coefficients. 

5. Discussion 

This project explored the performance of Bayesian quan- 
tile regression, showing that Bayesian inference can be 
undertaken in the context of quantile regression models. 
Asymmetric Laplace distribution can be applied to form 
the likelihood function, making the method robust and 
satisfactory. Uniform and norm prior distribution are 
considered to investigate the sensitivity on the parameter 
estimate, and the results via simulations and real example 
indicate that both lead to proper posterior distribution 
and perform robust in parameters fitting. The posterior 
distribution of parameters of interested can be easily ob- 
tained by MCMC methods in R or WINBUGS software, 
thus making statistical inference available. 

The limitation of this project is the small crime data 

Copyright © 2012 SciRes.                                                                                  OJS 



M. WANG, L. J. ZHANG 

Copyright © 2012 SciRes.                                                                                  OJS 

532 

 

 

Figure 6. The fitted quantile regression curves. 
 

 

Figure 7. Trace plots and histograms of intercept (left panel) and single (right panel) given p = 0.05, 0.25, 0.50, 0.75 and uni- 
form prior distribution. 
 
with only a few outliers. For such situation, robust re- 
gression may also be another alternative, a compromise 
between dropping the moderate outliers and seriously 

violating the assumptions of OLS regression. This ap- 
proach can be done by weighted least squares giving the 
smaller weights to the larger residuals. Therefore, in the 
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further, this method could also be among the comparison 
choices. Another limitation is that not many risk factors 
are considered in this project, but this can be easily ex- 
tended in Bayesian quantile regression because of the 
relative ease of MCMC method even in complex situa- 
tions. The last one but not least, the superiority of Baye- 
sian quantile regression is not obvious compared with 
quantile regression in our case study, which may be due 
to the non-informative priors. But for other cases, we 
may diagnosis the goodness-of-fit of this approach if 
much more information is known about the parameters. 
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