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ABSTRACT 

We propose a subsampling method for robust estimation of regression models which is built on classical methods such 
as the least squares method. It makes use of the non-robust nature of the underlying classical method to find a good 
sample from regression data contaminated with outliers, and then applies the classical method to the good sample to 
produce robust estimates of the regression model parameters. The subsampling method is a computational method 
rooted in the bootstrap methodology which trades analytical treatment for intensive computation; it finds the good sam-
ple through repeated fitting of the regression model to many random subsamples of the contaminated data instead of 
through an analytical treatment of the outliers. The subsampling method can be applied to all regression models for 
which non-robust classical methods are available. In the present paper, we focus on the basic formulation and robust-
ness property of the subsampling method that are valid for all regression models. We also discuss variations of the 
method and apply it to three examples involving three different regression models. 
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1. Introduction 

Robust estimation and inference for regression models is 
an important problem with a long history in robust statistics. 
Earlier work on this problem is discussed in [1] and [2]. 
The first book focusing on robust regression is [3] which 
gives a thorough coverage of robust regression methods 
developed prior to 1987. There have been many new 
developments in the last two decades. Reference [4] pro- 
vides a good coverage on many recent robust regression 
methods. Although there are now different robust methods 
for various regression models, most existing methods 
involve a quantitative measure of the outlyingness of 
individual observations which is used to formulate robust 
estimators. That is, contributions from individual observa- 
tions to the estimators are weighted depending on their 
degrees of outlyingness. This weighting by outlyingness 
is done either explicitly as in, for example, the GM- 
estimators of [5] or implicitly as in the MM-estimator of 
[6] through the use of   functions. 

In this paper, we introduce an alternative method for 
robust regression which does not involve any explicit or 
implicit notion of outlyingness of individual observations. 
Our alternative method focuses instead on the presence 
or absence of outliers in a subset (subsample) of a sam- 
ple, which does not require a quantitative characteri- 
sation of outlyingness of individual observations, and 

attempts to identify the subsample which is free of out- 
liers. Our method makes use of standard non-robust 
classical regression methods for both identifying the 
outlier free subsamples and then estimating the regres- 
sion model with the outlier free subsamples. Specifically, 
suppose we have a sample consisting of mostly “good 
data points” from an ideal regression model and some 
outliers which are not generated by the ideal model, and 
we wish to estimate the ideal model. The basic idea of 
our method is to consider subsamples taken without re- 
placement from the contaminated sample and to identify, 
among possibly many subsamples, “good subsamples” 
which contain only good data points. Then estimate the 
ideal regression model using only the good subsamples 
through a simple classical method. The identification of 
good subsamples is accomplished through fitting the 
model to many subsamples with the classical method, 
and then using a criterion, typically a goodness-of-fit 
measure that is sensitive to the presence of outliers, to 
determine whether the subsamples contain outliers. We 
will refer to this method as the subsampling method. The 
subsampling method has three attractive aspects: 1) it is 
based on elements of classical methods, and as such it 
can be readily constructed to handle all regression models 
for which non-robust classical methods are available, 2) 
under certain conditions, it provides unbiased estimators 
for the ideal regression model parameters, and 3) it is 
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   = , ,i iE Y g xeasy to implement as it does not involve the potentially 
difficult task of formulating the outlyningness of indi- 
vidual observations and their weighting. 

β

Point (3) above is particularly interesting as evaluating 
the outlyingness of individual observations is tradi- 
tionally at the heart of robust methods, yet in the re- 
gression context this task can be particularly difficult. To 
further illustrate this point, denote by  an 
observation where i  is the response and i  
the corresponding covariates vector. The outlyingness of 
obseravtion i i  here is with respect to the under- 
lying regression model, not with respect to a fixed point 
in  as is in the location problem. It may be an 
outlier due to the outlyingness in either i  or iY  or 
both. In simple regression models where the underlying 
models have nice geometric representations, such as the 
linear or multiple linear regression models, the outlying- 
ness of an i i  may be characterized by extending 
measures of outlyingness for the location problem 
through for example the residuals. But in cases where i  
is discrete such as a binary, Poisson or multinomial re- 
sponse, the geometry of the underlying models are com- 
plicated and the outlyingness of i i  may be dif- 
ficult to formulate. With the subsampling methods, we 
avoid the need to formulate the outlyingness of indivi- 
dual observations but instead focus on the consequence 
of outliers, that is, they typically lead to a poor fit. We 
take advantage of this observation to remove the outliers 
and hence achieve robust estimation of regression models. 
It should be noted that traditionally the notion of an 
“outlier” is often associated with some underlying meas- 
ure of outlyingness of individual observations. In the 
present paper, however, by “outliers” we simply mean 
data points that are not generated by the ideal model and 
will lead to a poor fit. Consequently, the removal of 
outliers is based on the quality of fit of subsamples, not a 
measure of outlyingness of individual points. 

 ,i iYX
1Y  qX 

 ,YX

X

 ,YX

Y



 = ,i i

1q

 ,X Y

The rest of the paper is organized as follows. In Sec- 
tion 2, we set up notation and introduce the subsampling 
method. In Section 3, we discuss asymptotic and robust- 
ness properties of the subsampling estimator under general 
conditions not tied to a specific regression model. We 
then apply the subsampling methods to three examples 
involving three different regression models in Section 4. 
In Section 5, we discuss variations of the subsampling 
method which may improve the efficiency and reliability 
of the method. We conclude with a few remarks in 
Section 6. Proofs are given in the Appendix. 

2. The Subsampling Method 

To set up notation, let i

              (1) 

where i
1Y  q

i X 
  1, : qg x  β

 is the response variable,  is the 
corresponding covariates vector, i  is 
the regression function and pβ

Y X

 is the regression 
parameter vector. To accommodate different regression 
models, the distributions of i  and i  are left un- 
specified here. They are also not needed in our sub- 
sequent discussions. 

Denote by = , , ,1 2N N  a contaminated sam- 
ple of  observations containing  “good data” ge- 
nerated by model (1) and  “bad data” which are 
outliers not from the model. Here  and m  are un- 
known integers that add up to . Let n  and m  be 
the (unknown) partition of 

S z z z
N n

m
n

N S S

NS S
n S m

 such that n  contains 
the  good data and m  contains the  bad data. To 
achieve robust estimation of β  with NS , the subsam- 
pling method first constructs a sample gS

nS
 to estimate 

the unknown good data set , and then applies a (non- 
robust) classical estimator to gS . The resulting estimator 
for β  will be referred to as the subsampling estimator 
or SUE for β . Clearly, a reliable and efficient gS

S S

 
which captures a high percentage of the good data points 
in n  but none of the bad points in m  is the key to 
the robustness and the efficiency of the SUE. The 
subsampling algorithm that we develop below is aimed at 
generating a reliable and efficient gS . 

2.1. The Subsampling Algorithm 

A  be a random sample of size sLet n  taken without 
replacement from NS , which we will refer to as a sub- 
sample of NS . The key idea of the subsampling method 
is to construct the estimator gS nS for  by using a 
sequence of subsamples from NS

n n  , , ,A A A 
. 

To fix the idea, for some s , let 1 2 3  
be an infinite sequence of independent random subsam- 
ples each of size sn * * *, ,A A A 

*

=1

=
j

. Let  1 2 3  be the sub- 
sequence of good subsamples, that is, subsamples which 
do not contain any outliers. Each of these sequences 
contains only a finite number of distinct subsamples. We 
choose to work with a repeating but infinite sequence 
instead of a finite sequence of distinct subsamples as that 
finite number may be very large and the infinite sequence 
set-up provides the most convenient theoretical frame- 
work as we will see below. Consider using the partial 
union  

yz x
 ,i iY

 be a realization of a 
random vector  satisfying regression model  =iZ X

j i
i

B A
S

                   (2) 

to estimate the good data set n . Clearly, jB
S

 is a sub- 
set of n . The following theorem gives the consistency 
of jB S

 * * *
1 2 3, , ,A A A 

 as an estimator for . n

Theorem 1 With probability one,  has 
infinitely many elements and  
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 = = 1.nSP B               (3) 

Proof: See the Appendix.  
To measure the efficiency of jB

nS
 as an estimator for 

, let jW  be the number of points in jB . Since 

j n , it is an efficient estimator of n  if the ratio B S S

j  is close to one. But for any finite , W n j jW



 is a 
random variable. Hence we use the expectation of the 
ratio, which we denote by F jE B , to measure the 
efficiency of jB . We have  

   
= ,

j

F j

E W
E B

n
= 1, 2, ,j 

 

 

where jE W  is the expected number of good data 
points picked up by jB


. The following theorem gives a 

simple expression of F jE B n in terms of  and sn . 
Theorem 2 The efficiency of jB  in recovering good 

data points is  

   
= = 1

j
j s

F j

E W n n
E B

n n

   
 

, = 1,2,j 

 

   (4) 

Proof: See the Appendix. 
Theorem 2 indicates that F j  converges to 1 as 
 goes to infinity. The convergence is very fast when 

E B
j
 s  is not close to 1, that is, the subsample size n n n

sn n is not too small relative to . Hence for properly 
chosen sn  and , j jB

 1 2 3, , ,A A A 
A A

 is an excellent estimator for 

n . Nevertheless, in practice while we can generate the 
sequence  easily, the subsequence of  
S


 * * *

1 2 3, , ,A good subsamples  and hence jB  are not  

available as we do not have the means to determine 
whether a subsample iA  is a good subsample or a bad 
subsample containing one or more outliers. To deal with 
this, for a fixed r , the subsampling algorithm 
described below finds a sequence of  pseudo-good sub- 

* 
*r

   *1 2, , ,
r

A 
 
 

samples , and takes their union to   A A

form the estimator gS S






 for . n

Denote by  a classical method for regression 
analysis, for example, the method of least squares. De- 
note by  an associated quantitative goodness-of-fit 
criterion, such as the mean squared error, AIC or BIC, 
which may be sensitive to the presence of outliers on a 
relative basis; that is, given two samples of the same size, 
one contains outliers and another does not, upon fitting 
regression model (1) with method  to the two sam- 
ples,  can be used to effectively identify the one that 
contains outliers. Denote by 



  the numerical score 
given by the criterion  upon fitting the model (1) to a 
subsample 


A  using method , and suppose that a 

small 


  value means a good fit of model (1) to A . The 
subsampling algorithm finds pseudo-good subsamples  

     *1 2, , ,
r

A A A 
 
 

  and forms gS

*, ,sn r k

 as follows. 

ALGORITHM SAL ( )—Subsampling al- 
gorithm based on   and   

 *, ,n r k n n) and  where For chosen ( , s s : 
Step 1: Randomly draw a subsample 1A  of size sn  

from data set SN .  
Step 2: Using method  , fit the regression model (1) 

to the subsample 1A  obtained in Step 1 and compute the 
corresponding goodness-of-fit score 1 .  

Step 3: Repeat Steps 1 and 2 for  times. Each time 
record 

k
 ,j jA  , the subsample taken and the associated 

goodness-of-fit score at the jth repeat, for  
.  = 1, 2, ,j k

kStep 4: Sort the  subsamples by their associated   
values; denote by  1 2, , ,   k    the ordered values of  

j  where    1i i   , and denote by      1 2, , , kA A A   

the correspondingly ordered subsamples. This puts the 
subsamples in the order of least likely to contain outliers 
to most likely to contain outliers according to the   
criterion.  

Step 5: Form gS *r using the  subsamples with the 
smallest   values, that is  

*

( )
=1

= .
r

g i
i

S A                  (5) 

We will refer to gS

nS

     *1 2, , ,
r

A A A

 as the combined sample. It esti- 
mates  using the pseudo-good subsamples  
 
 
 

  which is an approximate version of  

 * * *, , , *1 2 r
A A A . Formally, we now define the subsam- 

pling estimator SUE for β  as the estimator generated 
by applying method   to the combined sample gS . 
Although the method applied to gS  to generate the SUE 
does not have to be the same as the method used in the 
algorithm to generate gS

*, , , ,sn r k

, for convenience we will use 
the same method in both places. The SUE does not have 
an analytic expression. It is an implicit function of 

  and N S
*, , , , ,

, and as such we may write SUE 
( s Nk S 

B
* * *, , ,

n r ) when we need to highlight the in- 
gredients. 

It should be noted that while *r
, the union of 

*1 2 r
A A A

S
, may be viewed as a random sample taken 

without replacement from n , the combined sample gS

*r

     *1 2, , ,
r

A A A

 
may not be viewed as such even when it contains no 
outliers. This is because the  pseudo-good subsam-  

 ples  
 

  are not independent due to the  

dependence in their  -scores, which are the smallest  
order statistics of the k  

*r
 -scores. Consequently, gS  

is not a simple random sample. This complicates the 
distributional theory of the SUE but fortunately it has 
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little impact on its breakdown robustness as we will see 
later. 

We conclude this subsection with an example typical 
of situations where we expect the algorithm to be 
successful in finding a good combined sample gS

S

 20, = 4N 

= 18n
= 2m

= 20

  

 for 
estimating . n

Example 1: Consider the following linear model  

= 3 5 ,y x     .         (6) 

We generated  observations from model (6) 
and then added  outliers to form a data set of size 

. See Figure 1(a) for the scatter plot of 
this data set. To recover the 18 good data points, consider 
using the subsampling algorithm with the method of least 
squares as  and the MSE (

=N n m

residual s  as the 
 criterion. For , there are 1140 such subsam- 

ples, 18 of which contain no outliers. We fitted the sim- 
ple linear model using the method of least squares to all 
1140 subsamples and computed the MSE for each fit. 
Figure 1(b) shows the plot of the 1140 MSEs versus the 
corresponding subsample labels. The MSEs of the 18 
good subsamples are at the bottom, and they are sub- 
stantially smaller than that of the other subsamples. If we 
are to run SAL  for a suitably large 

, the resulting combined sample 

2n 

k

SS
= 17sn

 *= 17, = 2,sn r



k gS

= 17sn

 is likely the 
union of two good subsamples, recovering at least 17 of 
the 18 good data points. 

For this example, the total number of distinct sub- 
samples of size  is only 1140, which is not large. 
 

 
(a) 

 
(b) 

Figure 1. (a) Scatter plot of a contaminated sample of 20 
from model (6) and the true regression line; (b) MSE from a 
least squares fit of a simple linear model to a subsample 
versus its label. 

Instead of randomly generating subsamples in Steps 1-3 
in SAL ( s ), we can modify it to going through all 
1140 distinct subsamples. The combined sample 

*, ,n r k

gS  given 
by such a modified SAL  *= 17, = 2, = 1140n r k

S
S

s  will 
recover all 18 good data points in n . Consequently, the 
SUE reduces to the least squares estimator based on n  
and hence existing theory for the latter applies to the 
SUE. 

2.2. Parameter Selection for the Subsampling  
Algorithm 

In real applications, 
s

N

n

 
 
 

 may be too large that going  

through all subsamples of size sn

*, ,k
*, ,k

 is difficult. Thus we 
need to use random sampling in Steps 1-3 of SAL 
( sn r ). The parameter selection discussed below is 
for SAL ( sn r ) with random sampling only. Also, the 
discussion below is independent of the underlying re- 
gression model. Thus we will not deal with the selection 
of   and   (which is tied to the model) here but will 
address this for some regression models in Section 4 
when we discuss specific applications. 

The objective of SAL ( s ) is to generate a 
combined sample 

*, ,n r k

gS S

*r

     *1 2, , ,
r

A A A

 to estimate the good data set n . 
To this end, we want to carefully select the parameter 
values to improve the chances that 1) the  pseudo-  

 good subsamples  
 



S

 are indeed good  

subsamples from n  and 2) gS
S

 is efficient, that is, it 
captures a high percentage of points in n . The para- 
meter selection strategy below centres around meeting 
these conditions. 

1) Selecting s —The subsample size n
Proper selection of sn  is crucial for meeting con- 

dition (1). The first rule for selecting sn
< sm n n

 is that it must 
satisfy  . Under this condition,  
 , , ,1 2 kA A A

>n n
<n m

 generated by Steps 1-3 are either good 
subsamples containing no outliers or subsamples con- 
taining a mix of good data points and outliers. The γ- 
score is the most effective in identifying good subsam- 
ples from such a sequence as they are the ones with small 
scores. If s , there will not be any good subsamples 
in the sequence. If s , there could be bad subsam- 
ples consisting of entirely outliers. When the outliers 
follow the same model as the good data but with a dif- 
ferent β , the γ-scores for bad subsamples of only out- 
liers may also be very small. This could cause the sub- 
sampling algorithm to mistaken such bad subsamples as 
good subsamples, resulting in violations of condition (1). 

In real applications, values of  and  may be 
unknown but one may have estimates of these which can 
be used to select 

m n

sn . In the absence of such estimates, 
we recommend a default value of “half plus one”, i.e. 

Copyright © 2012 SciRes.                                                                                  OJS 



M. TSAO, X. LING 285

 =s int 0.5 1n N   where int[x] is the integer part of x . 
This default choice is based on the assumption that 

 which is standard in many robustness studies. 
Under this assumption and without further information, 
the only choice of 

<m n

sn  that is guaranteed to satisfy 
 is the default value. <m ns

Note that for each application, 
n

sn
1n p 

= 2

 must be above a 
certain minimum, i.e., s . For example, if we let 

 when model (1) is a simple linear model where 
, we will get trivially perfect fit for all subsamples. 

In this case, the 

sn
= 2p

 -score is a constant and hence cannot 
be used to differentiate good subsamples from the bad 
ones. 

2) Selecting —The number of subsamples to be 
combined in Step 5 

*r

*r

   *1 2, , 
 
 



 * * *
1 2 *, , ,

r

The selection of  is tied to condition (2). For 
simplicity, here we ignore the difference between the  

pseudo-good subsamples  identified   A A ,
r

A

by the subsampling algorithm and the real good sub-  

samples A A A . This allows us to assume that  

gS
B
 is the same as a *r

 and use the efficiency measure 
of  for 

B

*r gS . By (4),  

   
*

1 .
r

sn n

n

   
 

*= =F g F r
E S E B       (7) 

For a given (desired) value of the efficiency  F gE S
*r

*r

,  

we find the  value needed to achieve this by solving 
(7) for ; in view of that  must be an integer, we 
have  

*r

  
  

*
log 1

=int
log s

r
n n



 
1.

log

F gE S

n

 
  
 
 

        (8) 

When sn  is the default value of  int 0.5 1N  , the 
maximum  required to achieve a 99% efficiency  *r

99%F gE S

*r

( ) is 7. This maximum is reached when    =

=n N . 
In simulation studies, when  is chosen by (8), the 

observed efficiency, as measured by the actual number of 
points in gS  divided by n , tends to be lower than the 
expected value used in (8) to find . This is likely the 
consequence of the dependence among the pseudo-good 
subsamples. We will further comment on this depen- 
dence in the next section. 

*r

k

k , , ,

3) Selecting —The total number of subsamples 
to be generated 

For a finite , the sequence  1 2 kA A A
*r

k

 gene- 
rated by Steps 1-3 may or may not contain  good 
subsamples. But we can set  sufficiently large so that 
the probability of having at least  good subsamples, 

, is high. We will use  as the default value 

for this probability. We now consider selecting  with 
given 

k
r

* = 0.99p

*

*p

sn *r *p,  and . 
Let gp  be the probability that A , a random sub- 

sample of size sn  from NS

sn n
, is a good subsample con- 

taining no outliers. Under the condition that  , we 
have  

0
= > 0.s

g

s

n m

n
p

n m

n

  
  

  
 

 
 

T

              (9) 

Now let  be the total number of good subsamples 
in  , , , k1 2A A A . Then T  is a binomial random 
variable with  ,  gT Bin k p  . Let , =p k i P T i . 
Then  

   

  1

=0

, = at least  good subsamples in 

= 1 1 .
i k jj

g g
j

p k i P i k

k
p p

j

  
  

 


*r

   (10) 

Since the value of  has been determined in step [b] 
above,  *,p k r

k *p
 is only a function of k  and the 

desired  value is determined by  through  

   * *= arg min , = 0.99
l

k p l r p

m n

.      (11) 

In real applications where  and hence  are un- 
known, we choose a working proportion  0.0.5 0 , 
representing either our estimate of the proportion of 
outliers or the maximum proportion we will consider. 
Then use  0= intm N  to determine . We will use 
0.1 as the default value for 

k

0  which represents a 
moderate level of contamination. 

Finally,  is a function of  and k *r gp , both of which 
are functions of sn k. Thus  is ultimately a function of 
only sn . We may link the selection of all three para- 
meters together by looking for the optimal sn  which 
will minimize  subject to the (estimated) constraint k

< sm n n , where  and  are estimates based on 

0

m n
 . Such an optimal sn

k
 can be found by simply com- 

puting the  values corresponding to all sn  satisfying 
the constraint. We caution, however, that this optimal sn

0.5 1N 
< sm n n

 
may be smaller than . As such, it may not 
satisfy the real but unknown constraint of  . 

To give examples of parameter values determined 
through the above three steps and to prepare for the 
applications of the subsampling algorithm in subsequent 
examples, we include in Table 1 the  values and  
values required in order to achieve an efficiency of 

*r k

  = 99%E S m n
*p

F g  for various combinations of  and  
values. To compute this table, both  and sn

0.5 1N 
 are set 

to their default values of 0.99 and , respec- 
ively. t 
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k *r



     
Table 1. The number of subsamples  and the number of good subsamples  required to achieve an efficiency of 

 = 99%F gE S m n. Exact values of  and  and default values of *p  and  were used for computing these  and  

values. 

sn k *r

N n mSample size  Number of good data  Number of outliers  Subsample size sn *r k  Number of subsamples 

= 20n = 0m n *r = 6k  = 11s  = 6   

= 18n = 2m n *r = 58k= 2N

= 16n = 4m n *r = 383k

= 60n = 0m n *r = 7k

= 54n = 6m n r = 1378k= 6N

= 48n = 12m n = 312,912k

  = 11s  = 5   0  

  = 11s  = 4   

  = 31s  = 7   

  = 31s  * = 6   0  

  = 31s  * = 5r   

 
The computationally intensive nature of SAL ( ) 

can be seen in the case given by 

*, ,sn r k
   , ,N m n



= 60,12, 48

  , = 12,m n

, 
where to achieve an efficiency of 99% we need to fit the 
model in question to 312,912 subsamples of size 31 each. 
This could be a problem if it is time consuming to fit the 
model to each subsample. To visualize the relationship 
among various parameters of the algorithm, for the case 
of , Figure 2 shows the theoretical 
efficiency of the algorithm 

48
F g  verses . The 

dashed black line in the plot represents the 99% ef- 
ficiency line. With subsample size , we see that 
the efficiency curve rises rapidly as  values increases. 
At , the efficiency reaches 99%. For this example, 
we also plotted the probability of having at least  good 
subsamples i  verses  when the total num- 
ber of subsamples is set at  in Figure 3(a). We 
see that at this  value, the probability of having at 
least  (required for 99% efficiency) is only about 
0.96. To ensure a high probability of having at least 5 
good subsamples, we need to increase . In Figure 3(b), 
we plotted the same curve but at  as was 
computed in Table 1. The probability of having at least 5 
good subsamples is now at 0.99. 

E S

= 31sn
*r

i
00

k
= 312k

*r

= 5
i

,912

*r

r

 = ,k i
= 70k

p p

k
* = 5

 

Figure 2. The efficiency of the subsampling algorithm 
SAL( ) as a function of the number of good subsam- 

ples  that form the combined sample 

*, ,sn r k
*r gS . The  is set 

at the default value. The dashed line is the 99% efficiency 
line. 

sn

n

 
properties of the SUE under conditions not tied to a 
specific regression model. 

3.1. The Asymptotic Distribution of the  
Subsampling Estimator To summarize, to select the parameters sn *r

k *, ,n r k


,  and 
 for SAL ( s ), we need the following infor- 

mation: 1) a desired efficiency F gE S  (default = 0.99), 
2) a working proportion of outliers 0  (default = 0.1) 
and 3) a probability  (default = 0.99) of having at 
least  good subsamples in  random subsamples of 
size 

*p
*r k

sn

N n

. We have developed an R program which 
computes the values of  and  for any combination  *r

  *
0, ,g p

k

We first briefly discuss the asymptotic distribution of the 
SUE with respect to e , the size of the combined sample 

gS n
n

. We will refer to e  as the effective sample size. 
Although e  is random, it is bounded between s

Copyright © 2012 SciRes.    

of . The default value of this  
, 0.5 1,99%,0.1,0.99N N 

n
N = 0.5 1sn N  n

N

 and 
. Under the default setting of , e  will 

approach infinity if and only if  approaches infinity. 
Also, when the proportion of outliers and hence the ratio 

, ,s FE S n N n
n e

N n
ˆ

 are fixed, e  will approach infinity if and only if 
 does. So asymptotics with respect to n  is equi- 

valent to that with respect to  or . input vector is  . Note that 
the determination of the algorithm parameters does not 
depend on the actual model being fitted. 

β  be the SUE for Let β  and consider its asymptotic 
distribution under the assumption that gS

S
S

 may be 
viewed as random sample from the good data set n . 
Since n  is a random sample from the ideal model (1), 
under the assumption g

3. Asymptotic and Robustness Properties of  
the Subsampling Estimator S

ˆ
 is also a random sample from 

model (1). Hence β  is simply the (classical) estimator  In this section, we discuss the asymptotic and robustness  
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(a) 

 
(b) 

Figure 3. (a) The probability (pi) of having at least  good 
subsamples in k = 7000 subsamples; (b) The probability (pi) 
of having at least i good subsamples in k = 312,912 
subsamples. The horizontal black line is the pi = 0.99 line. 

i

 
given by method   and the random sample gS


ˆ

. Its 
asymptotic distribution is then given by the existing 
asymptotic theory for method . For example, for a 
linear model such as that in Example 1, the SUE β  
generated by the least squares method will have the usual 
asymptotic normal distribution under the assumption. The 
asymptotic normal distribution can then be used to make 
inference about β . Thus in this case, there is no need 
for new asymptotic theory for the SUE. 

In some cases such as when it captures all the good 
data points, gS  may indeed be considered as a random 
sample from the good data. Nevertheless, as we have 
noted in Section 2.1 that in general, gS

*r

 is not a random 
sample due to a selection bias of the subsampling 
algorithm; the  subsamples forming gS  are the sub- 
samples which fit the model the best according to the   
criterion, and as such they tend to contain only those 
good data points which are close to the underlying re- 
gression curve. For the simple linear model, for example, 
good data points at the boundary of the good data band 
are more likely to be missed by gS . Consequently, there 
may be less variation in gS  than that in a typical random 
sample from the model. This may lead to an under- 
estimation of the model variance although the SUE for 
β  may still be unbiased. The selection bias depends on 

the underlying model and the method . Its impact on 
the asymptotic distribution of the SUE 


β̂  needs to be 

studied on a case by case basis. 

3.2. The Breakdown Robustness and the  
Breakdown Probability Function of the  
Subsampling Estimator 

While a unified asymptotic theory for the SUE is elusive 
due to its dependence on the underlying model (1), the 
breakdown properties of the SUE presented below do not 
depend on the model and thus apply to SUEs for all 
models. 

Consider an SUE( *, , , , ,s N ) where s  
and  are fixed. Denote by 

n r k S  *, ,n r k
N   the proportion of out- 

liers in NS  and hence = m N . Due to the non-robust 
nature of the classical method , the SUE will break 
down if there is one or more outliers in 


gS . Thus it  

may break down whenever   is not zero as there is a 
chance that gS  contains one or more outliers. It follows 
that the traditional notion of a breakdown point, the 
threshold   value below which an estimator will not 
break down, cannot be applied to measure the robustness 
of the SUE. The breakdown robustness of the SUE is 
better characterized by the breakdown probability as a 
function of  . This breakdown probability function, 
denoted by  BP  , is just the probability of not having 
at least  good subsamples in a random sequence of 

 subsamples of size 

*r
k sn  when the proportion of out- 
liers is  . That is 

   *= fewer than good subsamples in BP P r k .

>sn n

 (12) 

A trivial case arises when . In this case,  
  = 1BP   regardless of the   value. For the case of 

interest where sn n , we have from (9) 

  0
= > 0,s

g

s

n m

n
p

n m

n



  
  

  
 

 
 

=m N

           (13) 

 = 1n Nwhere   and 

       
* 1

=0

= 1
r k jj

g g
j

k
BP p p

j
  

  
 

 


. By (10), the break- 
down probability function is 

.    (14) 

In deriving (14), we have assumed implicitly that the 
  criterion will correctly identify good subsamples 
without outliers. This is reasonable in the context of 
discussing the breakdown of the SUE as we can assume 
the outliers are arbitrarily large and hence any reasonable 
  criterion would be accurate in separating good sub- 
samples from bad subsamples. 

The concept of breakdown probability function can 
also be applied to traditional robust estimators. Let *  
be the breakdown point of some traditional robust esti- 

Copyright © 2012 SciRes.                                                                                  OJS 



M. TSAO, X. LING 288 

mator. Then its breakdown probability function is the fol- 
lowing step function 

  0,
=

1,
BP

*

*

if ,

if .

 


 



= 60N





         (15) 

Figure 4 contains the breakdown probability functions 
of three SUEs for the case of . These SUEs are 
defined by the default values of  gE S , sn *p

= 0.1,0.2,0.4
 and  

with working proportions of outliers of 0 , 
respectively. Their breakdown functions (in dotted lines) 
are identified by their working proportions. The break- 
down function for the SUE with 0 = 0.4  is uniformly 
smaller than the other two and hence this SUE is the 
most robust. This is not surprising as it is designed to 
handle 40% outliers. For comparison, the breakdown 
probability function of a hypothetical traditional robust 
estimator (non-SUE) with a breakdown point of 0.3 is 
also plotted (in solid line) in Figure 4. Here we see that 
the SUE and the traditional robust estimator are com- 
plementary to each other; whereas the later will never 
breakdown so long as the proportion of outliers is less 
than its breakdown point but it will for sure breakdown 
otherwise, an SUE has a small probability of breaking 
down even when the proportion is lower than that it is 
designed to handle but this is compensated by the po- 
sitive probability that it may not breakdown even when 
the proportion is higher. Incidentally, everything else 
being fixed, the  value associated with the SUE in- 
creases rapidly as the working proportion increases. The 
excellent robustness of the SUE for 0

k

= 0.4 , for ex- 
ample, comes at a price of a huge amount of computa- 
tion. 

The breakdown probability function may be applied to 
select parameter  for the subsampling algorithm. 
Recall that in Section 2.2, after 

k

sn *r

0

 and  are chosen 
and the working proportion of outliers   is fixed, we  
 

 

Figure 4. Breakdown probability functions (BPs) of three 
SUEs and one non-SUE for a data set of size N = 60. BPs for 
the SUE’s designed to handle α0 = 10%, 20% and 40% 
outliers are indicated by their associated α0 value. 

find the value of  by using a predetermined , the 
probability of having at least  good subsamples in . 
In view of the breakdown probability function, this 
amounts to selecting  by requiring 0

k *p
*r k

k   *= 1BP p  , 
which is a condition imposed on  BP   at a single 
point 0 . An alternative way of selecting  is to im- 
pose a stronger condition on 

k
 BP   over some interval 

of interest. 
Note that everything else being equal, we can get a 

more robust SUE by using a larger k . For practical 
applications, however, we caution that a very large  
will compromise both the computational efficiency of the 
subsampling algorithm and the efficiency of the com- 
bined sample 

k

gS  as an estimator of the good data set. 
The latter point is due to the fact that in practice, the 
subsamples forming gS

*r

 are not independent random 
samples from the good data set; in the extreme case 
where k goes to infinity, the subsample with the smallest 
γ-score will appear infinitely many times, and thus all  
subsamples in the union of gS  are repeats of this same 
subsample. This leads to the lowest efficiency for gS  
with   =E S n N kF g s . Thus when selecting the  
value, it is necessary to balance the robustness and the 
efficiency of the SUE. 

To conclude Section 3, we note that although the 
selection bias problem associated with the combined 
sample gS  can make the asymptotic theory of the SUE 
difficult, it has little impact on the breakdown robustness 
of the SUE. This is due to the fact that to study the 
breakdown of the SUE, we are only concerned with 
whether gS  contains any outliers. As such, the size of 

gS  and the possible dependence structure of points 
within are irrelevant. Whereas in Section 3.1 we had to 
make the strong assumption that gS  is a random sample 
from the good data in order to borrow the asymptotic 
theory from the classical method  , here we do not 
need this assumption. Indeed, as we have pointed out 
after (14) that the breakdown results in this section are 
valid under only a weak assumption, that is, the   
criterion employed is capable of separating good subsam- 
ples from subsamples containing one or more arbitrarily 
large outliers. Any reasonable  should be able to do 
so. 



4. Applications of the Subsampling Method 

In this section, we apply the subsampling method to three 
real examples through which we demonstrate its use- 
fulness and discuss issues related to its implementation. 
For the last example, we also include a small simulation 
study on the finite sample behaviour of SUE. 

An important issue concerning the implementation of 
the subsampling method which we have not considered 
in Section 2 is the selection of classical method   and 
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goodness-of-fit criterion  . For linear regression and 
non-linear regression models, the least squares estimation 
(LSE) method and the mean squared error (MSE) are 
good choices for  and , respectively, as the LSE 
and MSE are very sensitive to outliers in the data. 
Outliers will lead to a poor fit by the LSE, resulting in a 
large MSE. Thus a small value of the MSE means a good 
fit. For logistic regression and Poisson regression models, 
the maximum likelihood estimation (MLE) method and 
the deviance (DV) can be used as  and , respec- 
tively. The MLE and DV are also sensitive to outliers. A 
good fit should have a small DV. If the ratio  DV en p  
is much larger than 1, then it is not a good fit. 

Another important issue is the proper selection of the 
working proportion of outliers or equivalently the (esti- 
mated) number of outliers  in the sample. This is 
needed to determine the  and  to run the subsam- 
pling algorithm. Ideally, the selected  value should be 
slightly above the true number of outliers as this will lead 
to a robust and efficient SUE. If we have some infor- 
mation about the proportion of outliers in the sample 
such as a tight upper bound, we can use this information 
to select . In the absence of such information, we may 
use several values for  to compute the SUE and 
identify the most proper value for the data set in question. 
For  values above the true number of outliers, the 

SUE will give consistent estimates for the model para- 
meters. Residual plots will also look consistent in terms 
of which points on the plots appear to be outliers. We 
now further illustrate these issues in the examples below. 

Example 2: Linear model for stackloss data 

m
k

m

*r

m

y

The well-known stackloss data from Brownlee [7] has 
21 observations on four variables concerning the opera- 
tion of a plant for the oxidation of ammonia to nitric acid. 
The four variables are stackloss ( ), air flow rate ( 1x ), 
cooling water inlet temperature ( 2x ) and acid concen- 
tration ( 3x ). We wish to fit a multiple linear regression 
model,  

0 1 1 2 2 3 3=y x x x

m

m

       



 

to this data. We use the LSE and MSE for  and  , 
respectively, in the SUE. We also try three m values, 

 and 6, which represent roughly 10%, 20% and 
30% working proportion of outliers in the data. The sub- 
sample size is chosen to be the default size of s . 
The corresponding values for  and k  in the SAL 
and the estimates for regression parameters are given in 
Table 2. For comparison, Table 2 also includes the 
estimates given by the LSE and MME, a robust estimator 
introduced in [6]. The residual versus fitted value plots 
for the LSE and SUE are in Figure 5. Since the regres- 
sion parameter estimates for the SUE with  and  

= 2,4m

= 11n
*r

= 4m
 

 
    (a)                                                              (b) 

 
    (c)                                                              (d) 

Figure 5. Residual versus fitted value plots for Example 2: (a) LSE; (b) SUE with m = 2; (c) SUE with m = 4; (d) SUE with m 
= 6. The dashed lines are ˆ3 , which are used to identify outliers. 
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Table 2. Regression parameter estimates with standard errors in brackets for Example 2. 

SUE (m = 2) SUE (m = 4) SUE (m =6) 

* = 6r * = 5r * = 4r   parameter LSE MME 

= 5k = 3k = 2593k7  27   

0  −39.92 (11.90) −41.52 (5.30) −38.59 (10.93) −37.65 (4.73) −36.72 (3.65) 

 0.72 (0.13) 0.94 (0.12) 0.77 (0.13) 0.80 (0.07) 0.84 (0.05) 1

2  1.30 (0.37) 0.58 (0.26) 1.09 (0.35) 0.58 (0.17) 0.45 (0.13) 

3  −0.15 (0.16) −0.11 (0.07) −0.16 (0.14) −0.07 (0.06) −0.08 (0.05) 

  3.24 1.91 2.97 1.25 0.93 

sample size = 2n = 2n = 2en = 1en = 15en1  1  0  7   

 
= 6m

= 4
 are consistent and the corresponding residual 

plots identify the same 4 outliers, m  is the most 
reasonable choice. The effective sample size for gS

= 4m = 1n
 

when  is e , and hence this 7 gS

= 2

 includes 
all the good data points in the data and the SUE is the 
most efficient. It is clear from Table 2 and Figure 5 that 
the LSE and the SUE with  fail to identify any 
outliers and their estimates are influenced by the outliers. 
The robust MME identifies two outliers, and its estimates 
for 1 2

m

,     and 3  are slightly different from those 
given by the SUE wi = 4 . Since the MME is 
usually biased in the estimation of the intercept 0

th m
 , the 

esti te of 0ma   from the MME is quite different. This 
data set has been analysed by many statisticians, for 
example, Andrews [8], Rousseeuw and Leroy [3] and 
Montgomery et al. [9]. Most of these authors concluded 
that there are four outliers in the data (observations 1, 3, 
4 and 21), which is consistent with the result of the SUE 

mwith = 4 . 

m

= 6m n
m

= 4m

m

Note that the SUE is based on the combined sample 
which is a trimmed sample. A large  value assumes 
more outliers and leads to heavier trimming and hence a 
smaller combined sample. This is seen from the SUE 
with  where the effective sample size e  is 15 
instead of 17 for . Consequently, the resulting 
estimate for the variance is lower than that for . 
However, the estimates for the regression parameters 
under  and  are comparable, reflecting the 
fact that under certain conditions the SUEs associated 
with different parameter settings of SAL algorithm are 
all unbiased. 

= 4

= 6= 4m

Example 3: Logistic regression for coal miners data 
Ashford [10] gives a data set concerning incidents of 

severe pneumoconiosis among 371 coal miners. The 371 
miners are divided into 8 groups according to the years 
of exposure at the coal mine. The values of three vari- 
ables, “years” of exposure (denoted by x ) for each 
group, “total number” of miners in each group, and the 
number of “severe cases” of pneumoconiosis in each 

group, are given in the data set. The response variable of 
interest is the proportion of miners who have symptoms 
of severe pneumoconiosis (denoted by ). The 8 group 
proportions of severe pneumoconiosis are plotted in 
Figure 6(a) with each circle representing one group. 
Since it is reasonable to assume that the corresponding 
number of severe cases for each group is a binomial 
random variable, on page 432 of [9] the authors consi- 
dered a logistic regression model for , i.e.,  

Y

Y

   
 

0 1

0 1

exp
= .

1 exp

x
E Y

x

 
 


 
 

To apply subsampling method for logistic regression, 
we choose the MLE method and the deviance DV as   
and  , respectively. With  groups, we set  
and 2 in the computation, and set the subsample size to 

. The corresponding values for  and k  are 

= 8N = 1m

= 5sn *r
   *, = 4,23r k  and    *, = 3,76r k = 1m

= 1m

 for  and 2, 
respectively. The original data set has no apparent out- 
liers. In order to demonstrate the robustness of the SUE, 
we created one outlier group by changing the number of 
severe cases for the 27.5 years of exposure group from 
original 8 to 18. Consequently, the sample proportion of 
severe pneumoconiosis cases for this group has been 
changed from the initial 8/48 to 18/48. Outliers such as 
this can be caused, for example, by a typo in practice. 
The sample proportions with this one outlier are plotted 
in Figure 6(b). The regression parameter estimates from 
various estimators are given in Table 3, where the M 
method is the robust estimator from [11]. The fitted lines 
given by the MLE, the SUE and the M method are also 
plotted in Figure 6. For both data sets, the SUE with 

 and 2 gives the same result. The SUE does not 
find any outliers for the original data set, while it 
correctly identifies the one outlier for the modified data 
set. For the original data set, the three methods give 
almost the same estimates for the parameters, and this is 
reflected by their fitted lines (of proportions) which are   
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(a) 

 
(b) 

Figure 6. Sample proportions and fitted proportions for Example 3: (a) The original data set with no outlier group; (b) 
Modified data with one outlier group. Note that in (a) the fitted lines are all the same for the MLE, SUE and M methods, 
while in (b) they are different. 
 

Table 3. Regression parameter estimates with standard errors in brackets for Example 3. 

Original data With one Outlier group 
Parameter 

MLE MLE M 
SUE 

 −4.80 (0.57) −4.07 (0.46) −4.80 (0.59) −5.24 (0.70) 0

1  0.09 (0.02) 0.08 (0.01) 0.09 (0.02) 0.10 (0.02) 

 
nearly the same as can be seen in Figure 6(a). For the 
modified data set, the SUE and the M method are robust, 
and their fitted lines are in Figure 6(b). The outlier has 
little or no influence on these fitted lines. 

Example 4: Non-linear model for enzymatic reaction 
data 

To analyse an enzymatic reaction data set, one of the 
models that Bates and Watts [12] considered is the well- 
known Michaelis-Menton model, a non-linear model 
given by  

0

1

= ,
x

y
x

 





             (16) 

where 0  and 1  are regression parameters, and the 
error 

LSE (dotted) and SUE (solid), and Figure 7(b) shows 
the residual plot from the SUE fit. Since there is only one 
mild outlier in the data, the estimates from the LSE and 
SUE are similar and they are reported in Table 4. 

We also use model (16) to conduct a small simulation 
study to examine the finite sample distribution of the 
SUE. We generate 1000 samples of size  where, 
for each sample, 10 observations are generated from the 
model with 0

= 12N

= 215 , 1 = 0.07  and a normally dis- 
tributed error with mean 0 and = 8 . The other 2 
observations are outliers generated from the same model 
but with a different error distribution; a normal error 
distribution with mean 30  and = 1 . The two out- 
liers are  outliers, and Figure 7(c) shows a typical 
sample with different fitted lines for the LSE and SUE. 
The estimated parameter values are also reported in 
Table 4. For each sample, the SUE estimates are com- 
puted with s ,  and . Figure 8 shows 
the histograms for 0 1

y

= 7n * = 4r = 63k
ˆ ˆ ˆ, ,

2  has variance  . The data set has  
observations of treated cases. Response variable  is 
the velocity of an enzymatic reaction and 

= 12N
y

x  is the 
substrate concentration in parts per million. To compute 
the SUE, we use the LSE method and the MSE for 

   and the sample size of  gS
, ,

. 
The dotted vertical lines are the true values for 0 1

  
and , respectively, and set  and s  which 
lead to  and . Figure 7(a) shows the 
scatter plot of  versus 

 = 2
  

= 10n

0
ˆ

 
and . Table 5 shows the biases and standard 
errors for the LSE and SUE based on the simulation 
study. The distributions of the SUE estimators 

m = 7n
= 6* = 4r 3k

y   and  x  and the fitted lines for the  
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(a)                                                        (b) 

 
(c)                                                        (d) 

Figure 7. Fitted regression lines for Example 4: (a) The LSE and SUE lines for the real data set; (b) SUE fit residual plot for 
the real data set; (c) The LSE and SUE lines for the simulated data with outliers; (d) SUE fit residual plot for the simulated 
data. Dotted lines in plots (b) and (d) are the ˆ3   lines. 

 

 
       (a)                                                              (b) 

 
        (c)                                                               (d) 

ˆ
0

ˆ
1 ˆFigure 8. Histograms for the SUE: (a) Estimator  ; (b) Estimator  ; (c) Estimator  ; (d) The sample size of gS . The 

vertical dotted lines are the true values for 0 1, ,   n and . 
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Table 4. Regression estimates with the standard errors in brackets for Example 4. 

Original Simulated 
Data set parameter 

LSE (s.e.) SUE (s.e.) LSE (s.e.) SUE (s.e.) 

0  212.68 (6.95) 216.62 (4.79) 210.35 (9.03) 217.30 (4.55) 

1  0.064 (0.008) 0.072 (0.006) 0.073 (0.014) 0.069 (0.007) 

  10.93 7.10 15.23 6.47 

 
Table 5. Results for the simulation study. 

Parameter LSE bias (s.e.) SUE bias (s.e.) 

0  −3.64 (8.84) 1.64 (8.93) 

1  0.0059 (0.0238) 0.0052 (0.0266) 

  5.70 (1.51) −0.20 (2.71) 

 

1̂  are approximately normal, and the biases are much 
smaller than that of the LSE. That of the estimated 
variance also looks like a 2  distribution. The average 
effective sample size of gS

= 10n

*, ,n r k

 is 9.93, which is very close 
to the number of good data points . There are a 
small number of cases where the effective sample size is 
12. These are likely cases where the “outliers” generated 
are mild or benign outliers and are thus included in the 
combined sample. 

5. Secondary Criterion and Other Variations  
of the Subsampling Algorithm 

The 5-step subsampling algorithm SAL ( s ) intro- 
duced in Section 2 is the basic version which is straight- 
forward to implement. In this section, we discuss modifi- 
cations and variations which can improve its efficiency 
and reliability. 

5.1. Alternative Stopping Criteria for  
Improving the Efficiency of the  
Combined Subsample gS  

In Step 5 of SAL ( ), the first  subsamples in  *, ,n r k *r

    1 2 , k

s

the sequence , ,A A  A *r are identified as   

good subsamples and taken union of to form gS

*r

*, ,n r k *

. How- 
ever, it is clear from the discussion on parameter selec- 
tion in Section 2.2 that there are likely more than  
good subsamples among the k  generated by SAL 
( s ). When there are more than r  good sub- 
samples, we want to use them all to form a larger and 
thus more efficient gS . We now discuss two alternatives 
to the original Step 5 (referred to as Step 5a and Step 5b, 
respectively) that can take advantage of the additional 
good subsamples. 

Step 5a: Suppose there is a cut-off point for the   
scores, say C , such that the jth subsample is good if 

and only if   Cj  . Then we define the combined 
subsample as  

  
 

:

=
Cj

g .j
j

S A
 
              (17) 

Step 5b: Instead of a cut-off point, we can use  1  as 
a reference point and take the union of all subsamples 
whose   scores are comparable to  1 . That is, for a 
pre-determined constant > 1 , we define the combined 
subsample as  

    
 

1:

=
j

g .j
j

S A
 
            (18) 

In both Steps 5a and 5b, the number of subsamples in 
the union are not fixed. The values of C  and   
depend on , n sn ,  ,   and the underlying model. 
Selection of C  and   may be based on the distri- 
bution of  -scores of good subsamples.  

If either Step 5a or 5b is used instead of the original 
Step 5, we need to ensure the number of subsamples 
taken union of in (17) or (18) is no less than . If it is 
less than , then the criterion based on C

*r
*r   or   may 

be too restrictive and it is not having the desired effect of 
improving the efficiency of the original Step 5. It may 
also be that the number of good subsamples is less than 

 and in this case, a re-run of SAL with a larger  is 
required. 

*r k

*rFinally, noting that the  subsamples making up 

gS
*r

k
, ,

 in Step 5 may not be distinct, another way to in- 
crease efficiency is to use  distinct subsamples. The 
number of good subsamples in a sequence of  distinct 
subsamples follows a Hypergeometric ( g T ) dis- 
tribution, where 

k L L

gL  is the total number of good sub- 
samples of size sn L

L
 and T  the total number of sub- 

samples of this size. Since T  is usually much larger 
than gL

k
*r *p

i

, the hypergeometric distribution is approxi- 
mately a binomial distribution. Hence the required  
for having  good subsamples with probability  is 
approximately the same as before. 

5.2. Consistency of Subsamples and Secondary  
Criterion for Improved Reliability of the  
Subsampling Algorithm 

jβ  and β  be the estimates given by (method Let   
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applied to) the ith and jth subsamples, respectively. Let 
 ,i jd β β  be a distance measure. We say that these two 

subsamples are inconsistent if c  where 

c  is a fixed positive constant. Conversely, we say that 
the two subsamples are consistent if c

 , >i jd dβ β
d

 ,i jd dβ β . 
Inconsistent subsamples may not be pooled into the com- 
bined sample gS  to estimate the unknown β . 

Step 5 of SAL ( ) relies only on the γ-ordering 
of the subsamples to construct the combined sample 

*, ,sn r k

gS . 
In this and the two variations above, gS  is the union of 
(  or a random number of) subsamples with the 
smallest γ-scores. However, an 

*r

gS  constructed in this 
manner may fail to be a union containing only good 
subsample as a small γ-score is not a sufficient condition 
for a good subsample. One case of bad subsamples with 
small γ-scores we have mentioned previously is that of a 
bad subsample consisting of entirely outliers that also 
follow the same model as the good data but with a dif- 
ferent β . In this case, the γ-score of this bad subsample 
may be very small. When it is pooled into the gS , 
outliers will be retained and the resulting SUE will not be 
robust. Another case is when a bad subsample consists of 
some good data points and some outliers but the model 
happens to fit this bad subsample well, resulting in a very 
small γ-score. In both cases, the  criterion is unable to 
identify the bad subsamples but the estimated 


β  based 

on these bad subsamples can be expected to be incon- 
sistent with that given by a good subsample. 

To guard against such failures of the  criterion, we 
use the consistency as a secondary criterion to increase 
the reliability of the SAL ( ). Specifically, we 
pool only subsamples that are consistent through a 
modified Step 5, Step 5c, given below.   



k*, ,sn r

iStep 5c: Denote by β  the estimated value of β  
based on ( )iA  where  and let = 1,2, ,i  k  ,i jd β β  
be a distance measure between two estimated values. 
Take the union  

 

*

=1

=
j

r

g i
j

S  ,A             (19) 

where  ji
A  ( j r

i i ) are the  first  consis- 
tent subsamples satisfying  

*1 2= , , ,i i

  ,x
j l

i ij l

i i
β β

cd

*r

, , ,

ma cd d  

for some predetermined constant  in  

    1 2 kA A A


. 
The  criterion is the primary criterion of the sub- 

sampling algorithm as it provides the first ordering of the 
 subsamples. A secondary criterion divides the γ- 

ordered sequence into consistent subsequences and per- 
forms a grouping action (instead of an ordering action) 
on the subsamples. In principle, we can switch the roles 
of the primary and secondary criteria but this may sub- 

stantially increase the computational difficulties of the 
algorithm. Additional criteria such as the range of the 
elements of β

k

 may also be added. 
With the secondary criterion, the first  subsamples 

taken union of in Step 5c has an increased chance of all 
being good subsamples. While it is possible that they are 
actually all bad subsamples of the same kind (consistent 
bad subsamples with small γ-scores), this is improbable 
in most applications. Empirical experience suggests that 
for suitably chosen metric 

*r

 ,i jd β β , threshold  and 
a reasonably large subsample size 

cd

sn = 0.5 1n N (say s  ), 
the first  subsamples are usually consistent, making 
the consistency check redundant. However, when the 
first  subsamples are not consistent and in particular 
when *r

, it is important to look for an explanation. 
Besides a poorly chosen metric or threshold, it is also 
possible that the data set actually comes from a mixture 
model. Apart from the original Step 5, a secondary criterion 
can also be incorporated into Step 5a or Step 5b. 

*r

*r
*i r

* = 1r
* = 1r

k

Finally, there are other variations of the algorithm 
which may be computationally more efficient. One such 
variation whose efficiency is difficult to measure but is 
nevertheless worth mentioning here requires only  
good subsample to start with. With , the total 
number of subsamples required ( ) is substantially re- 
duced, leading to less computation. Once identified, the 
one good subsample is used to test points outside of it. 
All additional good points identified through the test are 
then combined with the good subsample to form a com- 
bined sample. The efficiency of such a combined sample 
is difficult to measure and it depends on the test. But 
computationally, this approach is in general more effi- 
cient since the testing step is computationally inexpen- 
sive. This approach is equivalent to a partial depth func- 
tion based approach proposed in [13]. 

6. Concluding Remarks 

It is of interest to note the connections among our sub- 
sampling method, the bootstrap method and the method 
of trimming outliers. With the subsampling method, we 
substitute analytical treatment of the outliers (such as the 
use of the   functions in the M-estimator) with com- 
puting power through the elimination of outliers by re- 
peated fitting of the model to the subsamples. From this 
point of view, our subsampling method and the bootstrap 
method share a common spirit of trading analytical 
treatment for intensive computing. Nevertheless, our sub- 
sampling method is not a bootstrap method as our objec- 
tive is to identify and then make use of a single combined 
sample instead of making inference based on all boots- 
trap samples. The subsampling based elimination of out- 
liers is also a generalization of the method of trimming 
outliers. Instead of relying on some measure of outlying- 
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Appendix: Proofs of Theorems 1 and 2 

Proof of Theorem 1: 
Let gp  be the probability that random subsample of 

size sn  from NS
> 0p

* *, ,A A 

l
, ,A A 

> 0

*

 is a good subsample containing no 
outliers. Since , we have . s g

With probability 1, the subsequence 1 2  is an 
infinite sequence. This is so because the event that this 
subsequence contains only finitely many subsamples is 
equivalent to the event that there exists a finite  such 
that 1l l  contains no good subsamples. Since 

g , the probability of this latter event and hence that 
of the former event are both zero. Further, under the 
condition that 

n n

p

j nA S , *
jA  may be viewed as a ran- 

dom sample of size sn
* *, ,A A 

 taken directly without replace- 
ment from n . Hence with probability 1, 1 2  is 
an infinite sequence of random samples from the finite 
population n . It follows that for any 

S

S j nz S , the 
probability that it is in at least one of the *

iA  is 1. Hence 

n  . This and the fact that  imply 
the theorem.  
P S B  nB S 

*=B A

= 1

Proof of Theorem 2: 
We prove (4) by induction. 
For , since 1 1  which contains exactly = 1j sn  

points,  is a constant and  1W

   1= = .1
s

FE B
E W n

n n

= 1j
E

 

Hence (4) is true for . 
To find 2F , denote by B *

1A  the complement of 
*
1A  with respect to n . Then S *

1A  contains sn n  
points. Since 2

*A  is a random sample of size sn
S

 taken 
without replacement from n , we may assume it 
contains 1  data points from U *

1A  and 1sn U  data 
points from *

1A . It follows that  has a hypergeo- 
metric distribution  

1U

 , , ,s sn n n n1 HypergU          (20) 

with expected value  

 1E U = .s
s

n n
n

n

 
 
 

* *
2 1=B A A
1.U

   

 

2 1

2

= =

= 1 .

s
s s s

s

n n
E W n E U n n

n

n n
n

n

    
 

    
   

 

Since 2 , its number of data points  
 Hence  2 = sW n 

 

It follows that  
2

2 = 1 ,s
F

n n
E B

n

   
 

= 2j
 1 2j  

j  #

 

and formula (4) is also true for . 
Now assume (4) holds for some . We show 

that it also holds for . Denote by A  the number 
of points in A . Then  

  *= # = # =1 1 1j j j j j jW B B A W U  , where   1U j  is 
the number of good data points in jB 1 but not in Bj . 
The distribution of jU 1  conditioning on 1 1=j jW w   
is  

   1 1 1 1= Hyperg , , ,j j j j sU W w n n w n   

1j

  (21) 

By (21) and the assumption that (4) holds for  , 
we have  

      
 

 

 

 

1 1 1

1
1

1

1

1

=

=

=

= 1

= = 1 .

j j j j

j
j s

s
s j

j

s
s s

j j
s s

j

E W E W E E U W

n W
E W E n

n

n n
n E W

n

n n
n n n

n

n n n n
n n

nn

  












   
   

  




      
   
      

   

 

 

It follows that  

  j

= = 1 .
j s

F j

E W n n
E B

n n

   
 

j

 

Thus (4) also holds for , which proves Theorem 2.  
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