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ABSTRACT 

In this paper, we present an application of Genetic Programming (GP) to Vietnamese CPI inflation one-step prediction 
problem. This is a new approach in building a good forecasting model, and then applying inflation forecasts in Vietnam 
in current stage. The study introduces the within-sample and the out-of-samples one-step-ahead forecast errors which 
have positive correlation and approximate to a linear function with positive slope in prediction models by GP. We also 
build Vector Autoregression (VAR) model to forecast CPI in quaterly data and compare with the models created by GP. 
The experimental results show that the Genetic Programming can produce the prediction models having better accuracy 
than Vector Autoregression models. We have no relavant variables (m2, ex) of monthly data in the VAR model, so no 
prediction results exist to compare with models created by GP and we just forecast CPI basing on models of GP with 
previous data of CPI. 
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1. Introduction 

Inflation has great importance to saving decisions, in- 
vestment, interest rate, production and consumption. De- 
cisions basing on impractical inflation predictions result 
in uneffective resource allocation and weaker macroeco- 
nomic activities. Meanwhile, better predictions see better 
forecast solutions given by economic agents and improve 
the entire economic performance.  

Different models depending on the theory of different 
price fixation are often used for describing inflation evo- 
lutions. These models emphasize the role of different 
variables in inflation. The different econometric models 
have different modeling specification, and information 
quality. Despite of huge explained variables in models 
basing on theory to improve the level of conformity, they 
uncertainly ameliorate the ability of prediction models.  

One can see many different models in different coun- 
tries, particularly: the model of Phillips curve with added 
expecting elements, traditionally monetary model, price 
equations basing on monetary demand viewpoint. 

Apart from  theoretic inflation ones above, it can be 
seen the variable time series models which are used for 
inflation data in the past so as to forecast further inflation 
and give no more explaination to analyze. Recently, the 
multivariate time series model and its variations have 

appeared in nonlinear time string, especially in the 
smooth transition regression. Nevertheless, with the con- 
tent of the paper, we just present models relevant to this 
study without deeply analyzing their theoretic base.  

2. Methodology 

We center on considering the VAR model and applica- 
tions of Genetic Programming to forecast the inflation 
index CPI. Initially, estimate and accreditation to be 
good models, and then predictions will be seen based on 
variables taken from models.  

2.1. Vector Autoregression Model 

The vector autoregression (VAR) model is one of the 
most successful, flexible, and easy way to use models for 
the analysis of multivariate time series [1]. 

Before 1980s, equation models were simultaneously 
used for analyzing and forecasting macro-economic vari- 
ables as well as the study of the economic cycle. At that 
time, econometric were dedicated to issue of the format 
of the model-relating to properties of endogenous vari- 
ables in the model.  

The formatting in simultaneous equation models is 
primarily through assumptions of the interactions be- 
tween variables. The assumption is usually based on eco- 
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nomic theory or visual knowledge of model, determin- 
ing the presence or absence of the variables in each equa- 
tion.  

Sim [2] has changed the concerns of contemporary 
economist community. He said that most of the economic 
variables, especially macroeconomic variables are en- 
dogenous. On the other hands, they are interactive. There- 
fore, he proposed a multivariable model with endogenous 
variables having the same role. Nowadays, the VAR 
model has become a powerful tool and was used exten-
sively (especially in macro-economic problems), predic-
tions (particularly the medium-term and long-term ones), 
and the analysis of shock transmission mechanism (con-
sidering the impact of a shock on a dependent variable on 
other dependent variables in the system). 

When presenting the VAR model, one can introduce it 
structurally and then contractionally. Nonetheless, for the 
prediction, we can use the information from the resulting 
estimates of the shortened model, so it is better to solely 
present the contracted model serving to experimental 
analysis without the detail structure model to avoid un- 
necessary complexities. 

A basic VAR contraction forms: 

1 1 0t t p t p ty A y A y B x B        q t q t tx CD u  

 , , Kty y y 
 , , Mtx x x 

D

 

where 1t t  is a K-dimension endogenous 
variable observed, 1t t  is a M-dimension 
exogenous variable observed, t  concludes the ob- 
served deterministic variables such as the constant, linear 
trend, the fake crop as well as the other user-defined 
white noise,  is the process of K-dimensional 0 ma- 
trix, and  plus determines socks expecta- 
tion covariance. 




tu
 t t uE u u  

, ,j jA B C

0, ,p p

 matrixes are the appropriate 
number of dimensions on themselves. 

Although our purpose just forecasts, we also men- 
tioned somewhat another important application of VAR 
model—the analysis of the shock transmission mecha- 
nism, reaction function and variance disintergration. How- 
ever, calculating the reaction functions and variance dis-
intergrations need parametric estimates in structural VAR 
models, we have unnecessary deeply interest in these 
problems but only conduct experimental analysis.  

However, as mentioned in the introduction, another 
application of the VAR model is the analysis of shock 
transmission mechanism being done by reaction function 
and variance disintergration. We should not delve into 
analyzing the structural VAR model although calculating 
the reaction functions and variance disintergrations need 
parametric estimates in the model. 

We use the VAR model for Vietnam’s inflation fore- 
casts because of its effective predictions, so general 
building and estimating VAR models will be introduced. 
Sample is the first concern before estimating the model. 
A large sample gives us vacant orders to estimate, and 

better estimate accuracy. However, with time series, the 
large sample (overlong string) raises issues about the 
stability of estimate coefficients in the model. Even in 
the countries with political and economic stability, policy 
changes in internal economy, and external action vary the 
relation of economic variables. Hence, monthly data is 
the best choice because of its sufficient free orders and 
stablility in the system. Usually, no monthly data exist to 
a macro variable, and then industrial production values 
used.  

The parameters in VAR model are estimated following 
steps: 

1) Testing the stationary of data series. If the data se- 
ries non-stationary, we will check integrated community 
relations. If the relation occurs, VECM switched.  

2) Lag Length Selection: The lag length for the VAR(p) 
model maybe determined using model selection criteria. 
The general approach is to fit VAR(p) models with orders 

max 

    

 and choose the value of p which mini- 
mizes some model selection criteria. The three most 
common information criteria are the Akaike information 
criterion (AIC), Hannan-Quinn criterion (HQC), Schwarz 
information criterion (SIC), etc. 

Latency optimizations are chosen by minimizing the 
following standard information: 
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u  nu  is estimated by 

1 t tt
T u


,  is the 

number of parameters in every equation. Maybe, differ- 
ent standards are shown by different models. Hence, 
models with the most effective forecast are to be contin- 
ued. 

3) Diagnosing and simplifying the model.  
 Checking the stability of the model statistically. If 

roots of the model are greater than or equal to 1, the 
model is nonstationary. 

 Residual test: testing for autocorrelation of residual 
and testing for heteroskedasticity.  

 Simplifying the model: Estimate results of the model 
(after being well-tested) provide statistical informa- 
tion about the role of lagged variables in the equation. 
Therefore, we will use these informations to verify if 
some lagged variables are statistically significant or 
not, so we should or should not remove any lagged 
variables of model. 

 Checking the stability of parameters in the model. 
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 Analyzing and forecasting after having an effective 
model. 

change between parents. Its operators include the follow- 
ing steps: 
 Selecting randomly in each parent one node.  

2.2. Genetic Programming  Swapping their positions. 
The crossover operator is shown in Figure 1. 
Mutation: Mutation is the process of variation of a 

chromosome set created. The process includes the fol- 
lowing steps: 

Genetic Programming (GP) is an automatic learning 
method thought from biological evolution with the target 
of establishing a computer program to meet the learners’ 
expectation, so the GP is one of machine learning tech- 
niques using evolutionary algorithms to optimize com- 
puter programs following the compatibility of a program 
to calculate. The GP had tested since the 1980s, but until 
1992, with the born of the book “Genetic Programming: 
On the Programming of Computers by Means of Natural 
Selection” by John Koza [3], it was visibly shaped. How- 
ever, in the 1990s, the GP just solved simple problems. 
Today, together with the development of the hardware as 
well as the theory in the first half of 2000, the GP has 
grown rapidly. 

 Choosing a node on the parent.  
 Canceling the seedling on the node chosen. 
 Birthing accidentally a new seedling on above posi- 

tion. 

2.2.1. Primary Handling Steps for the GP 
Existing five significant steps for primary handling the 
GP that a programmer need to establish: 

1) Setting leaf nodes (such as independent variables, 
nonparametric functions, aleatory constants) for each 
branch of the evolution programming. Chromosome: Chromosome (a term borrowed from 

biological concepts), as in biology, determine the good 
level of an individual. The GP evolves a computer pro- 
gram representing under tree-like structure. The tree is 
easily evaluated by a recursive procedure. Each node on 
the tree is a calculating function, and each leaf stands for 
a class math, using for simple evolutionary and estimable 
mathematical expressions. As usual, the PG is an expres- 
sion of the tree-like procedure. 

2) Collecting evolutional functions for each branch of 
evolution programming. 

3) Pointing out a good fitness (measuring the compa- 
tibility of each individual in a population). 

4) Determing parently the parameters controlling opera- 
tion (individual volume, chromosome amount, variation 
probability ···).  

5) Defining the criterion for finishing or the method 
for determining the result of the running process. Operators in the GP: Crossover and Mutation are 

two main operators used in the GP. These are also two 
terms borrowed biology, and two main factors affecting 
to evolution process. 

The diagram above (Figure 2) shows that if a GP is 
considered a “black box” with the input hold the primary 
handling steps, after going through the GP, the result 
received is a computer program (function to forecast).  Crossover: Shows the process of chromosome ex-  

 

 

Figure 1. The crossover operator. 
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Figure 2. Primary handling steps for the GP. 
 
2.2.2. Steps for Running the GP 
A typical GP starts running with an accidental program 
made up by possible elements. Then, the sequential GP 
changes the population through many generations by 
using the operator in the GP. The selection process 
equates to count each individual property. An individual 
chosen to join in gene problems or canceled depends on 
its property (the way to value property given in the 3rd 
preparing step). The loop transformation of populations 
is the main content and is repeated many times in a 
program of GP. The sequence with the changeable po- 
pulation is the main sequential content in the GP. 

Steps for running the GP is shown in Figure 3 and 
includes the following steps: 

1) Initializing incidentally a population (zero gene- 
ration) with individuals created by functions, and leaf 
nodes. 

2) Repeating (generations) follow postauxiliary until 
the condition satisfied. 

3) Operating individuals to determine their property. 
4) Choosing 1 or 2 individuals from the population 

with probability depending on their property to parti- 
cipate in the Gene problems in step 3).  

5) Creating new individuals to the population by 
applying the post gene problems with specified proba- 
bility. 

6) Reproducing, and copying the selection into new 
populations. 

7) Crossover: creating subindividual by combining se- 
quentially portions of them. 

8) Mutation: creating subindividual by replacing a new 
portion of the individual into its old one. 

9) Structural changes: Being done by changing the 
structure of the individual selected. After satisfying the 
condition of last criterion the operation of the best in- 
dividual means that the result of running process is ex- 
posed, and we receive the solution for problems basing 
on an effective operation of the individual. 

2.2.3. Application of Genetic Programming (GP) to  
Prediction Problem 

This section presents the method of applying GP for pre- 
diction/forecasting problems. The detail description can 
be found in a number of previous publication [4-6]. The 

task of time series prediction is to estimate the value of 
the series in the future based on its values in the past. 
There are two models of time series prediction: one-step 
prediction and multi-step prediction. In one-step predic- 
tion, the task is to express the value of  y t

n
 as a func- 

tion of  previous values of the time series,   1 ,y t   
 , y t n  and other attributes. That is to find the func- 

tion F  so at:   th
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   1 , ,y t y t nwhere  
   1 11 , ,
 are the values of the time 

series in the past and 1x t x t p 
1

 are the 
values of x  attributes in the past and 

  1 , ,k k kx t x t p   are the values of kx  attributes 
in the past. This equation is based on an assumption that 
the value of the time series y depends on its previous 
values and also the values of some other attributes in the 
past. Fore xample, for CPI inflation prediction, the value 
of CPI in the future may depend on its previous values 
and thevalues of some other factors like total domestic 
product (GDP), monetary supply (M2), and soon. The 
purpose of multi-step prediction is to obtain predictions 
of several steps ahead into the future,    ,  1 ,y t y t   
 2 ,y t  

1t
 starting from the information at current 

time slice  . In this paper, we only focus on one-step 
prediction/forecasting. 

3. Empirical Results 

3.1. Description of Data 

The data used in the model was provided by the General 
Statistics Office (GSO). We took information from two 
following data set to forecast. 

Quarterly data: Over the period of 2nd quarter of 1996 
to 4th quarter of 2011, monthly data: from January 1995 
to February 2012. The data by 4th quarter of 2010 or De- 
cember 2010 was selected to establish the model.  

For quarterly data, real data in whole 4 quarters of 
2010 was chosen to test and compare models. But monthly, 
only real data in 2011, and January and February 2012 
was used for testing the model. New data updated in 
April and May 2012 has met the demand of reference for  
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Figure 3. Steps for running the GP. 
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Table 1. 

3.2. Estimating Inflation Forecast Models 

3.2.1. The VAR Model for Inflation Predictions 

3.2.1.1. Modeling Experimental Estimates 
From steps for raising and estimating the model, we re- 
ceive the VAR model with just 3 variables such as gcpi, 
gex and gm2 through all tests. The last model audited as: 
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Table 1. The name of variables in used model. 

Variable name Signs Growth

Total domestic product with the price in 1994 gdp ggdp 

Consumer price index compared to the 
previous month 

cpi gcpi 

The US dollar price index compared to 
previous month 

Ex Gex 

Commodity import turnover im gim 

Monetary supply M2 Gm2 

 
The model met the demand of stability, autocorrelation, 
changeable error variance tests. In fact,  
 Modeling stability checking. 

After estimating the VAR model, we need to test its 
stability. The test determines whether roots of character- 
istic polynomial belong to unit circle or not. All roots in 
Table 2 are less than 1 in module. Therefore, the VAR is 
acceptable thanks to stable equation.  

Table 2: Checking the stability of the model through 
roots of typical polynomials by endogenous variables: 
gcpi4, gex4, gm2. 
 Test for the autocorrelations of residuals. 
Results of Portmanteau Tests basing on Q test (Table 3) 
showed that with lagged steps, p in Q test is greater than 
5%. This means hypothesis 0H  not to be canceled (no 
residual autocorrelations). 
 Testing for Heteroskedasticity.  

The residual Heteroskedasticity tests are carried by 
general tests about heteroskedasticity of White. The re- 
sult of White test showed that no heteroskedasticity re- 
mains. The result is introduced in Table 4. 
 Impulse Response Functions. 

With the model estimated, we can analyze the shock 
transmission mechanism through response functions. To 
recieve the response function, some constraints are ap- 
plied for the equation. Constraints chosen are Cholesky 
Disintegrate ones. The Cholesky used serially: gex, gcpi. 
Choosing the order depends on inflation changes without 
effects on exchange rate. Analyzing performance is as in 
Figure 4. 

The first two figures see inflation changes struggled by 
the shock itself, which is descending and being vanished 
for a 5 quarter. Monetary supply and exchange rate shock 
influences seems to impact insensibly on Vietnam’s in- 
flation. 

3.2.1.2. Prediction Results 
1) Inflation predictions for 2011 
For inflation predictions in 2011, we use the models 

(1)-(3) to estimate and data by 2010 to apply the model 
and make forecasting procedures for 2011. Acquired re- 
sults are given in the following Table 5. 

Table 2. Unit root test. 

Root Modulus 

−0.316094 − 0.767403i 0.829954 

−0.316094 + 0.767403i 0.829954 

0.010726 − 0.758628i 0.758704 

0.010726 + 0.758628i 0.758704 

−0.712593 − 0.062363i 0.715317 

−0.712593 + 0.062363i 0.715317 

0.276312 − 0.618574i 0.677482 

0.276312 + 0.618574i 0.677482 

−0.461363 0.461363 

No root lies outside the unit circle. 

VAR satisfies the stability condition. 

 
Table 3. Tests for autocorrelations of residuals. 

VAR Residual Portmanteau Tests for Autocorrelations 

Null Hypothesis: no residual autocorrelations up to lag h 

Lags Q-Stat Prob. Adj Q-Stat Prob. df 

1 3.318091 NA* 3.374330 NA* NA* 

2 5.494490 NA* 5.625777 NA* NA* 

3 7.178825 NA* 7.398761 NA* NA* 

4 13.37463 0.1464 14.03713 0.1210 9 

5 25.29735 0.1169 27.04373 0.0782 18 

6 27.95866 0.4131 30.00074 0.3141 27 

7 36.30709 0.4543 39.45180 0.3183 36 

8 39.24429 0.7135 42.84087 0.5638 45 

9 42.83282 0.8630 47.06266 0.7368 54 

10 47.15679 0.9319 52.25144 0.8309 63 

11 58.41922 0.8760 66.04216 0.6754 72 

12 65.36161 0.8970 74.72015 0.6751 81 

*The test is valid only for lags larger than the VAR lag order df is degrees of 
freedom for (approximate) chi-square distribution. 

 
Table 4. Results of white test. 

VAR Residual Heteroskedasticity Tests: Includes Cross Terms 

Joint test:  

Chi-sq df Prob. 

322.3132 324 0.5160 

S   ource: Estimates of author. 
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Figure 4. Response function-shock transmission mechanism. 
 

The Table 2 sees the increase of inflation gcpi, ex- 
change rate and monetary demand, but it is hard to com- 
pare with real inflation to value its property. In doing so, 
we do a counter-process of considering the inflation in- 
crease in comparison with real inflation. The result given 
in Table 6. 

See the table above, it’s obvious that square roots of 
average square prediction errors is 1.38. The grestest 
quarterly variance is 3%, pointing out that the acquired 
model is quite effective. 

2) Inflation predictions for 2012 
For inflation predictions in 2012, we use the model 

(1)-(3) to estimate and data by 2011 to apply the model 
and make forecasting procedures for 2012. Acquired 
results are given in Table 7. 

3.2.2. Applications of the GP for Inflation Predictions 

3.2.2.1. GP Parameters Settings 
To tackle a problem with GP, several factors need to be 
clarified beforehand. These factors often depend on the 
problem and the experience of the system user (practi- 
tioner). The first and important factor is the fitness func- 

tion. Traditionally, for symbolic regression problems, the 
fitness function is the sum of the absolute (or some times 
the square) error. Formally, the (minimising) fitness 
function of an individual is defined as:  

1

Fitness =  
n

i i
i

y f




y

 

where N is the number of data samples (fitness cases), 

i  is the value of the CPI in the data sample, and if  is 
the function value of the individual at the  point in 
the sample set (

thi
f  is the fitted value of ). i i

To assess the consistency of a model created by the 
GP, we put additional quantities:  

y

1

Test Fitness = 
N

i i
i n

y f
 



,  1, ,y i n N

 

where i   
, 1, ,y i n N  

, 1, ,y i n N

 is real value of CPI in the test 
data sample ( for monthly data i  is real 
value of CPI from 2011M1 to 2012M2, for quaterly data 

i   
f y

 is real value of CPI from 2011Q1 to 
2011Q4), and i  is the predicted value of i . Some 
evolutionary parameters are presented in Table 8. 
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Table 5. Prediction results of gcpi from model for 2011. 

year gm2 lowerCI upperCI ± 

2011Q1 −0.0154 −0.0479 0.017 0.0324 

2011Q2 0.0063 −0.028 0.0406 0.0343 

2011Q3 0.0063 −0.0281 0.0406 0.0343 

2011Q4 −0.0063 −0.0415 0.0289 0.0352 

gcpi4 forecast lowerCI upperCI ± 

2011Q1 −0.0194 −0.0689 0.0301 0.0495 

2011Q2 0.0019 −0.0476 0.0514 0.0495 

2011Q3 0.0025 −0.047 0.052 0.0495 

2011Q4 0.017 −0.0344 0.0684 0.0514 

Gex4 forecast lowerCI upperCI ± 

2011Q1 −0.0606 −0.1278 0.0065 0.0671 

2011Q2 0.0087 −0.0654 0.0828 0.0741 

2011Q3 0.0193 −0.0551 0.0937 0.0744 

2011Q4 0.0116 −0.0639 0.087 0.0755 

Source: Estimates of author. The prediction result witnesses some 95% 
accuracy, lower confidence interval, upper confidence interval and just vari- 
ances in last column. 
 
Table 6. Comparisons the forecast results and actual infla- 
tion for the CPI in 2011. 

 CPI(real) CPI(predict) 
Prediction 

error 
Prediction 

square error

2011Q1 102.1700 100.0016 −0.0212 0.00045 

2011Q2 101.0900 102.3641 0.0126 0.00016 

2011Q3 100.8200 101.3427 0.0052 0.00003 

2011Q4 101.3700 102.5339 0.0115 0.00013 

Square root of prediction mean square error 0.013856558

Source: Estimates of author. 
 
where 
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
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3.2.2.2. Applying Quarterly Data for Forecasting 
On the basis of selected variables from the VAR model,  

Table 7. Results for predicting gcpi in the model for 2012. 

Prediction of gcpi 
 

forecast lowerci upperci ± 

Prediction 
of cpi 

2012q1 −0.0146 −0.0788 0.0496 0.0642 99.88999 

2012q2 0.0224 −0.0441 0.0888 0.0665 102.1275 

2012q3 0.0363 −0.0325 0.1051 0.0688 105.8348 

2012q4 −0.006 −0.0795 0.0674 0.0735 105.1998 

Source: The forecast results for the directly acquired growth rate from pre-
dicting model for CPI are contributed to prediction performance in the 
model and 4th quarterly of 2011. 

 
Table 8. Run and evolutionary parameter values. 

Parameter Value 

Population size 250 

Generations 40 

Selection Tournament 

Tournament size 3 

Crossover probability 0.9 

Mutation probability 0.05 

Initial Max depth 6 

Max depth 30 

Max depth of mutation tree 5 

Non-terminals 
+, −, /, −, exp, mylog, mysinsh,  

mylogis, mysqrt, mydivide, sin, cos.

Terminals 
cpi(t − 1), ···, cpi(t − 12), ex(t − 1), ···, 

ex(t − 4), gm2(t − 1), ···, gm2(t − 4)

Raw fitness 
mean absolute error on all fitness 

cases 

Trials per treatment 50 independent runs for each value

 
we have established models for inflation predictions. 
Nevertheless, favorable models witness the dependence 
of CPI on its values in the past. 

Prediction model (a) 

        
   4 ( 2)

3 4 4
ˆ 4

1cpi t

cpi t cpi t cpi t
cpi t cpi t

cpi te 

   
    

(4) 



where ˆcpi t  cpi t is the prediction of . Acquired re- 
sults of predictions for 2011 using model (a) are given in 
the following Table 9. 

It can be seen that square roots of average square pre- 
diction errors is 0.45%, and 0.9% means the grestest 
quarterly variance. The predictions for 2012 and 2013 are 
given in Table 10. 

Prediction model (b)   
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
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2 2
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1

( 2) ( 3)
1 exp exp sin sin sin

( 4)

1
( 2) ( 1) cos

1 exp ( 1) ( 1)

cpi t cpi t cpi t cpi t cpi t f

f
cpi t cpi t

g
cpi t
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cpi t cpi t
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                      

 
    
    

( 4)cpi t 

  



            (5) 

 
The formula (7) below employing data by 2011 shows 

go

 

Acquired results of predictions for 2011 using model 
(b) are given in the following Table 11. od performance: 

   
Evidently, square roots of average square prediction 

errors is 0.55%, and 1.1% means the grestest quarterly 
variance.  

The predictions for 2012 and 2013 using model (b) are 
given in Table 12. 

Prediction model (c) 

      
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 

 

     

ˆ 1 4
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3

cpi t cpi t cpi t h
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

1 1
exp exp

,
2

1 exp 4

3
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exp 3 exp

2

g g
f

g cpi t cpi t

cpi t
h

f

cpi t

   
    

   

   

    
  

 
 


 




 (6) 

The sequence of model (6) is as ineffective as that of 
model (5). The result is not introduced here. 
 

Table 9. Predictions for 2011 using the data by 2010. 

Time Real data Prediction 
Prediction 

error 
Prediction 

square error

2011Q1 102.17 101.341 0.0081146 0.0000658 

2011Q2 101.09 101.236 −0.0014416 0.0000021 

2011Q3 100.82 101.228 −0.0040451 0.0000164 

2011Q4 101.37 101.406 −0.0003582 0.0000001 

Square root of prediction mean square error 0.0045939 

 
Table 10. Predictions for 2012, 2013 using the data by 2010. 

 2012 2013 

Time Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Forcast 101.72 101.40 101.13 101.27 101.48 101.43 101.28 101.28

   
   

 
      

   

1
sin

4 3
cos                

3 4

4 1 2
1 sin

1 3

cpi t

f

cpi t cpi t
f

g cpi t cpi t

cpi t cpi t cpi t
g cpi t

cpi t cpi t

 
 
 
   

           
    

        
 (7) 

The predictions for 2012 and 2013 using this for
ar

 on Monthly Data 
future based 

ˆ 1cpi t cpi t  

mula 
e given in Table 13.  

3.2.2.3. Forecasts Basing
Here, we have predicted CPI values in the 
on its previous ones. Data from January 1995 to December 
 

Table 11. Predictions for 2011 using the data by 2010. 

Time Real data Prediction 
Prediction 

error 
Prediction 

square error 

2011Q1 102.17 101.15 0. 8 010074 0.0001015 

2011Q2 101.09 101.31 −0.0021692 4.705E-06 

2011Q3 100.82 1  

e ro di u

01.18033 −0.0035268 1.244E-05 

2011Q4 101.37 101.31303 0.0005635 3.176E-07 

Squar ot of pre ction mean sq are error 0.0054535 

 
data by . Table 12. Predictions for 2012, 2013 using the  2010

 2012 2013 

Ti e Q1 Q2 3 Q4 Q1 Q2 3 Q4m Q  Q

Forecast 101.37 101.05 100.82 1  1  1  1 2 101.1001.19 01.21 01.02 00.8

 
Table 13. Predictions for 2012, 2013 using the data by 2011. 

 2012 2013 

Ti e Q1 Q2 3 Q4 Q1 Q2 Q3 Q4m Q

Forecast 101.06 100.88 100.62 100.99 100.61 100.83 100.40 100.38
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T . P ns e  of e- 
cember 2012 us

Time M 7 M8 M9 M1 M12

20  t  t ise  m el, e r t tim f 
January 2011 to February 2012 are used for testing. 
S

11are aken o ra  the od  thos ove he e o

imilary, The reference of prediction accuracy relies on 
data in March and April 2012. 

We introduce some models found out by GP with the 
min fitness (98.0298) for CPI predictions: 

       
    

ˆ 11 5 1 2 12
10

cpi t cpi t cpi t cpi t       

 
     sin 7 8

2 sin 9 7

sin cpi t cpi t

cpi t cpi t cpi t

e   

     



(8) 

In Table 14, we see that the greatest monthly error is 
1.83%. Square roots of average square prediction erro
are 0.00696 which is much less than predictions of 
V

102.0122, real data 100.05 and error 1.961 
ar

3.
nce of prediction models created  

 
10. 

value error prediction error

1

rs 
the 

AR model. 
Inflation forecasts in March 2012 is 101.697, but ac- 

tual data are 100.16, and error 1.535%. Similarly, infla- 
tion forecasts 

e in April 2012. March data took one-step prediction, 
and then two-step prediction for April ones, means that 
using March data predicts following month.  

Prediction results over the time of May to December 
2012 in below Table 15. 

2.2.4. Evaluating the Consistence of the GP 
For evaluating the consiste

Table 14. Predictions using the data by 20

Time Real value 
Prediction Prediction Square  

2011M 012 1 101.74 101.6279 0.001102 0.0000

2  

−  

 root dictio
squ r 

.0069

011M2 102.09 101.5152 0.00563 0.0000317 

2011M3 102.17 101.3754 0.007777 0.0000605 

2011M4 103.32 101.4346 0.018248 0.0003330 

2011M5 102.21 102.0284 0.001777 0.0000032 

2011M6 101.09 101.7433 −0.00646 0.0000418 

2011M7 101.17 101.0486 0.0012 0.0000014 

2011M8 100.93 101.1421 −0.0021 0.0000044 

2011M9 100.82 101.2573 0.00434 0.0000188 

2011M10 100.36 101.2095 −0.00846 0.0000717 

2011M11 100.39 101.264 −0.00871 0.0000758 

2011M12 100.53 101.1218 −0.00589 0.0000347 

2012M1 101 101.0045 −4.5E-05 0.0000000 

2012M2 101.37 101.4044 −0.00034 0.0000001 

Square of pre
are erro

n mean  
0 600 

able 15 redictio
ing the data b

results ov
y 2010.

r the time
 

 May to D

5 M6 M 0 M11

Forecast 101.8 101.5 101.29 101.15 101.04 100.96 100.99 101.073

 
b , c e  l e q rl d 

side and outside sample. A model fitting to both past 

y GP we onsid r 50 mode s to very uarte y an
monthly forecasts, and examine the relation of errors 
in
and future data (on the other hands, the error inside sam- 
ple is small, that of outside sample also similar) is called 
the consistent model. Prediction models of the GP would 
be considered to be consistent if small fitness implied 
small test fitness, meaning that test fitness is a varied 
flow function of the fitness.  

We received following equation thanks to carrying out 
test fitness linear regression basing on quarterly models: 

Test Fitness  0.053016  Fitness

2

Std.Error 0.001453                     

0.226003,  1.319782R DW

 


 

      (9) 

The correlation coefficient between test fitness and 
fitness is 0.485. Therefore, it can be valued tha
prediction models are consistent because of regressive 
re

5

t quarterly 

sults (9), and positive correlation equation between the 
test fitness and the fitness. 

Similarly, monthly data have regressive model as: 

Test Fitness  0.087980  Fitness

Std.Error 0.00168
2 0.520951,  1.905514R DW

 


 

       (10) 

The data for regressive models (9) and (10) 
from Table A in Appendix A. The correlati
between test fitness and fitness is 0.751, therefore, from 
re

e VAR model for inflation prediction has suc- 
ceeded in selecting fitting models in line with currently 

e take predictions for 2011 from the 

are getting 
on coefficient 

gressive result (10), with positive lope and positive 
correlation between test fitness and fitness, it can be seen 
that monthly prediction models of GP are consistent. 
Additionally, monthly models witness a bigger correla- 
tion between test fitness and fitness against quarterly 
ones.  

4. Conclusions 

Using th

available data. If w
VAR model to be comparision standard, square roots of 
average square prediction errors is 1.38. The best im- 
pressive error by months is not greater than 3%. Using 
the model to forecast for 2011 with accuracy 95% indi- 
cates that inflation in the 1st quarter of 2012 decreases 
slightly, it continuously witnesses somewhat increase in 
the 2nd and the 3rd quarters. The performance needs test- 
ing. 
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 and state expense, and prolong inflation lead to 
hi

 itself 
di

s funded by The Vietnam 
nce and Technology Deve- 

Above results from the VAR model show that recently 
have been resulted from different causes, especially un- 
controlled stimulus packages, uneffective public invest- 
ment

gh inflation rate in economy. This confirms how im- 
portant the application of monetary policies with a con- 
sistent attitude for improving the credibility of policies is. 
Consistence when applying monetary policies is also one 
way to impact on inflation expectation we desire.  

Errors of prediction results from models created by the 
GP are much less than those of the VAR model. One 
benefit from using the GP to raise the prediction model is 
that we don’t need to specify the model (the GP

scovered the model), and propose hypothesizes for 
variables in the model. GP can provide some analytical 
formulas for prediction of the model so the GP is called 
“white box”, unlike the neural network model called 
“black box”, which shows us the predicted value, without 
giving analytical expressions. Analytical expressions also 
help us to detect relationships between variables in fore- 
casting models and assess interactions between them. GP 
can also help us to detect relationships between eco- 
nomic variables that economic theory can not detect or 
exceed human judgments. So the greatest advantage of 
GP comes from the ability to address problems for which 
there are no human experts. Although human expertise 
should be used when it is available, it often proves less 
than adequacy for automating problem-solving routines. 
Nonetheless, the GP can’t indicate the accuracy of pre- 
diction values and their distribution. Moreover, predic- 
tion functions for the GP are often complicated, and dif- 
ficult to explain. That’s all about disadvantages of the GP. 
These show that the CPI in the future just depends on its 
values currently and previously but other variables. Ob- 
viously, Vietnam’s inflation rate mainly bases on its citi- 

zens’ expectation, particularly in the late of December 
2011, salary increases for evil servants released by gov- 
ernment and applied from 1st May 2012 has followed 
price augment from January 2012 without basing on 
other elements. 
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Appendix A: Fitness and Test Fitness Results 50 Models Created by GP 

Table A. Fitness and test fitness results 50 models created by GP is ascending sorted by fitness value. 

Monthly data Quarterly data 

Model Fitness Test Fitness Model Fitness Test Fitness 

34 98.02098 7.326765 4 28.24487 1.614447 

36 99.0578 7.696 11 32.07805 2.33514 

19 99.27826 7.174 19 32.35036 1.411474 

5 99.46484 7.499008 31 32.44957 1.454296 

46 99.98677 7.832 28 32.78621 1.619906 

16 100.3978 7.026 29 32.8773 1.544387 

17 100.4957 8.230283 2 32.87733 2.36032 

22 100.6998 7.545 6 32.87733 2.36032 

18 100.9807 8.456925 21 33.10339 1.543815 

48 102.4999 8.519 17 33.19176 2.790995 

50 103.0303 7.824449 5 33.2398 1.367113 

47 103.8416 9.373 3 33.38185 1.334923 

37 103.9578 9.992 50 33.40914 1.415979 

26 104.397 9.313765 39 33.72059 1.366684 

10 104.7919 9.576941 26 33.75907 1.333442 

3 105.1143 8.777088 35 33.80046 1.391022 

44 105.3956 7.669 25 33.80252 1.324483 

42 105.6116 10.0012 47 33.82245 1.361137 

45 105.639 10.18452 1 33.84738 1.31545 

24 106.1196 9.128 20 33.84738 1.31545 

27 106.3108 11.58753 48 33.85151 1.307885 

15 107.7486 6.808134 22 33.92415 1.719595 

25 108.0623 9.756734 41 34.33892 2.09 

31 108.3977 6.708472 23 34.64307 1.770351 

11 108.9255 9.413899 24 34.85562 2.09 

41 109.3048 7.765949 36 35.185 2.252604 

1 109.8344 9.888813 30 35.66765 1.95576 

23 110.6479 12.0302 34 35.75907 2.039319 

14 111.8084 10.55205 33 36.25562 2.09 

43 112.0858 10.53303 43 36.4729 2.088026 

21 112.1578 10.771 37 36.56566 2.664865 

32 112.7478 9.323298 8 36.5731 2.172006 

35 112.8181 8.899476 42 37.63429 2.306655 

49 112.9904 12.501 9 37.79298 2.069823 

20 112.9965 9.248496 40 39.05691 2.355757 

40 113.3175 9.391658 16 39.1693 2.179697 

8 114.5063 11.11547 15 39.38582 2.057293 

6 114.5718 7.906434 14 39.43949 1.575139 

12 115.1631 11.51576 44 39.4543 1.969263 

38 115.8079 10.882 38 39.62798 2.025501 

30 115.9109 10.7563 12 39.71468 1.631938 

13 116.1425 12.02868 49 39.883 2.177382 

33 119.3571 10.35254 13 39.91915 2.199305 

4 120.424 13.798 32 39.95025 2.302056 

39 122.9646 12.05614 45 40.03305 2.240448 

9 126.361 12.88535 18 40.07738 2.327514 

29 131.8939 11.01971 10 40.14163 1.965275 

28 132.8433 12.43679 7 40.29749 2.069947 

7 138.8314 12.08349 46 40.40863 2.089324 

2 165.7095 14.75873 27 40.77183 2.723862 

Copyright © 2012 SciRes.                                                                                  OJS 



P. VAN KHANH 249

Appendix B: Some Prediction Function Created by GP with Small Fitness and Test Fitness  
(Monthly Data) 

Model 34 

        
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 
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Fitness = 98.02098, Test Fitness = 7.326765 
Model 36 
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       mylog(mylogis( ( -9)))

1
ˆ 3 12 6 4 1 10 2

10

mysqrt 3 9 6 4cpi t

cpi t cpi t cpi t cpi t cpi t cpi t

cpi t e cpi t cpi t cpi t
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Fitness = 99.0578, Test Fitness = 7.696 
Model 19 

        1
ˆ 4 1 2 2 7 2

10
cpi t cpi t cpi t cpi t cpi t          9 3 12cpi t    

Fitness = 99.27826, Test Fitness = 7.174 
Model 5 

          1
ˆ 5 1 sin 2 3 2 7

10
cpi t cpi t cpi t cpi t cpi t         2 12cpi t    

Fitness = 99.46484, Test Fitness = 7.499008 
Model 31 

       
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1
ˆ 1 mylog 12 mysqrt 10
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3 mylog mysqrt my log 12
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cpi t cpi t

    

   

  
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1

6
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Fitness = 108.3977, Test Fitness = 6.708472 

Appendix C: Some Prediction Function Created by GP with Small Fitness and Test Fitness  
(Quaterly Data) 

Model 4 
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Fitness = 28.24487, Test Fitness = 1.614447 
Model 11 
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   

Fitness = 32.07805, Test Fitness = 2.33514 
Model 48 

       ˆ 1 4 mylog mysqrt my logcpi t cpi t cpi t     2cpi t   

Fitness = 33.85151, Test Fitness = 1.307885 
Model 19 

      
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  4

g
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 

  

  

 

Fitness = 32.35036, Test Fitness = 1.411474 
Model 20 

     ˆ 1 4 mcpi t cpi t cpi t     y log is 1cpi t   

Fitness = 33.84738, Test Fitness = 1.31545 
 
 


	3.2.1. The VAR Model for Inflation Predictions
	Results of Portmanteau Tests basing on Q test (Table 3) showed that with lagged steps, p in Q test is greater than 5%. This means hypothesis  not to be canceled (no residual autocorrelations).
	The residual Heteroskedasticity tests are carried by general tests about heteroskedasticity of White. The re- sult of White test showed that no heteroskedasticity re- mains. The result is introduced in Table 4.
	With the model estimated, we can analyze the shock transmission mechanism through response functions. To recieve the response function, some constraints are ap- plied for the equation. Constraints chosen are Cholesky Disintegrate ones. The Cholesky used serially: gex, gcpi. Choosing the order depends on inflation changes without effects on exchange rate. Analyzing performance is as in Figure 4.
	The first two figures see inflation changes struggled by the shock itself, which is descending and being vanished for a 5 quarter. Monetary supply and exchange rate shock influences seems to impact insensibly on Vietnam’s in- flation.
	For inflation predictions in 2011, we use the models (1)-(3) to estimate and data by 2010 to apply the model and make forecasting procedures for 2011. Acquired re- sults are given in the following Table 5.
	Table 2. Unit root test.
	Source: Estimates of author.
	The Table 2 sees the increase of inflation gcpi, ex- change rate and monetary demand, but it is hard to com- pare with real inflation to value its property. In doing so, we do a counter-process of considering the inflation in- crease in comparison with real inflation. The result given in Table 6.
	See the table above, it’s obvious that square roots of average square prediction errors is 1.38. The grestest quarterly variance is 3%, pointing out that the acquired model is quite effective.
	For inflation predictions in 2012, we use the model (1)-(3) to estimate and data by 2011 to apply the model and make forecasting procedures for 2012. Acquired results are given in Table 7.

	3.2.2. Applications of the GP for Inflation Predictions
	Table 5. Prediction results of gcpi from model for 2011.
	Source: Estimates of author. The prediction result witnesses some 95% accuracy, lower confidence interval, upper confidence interval and just vari- ances in last column.
	Evidently, square roots of average square prediction errors is 0.55%, and 1.1% means the grestest quarterly variance. 
	The sequence of model (6) is as ineffective as that of model (5). The result is not introduced here.
	The formula (7) below employing data by 2011 shows good performance:
	2011are taken to raise the model, those over the time of January 2011 to February 2012 are used for testing. Similary, The reference of prediction accuracy relies on data in March and April 2012.
	We introduce some models found out by GP with the min fitness (98.0298) for CPI predictions:
	Inflation forecasts in March 2012 is 101.697, but ac- tual data are 100.16, and error 1.535%. Similarly, infla- tion forecasts 102.0122, real data 100.05 and error 1.961 are in April 2012. March data took one-step prediction, and then two-step prediction for April ones, means that using March data predicts following month. 
	Prediction results over the time of May to December 2012 in below Table 15.
	3.2.2.4. Evaluating the Consistence of the GP
	Table 15. Predictions results over the time of May to De- cember 2012 using the data by 2010.
	by GP, we consider 50 models to every quarterly and monthly forecasts, and examine the relation of errors inside and outside sample. A model fitting to both past and future data (on the other hands, the error inside sam- ple is small, that of outside sample also similar) is called the consistent model. Prediction models of the GP would be considered to be consistent if small fitness implied small test fitness, meaning that test fitness is a varied flow function of the fitness. 
	We received following equation thanks to carrying out test fitness linear regression basing on quarterly models:
	The correlation coefficient between test fitness and fitness is 0.485. Therefore, it can be valued that quarterly prediction models are consistent because of regressive results (9), and positive correlation equation between the test fitness and the fitness.
	Similarly, monthly data have regressive model as:
	Using the VAR model for inflation prediction has suc- ceeded in selecting fitting models in line with currently available data. If we take predictions for 2011 from the VAR model to be comparision standard, square roots of average square prediction errors is 1.38. The best im- pressive error by months is not greater than 3%. Using the model to forecast for 2011 with accuracy 95% indi- cates that inflation in the 1st quarter of 2012 decreases slightly, it continuously witnesses somewhat increase in the 2nd and the 3rd quarters. The performance needs test- ing.
	Above results from the VAR model show that recently have been resulted from different causes, especially un- controlled stimulus packages, uneffective public invest- ment and state expense, and prolong inflation lead to high inflation rate in economy. This confirms how im- portant the application of monetary policies with a con- sistent attitude for improving the credibility of policies is. Consistence when applying monetary policies is also one way to impact on inflation expectation we desire. 


