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Abstract 
Genomic analysis has emphasized the enormous genetic contribution to aut-
ism spectrum disorders, with over 80% of patients having changes demonstr-
able by high resolution chromosome (microarray) analysis or whole exome 
sequencing. An overview of these genetic changes demonstrates the expected 
role of synaptic transmission in autism and, together with clinical observa-
tions, emphasizes the importance of visual input on developing sensory sys-
tems and social responses. Neonatal recognition of autism predisposition 
through genetic analysis could allow sensory stimulation therapies during pe-
riods of neuroplasticity, an approach analogous to strabismus correction be-
fore the cortical dissociation of the deviant eye. 
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1. Introduction 

Recent advances in genetics and neuroscience, when focused by the appropriate 
clinical prism, reveal a glimpse of gold beneath the multicolored autism spec-
trum [1]. A profusion of low-frequency genetic changes [2] [3] [4] ends the dark 
of vaccine myths [5] and heralds a sunrise of early screening for autism suscep-
tibility. The new challenge is to integrate highlighted genes with neurodevelop-
mental pathways, achieving early diagnosis and remodeling of neural architec-
ture for the 1% of children who will become autistic [6]. This review updates 
autism genomics with an organizing hypothesis: Autism is an emergent disorder 
that reflects inborn errors of the sensory nervous system. We will catalogue ge-
netic changes and their roles in neural patterning or synapse transmission 
(Table 1 and Table 2), examine environmental influences that could interact 
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with these genomic changes (Table 3), emphasize that timely stimulation thera-
pies could remodel plastic neural pathways, and finish with an old medical dic-
tum: Study the patient. 
 

Table 1. Genetic alterations in patients with autism and without recognized genetic disorders. 

 
Genetic linkage 

(Lk) 
Microarray analysis (CMA) 

Gene-locus 
Association (A) 

Gene sequence (M) Gene expression (E) 

 p [46] p36- [49] p34.2- [50] p33 MTF1 [55] 
  

1 q21.1 [47] q21.1 ± RBM8A [51] [52] 
 

 
 

 q23q24.2 [48] q23.3q24.2-(t) [53] 
   

 
 

q41q42 ± [54] 
   

 p [56] p15p16.3- NRXN1 [58] [59] 
 

p16.3 NRXN1t [70] 
 

 
   

p13 RAB11FIP5t [71]  

 
 

q21q23 -/- SCN7A [60]  
  

2 q [57] q23.1 ± EPC2 [61] q24q33 STK39 [66] q24.2 SLC4A10t [72] 
 

 
  

q24 SLC25A12 [67] q24.3 SCN1Am [73] 
 

 q32 [57] q34q35- MAP2 [62] q31q32 ITGA4 [68] DLX1/2 [69] q31.1 RAPGEF4m [74] q31 GAD1 [76] 

 
 

q35-PAX3 [63] q37 [64] [65] 
 

q37.3 CENTG2m [75] q34q35 MAP2 [62] 

 
 

p26.2- OXTR [77] 
p26 ± CNTN4 [78] p24- [79]  

p26.2OXTRm [77] p26.2 OXTR [83] 

3 
 

p14.2 ± FHIT [4] 
 

p26p25 CNTN4t [81]  

 
 

q24 -/-SLC9A9, DIA1 [60] 
 

q21q22 MBD4m [82] 
 

 q25q27 [46] q29- PAK2 DLG1 [80] 
   

4 
  

p12 GABRA2 GABRA4 [84]  
 

 
 

q28.3 -/- PCDH10 [84] 
 

q21q25 EIF4Et [85] 
 

 
 

p15.2- [79] 
p13- NIPBL SLC1A3 [87] 

p15.2p14.1 SEMA5A [91] 
CDH9, CDH10 [92] SLC6A3 [93] 

 
p13p15 SEMA5A [91] 

SLC1A3 [95] 

5 q [86] q14q21- RASA1, MEF2C [88] q22.2 APC [86]  q12 PDE4D [96] 

 
 

q35.2/.3 ± NSD1 [89] [90] q31 PITX1 [94] 
 

q33 AMPA1 [95] 

 
  

q34q35.1 GABRB2 [84] 
 

q34q35 GABRA1 [84] 

 
 

p23- [4] p21.3 -/- RNF8 [4] p21.3p21.2 GLO1 [97] 
  

6 q21 [56] 
 

q15 GABRR2 [84]  
 

 
  

q16.3 GRIK2 [98] 
 

q21q23.2 GJA1 [99] 

 
 

p22.1+/t ACTB [104] [105] p15.3 HOXA1* [109] 
  

 
 

p21.1- MACC1 [4]  
  

 q21.13 [60] q11- [106] q11.23+ [62] q22 RELN [110] q11.2 KIAA0442t [116] q22 RELN [121] 

7 q22 [100] q21q22.3- [107] q31 FOXP2* [111] MET [112] q31 METm [117] 
 

 q22q32 [101] q31-t [108] q35q36 CNTNAP2 [113] q31.3 CADPS2m [118] 
 

 q31.32 [100] 
 

q36 EN2 [114] q31.1q31.3 ST7t [119] 
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 q31q34 [102] 
 

q31/q31.2 WNT2* [115] q32 SSBP1 T2R3t [120] 
 

 q35q36 [103] 
    

8 
 

p23.1- MCPH1 [122] [123] q21.13 FABP5 (FABP7) [125] q21MMP16t [117]  

 
 

q22.1q23- [124] 
 

q23 CSMD3t [124]  

9 p13.1 [60] 
    

 q34.3 [60] 
   

q34.3 GRIN [95] 

 
 

p12p11- WAC [126] 
  

p11.23 GAD2 [131] 

10 
 

q11.2- CHAT SLC18A3 [127] 
 

q11.1TRIP8 REEP3t [129] 
 

 
 

q22q23- [128] 
 

q23.31 PTENm [130]  

11 p12p13 [60] p12p13- [4] p13 BDNF [132] p15.5 SCTm [133] 
 

12 q14.2 [134] p13.33/.32- CACNA1C [135] q14q15 AVPR1A [136] p13.3 CACNA1Cm [137] 
 

13 q12.2 [60] 
  

q13.2 NBEAt [139] 
 

 q14.2q14.1 [138] q14.2q14.1- [4] 
 

 
 

14 
 

q11.2- CHD8 [4] [140]  
  

 q11q13 [141] q11.2 ± CYFIP1, NIPA1 [142] 
q11.2q12 GABRB3* GABRG3 

[149]   

15  
q11q13+ UBE3A [60] [143] 

   

 
q13.2 ± CHRNA7 [4] [144] q11q13 UBE3A [150] q13.1 APBA2m [151] 

 

 
 

q22- PTPN9 [145] q24- [146] 
q25.2 [147] q26qter- [148]    

 p13 [152] p11.2 ± SH2B [3] [4] [153] p11.2 PRKCB1 [158] 
 

p11.2 PRKCB1 [158] 

16 
 

p13.1 ± NDE1 [4] [154] p13 GRIN2A ABAT [159] p13.3 A2BP1t [160] 
 

 
 

q23.2- CMIP [155] 
q24.2/.3- [156] [157]  

 
 

 
 

p13.1- [162] p13.3+ [163]  
  

17 q11 [60] p11.2 ± NF1 [164] [165] q11.1q12 SLC6A4 [167] q11.1q12 SLC6A4m [169] 
 

 q21 [161] q12- [166] q21.32 ITGB3 [168] 
 

 

18 
 

q12-t [170] 
  

q11.2q12 AQP4 [171] 

19 p [172] p13.13/.12- AKAP8 [173] 
   

20 
 

p13- [4] 
   

21 p13q11 [174] 
q21 NCAM2 [175] 
q21.1q21.3- [176]    

22 
 

q11.2 ± [177] 
 

q13.1 ADSLm [179] 
 

 
 

q13.3- SHANK3 [4] [178] 
 

q13.33 SHANK3m [180]  

 
 

p22.33- NLGN4 [181]  p22.33 NLGN4m [188] 
 

 
 

p22.2p22.3 ± STS, NLGN4, 
VCX cluster [182]  

p21.3 IL1RAPL1mt [189]  

X 
 

p22.12+ RPS6KA3 [183] p11.23 MAOA [187] p21.3 ARXm [190]  

 q13 [1] [8] p11.22- PHF8 WNK3 [4] [184]  q13 NLGN3m [191] 
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q12q13.3+ [185]  q24q26 UPF3Bm [192] 
 

 
 

q13q21+ [186] 
 

q28 FMR2m [193]  

 
 

q28+ [194] 
 

q28 MECP2m [194] [195]  

Y 
   

q11.2 NLGN4Ym [196]  

Genetic loci are listed as p for chromosome short arm, q for long arm, numbers for bands, gene symbols as in Online Mendelian Inheritance in Man 
(http://www.omim.org/) referenced with OMIM numbers in the appended Table A; linkage includes traditional linkage studies focused on one locus and 
whole genome association linkage studies that analyze as many as 200 loci at once; microarray analysis loci defined by + for microduplication, - for micro-
deletion, -/- for homozygous microdeletion, -t for translocation and microdeletion; gene locus-association, allele association study with specific genes indi-
cated (*when negative association studies also reported); gene sequence studies show m for mutation, t for a gene disrupted by translocation; gene expres-
sion involves measurement of RNA or protein species, often in brain.  

 
Table 2. Summary of loci implicated in autism.  

Locus Implicated genes grouped by potential mechanism Genetic approach 

 Pattern Synapse-channels Synapse-metabotropic Synapse-adhesion Immune Unknown/other Lk CMA A M E 

Total       28 69 28 35 13 

1q21       x x    

1q23       x x    

2p16p15    NRXN1        

2q23q24  
SCN7A, SCN1A, 

SLC25A12, SLC40A1 
    x x  x  

2q31q32 
DLX1 
DLX2 

SLC40A1 RAPGEF4 GAD1  ITGA4  x x x x x 

2q34q37 PAX3  MAP2   CENTG2  x  x x 

3p26    CNTN3  OXTR  x  x x 

3q24q29 DLG1 NHE9/SLC9A9 PAK2    x x    

5p15p13    SEMA5A    x x  x 

5q31q35 PITX1  
AMPA 1 GABRB2 

GABRA1 
   x  x  x 

6p23p21      GLO1 RNF8  x x   

6q15q21   GABRR2 GRIK2 GJA1   x  x  x 

7q21q22 NDE1  GRIN2A ABAT   A2BP1 RELN x x x x x 

7q31q36 
EN2 MET 

WNT2 
 CADPS2 CNTNAP2,  FOXP2 x x x x  

8q21q23        x x x  

9q34   GRIN1    x    x 

10q11   REEP3   TRIP8  x  x  

10q22q23        x  x  

11p15p12 BDNF     SCT x x x x  

12q14q15  CACNA1C    AVPR1A x  x   

13q12q14    NBEA   x x  x  

15q11q13   
GABRB3 GABRA5 

GABRG3 
CYFIP2  UBE3A APBA2 x x x   

https://doi.org/10.4236/ojpsych.2018.83023
http://www.omim.org/


G. N. Wilson, V. S. Tonk 
 

 

DOI: 10.4236/ojpsych.2018.83023 267 Open Journal of Psychiatry 
 

Continued 

16p13p11   PRKCB1    x x x x x 

17q11q12 RAI1 SLC6A4     x  x x  

17q21     ITGB3  x  x   

18q12  AQP4      x   x 

22q11q13    SHANK3  ADSL  x  x  

Xp22    NLGN4 IL1IRAPL1 VCX  x  x  

Xp11   WNK3 MAOA   PHF8  x x   

Xq13    NLGN3   x   x  

Loci implicated by 2 genetic approaches are taken from Table 1, loci and gene symbols explained in the appended Table A with numbers assigned in Online 
Mendelian Inheritance in Man (http://www.omim.org/). Loci implicated by all 5 genetic approaches are highlighted in dark grey, those with 3 - 4 in light 
gray. Genetic approaches include Lk, whole genome linkage/association; CMA, aCGH-microarray analysis; A, association; M, mutation defined by DNA 
sequencing; E, expression studies (usually in brain).  

 
Table 3. Potential environmental factors highlighted by autism-related genes. 

Level of neural alteration Autism-related genes Potential environmental factors 

Sensory receptors 

Olfactory 
Retinal 

Cochlear 
Tongue, gut mucosa 

Pain, touch 

Na, solute channels 
SCN7A, SCN1A, SLC25A12, SLC40A1, 

SLC6A4 
Na-H exchanger NHE9/SLC9A9 

Aquaporin AQP4 
Ca channels CACNA1C 

Sensory overload 
Prenatal U/S, other radiation 

Urban noise, home media 
Gut allergens, toxins, bacteria 

Sensory deprivation 
Decreased sunlight 

Synapse connections 

Sensory receptors 
Presynaptic 

Na, solute, Ca channels 
Cell adhesion NXRN1 Nutritional deficiencies 

Calcium, vitamin D deficiencies 
Essential lipids, fatty acids 

Decreased breast-feeding initiation and duration Postsynaptic 

Glutamate, GABA receptors 
GABRR2 GRIK2 

Cell adhesion-neuroligins 
NLGN3, NLGN4, NLGN4Y 

Formation of sensory maps, pathways (end-organ to thalamus, superior colliculus to cortical regions);  
central deficits (sensory cortex, amygdala) 

Pathway architecture 
Sensory integration 

 
Light deprivation (as per myopia) 

Sensory overload, deprivation 

Gut-brain connections 
Integrins ITGA4 ITGB3 

Interleukin receptor IL1IRAPL1 
Immune/inflammatory factors 

Rare vaccine reactions 

Neuroendocrine Thyroid receptor TRIP, Secretin SCT Maternal hypothyroidism, diabetes 

Parental/social interaction (infant 
touch, gaze stimulation) 

Oxytocin receptor OXTR 
Maternal depression/drug use 

Community, family deficiencies 

Gene symbols are defined in appended Table A. 

 
Autism is like other behavioral disorders in exhibiting multifactorial determi-

nation [7] [8], its altered gaze and genetic changes overlapping with schizophre-
nia [9] [10]. Foucault [11] recognized the dichotomy between a medicine of spi-
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rit versus that of substance: “[The advent of pathology] … meant that the rela-
tion between visible and invisible—which is necessary to all concrete know-
ledge—changed its structure, revealing by gaze and language what had pre-
viously been below and beyond their domain.”  

There is a parallel between the flawed gaze and interaction of autistic children 
and the searching gaze of their students, striving to merge mute with savant in a 
language of mind and molecules. 

2. The Rationale for Sensory Deficits  

Frequent encounters with patients having autism and early visual deficits, sup-
ported by research demonstrating face perception changes [12] emphasize vision 
as a key problem in autism [13] [14] [15]. Certainly vision is pivotal for child 
development, perhaps foreshadowed by its catalysis of novelty during the Cam-
brian explosion [16], and recapitulated when a child’s poor eye contact forecasts 
altered communication and social interaction. The optic nerve does contain 38% 
of cranial nerve fibers [17] but broader neurosensory disruption is suggested by 
the hypersensitivities of hearing or touch that often precede an autism diagnosis 
[18].  

The many disorders with neurosensory deficits and autism include mixed 
hearing loss, strabismus, cataracts, or nystagmus in Down, Prader-Willi, Wil-
liams, and other chromosomal syndromes [7] [8] [19]. Sensory compensation 
may be evidenced by hyperacusis in Williams syndrome and by photophobia in 
Smith-Lemli-Opitz syndrome [20]. Vision impairment and autism are notable in 
aniridia, Leber amaurosis, Mobius syndrome, or thalidomide embryopathy [15] 
and, with some controversy about autism diagnosis, in the congenitally blind 
(10% - 15% autism prevalence) [21] [22] or deaf (7% autism prevalence with re-
ciprocal frequencies of 7.9% - 18.5% mild/moderate and 3.5% profound hearing 
loss in autistic children) [23]. Congenitally blind children also have delayed ma-
ternal attachment, articulation problems, idiosyncratic language (“verbalisms”), 
stereotypy (repetitive movements or “blindisms”), and exploration of space with 
their hands (haptic perception) that mimic symptoms of autism [21]. 

Causative sensory deficits would clearly include processing and attention since 
numerous studies have pointed to altered sound recognition in autism that re-
lates to the flat voice (altered prosody) [24] [25]. Various techniques demon-
strate disturbed connectivity [26] including cortical disorganization with ma-
crocephaly, small corpus callosum, and small cerebellum [27]. Altered sensori-
motor connections could explain the fine motor incoordination of Asperger dis-
order, just as altered brain lateralization and lack of cortical dominance [28] can 
account for the cardinal language deficits that are accentuated by sensory depri-
vation [29]. The 27% incidence of autism in premature infants [30], increasing 
with lower birth weight and the presence of retrolental fibroplasia, emphasizes 
the importance of sensory pathway development and provides an opportunity to 
explore sensory measures for early diagnosis and therapy.  
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3. Neurosensory Measures Can Refine Autism Classification  
and Provide Earlier Diagnosis of Susceptibility 

The classic autism triad described by Kanner in 1943 consisted of abnormal ver-
bal/nonverbal communication, abnormal social interaction, and repetitive 
movements or routines, expanded a year later by Asperger to include social im-
maturity, eccentric behaviors, and restricted interests in children with normal 
cognitive function [31]. The DSM IV grouped several autism conditions with 
Rett syndrome in a pervasive developmental disorder (PDD) category, a mis-
match improved by DSM V that also replaced Asperger disorder with the de-
scription of high-functioning autism [32] [33]. Insightful clinical delineation 
should separate patients with autism and global intellectual disability (ID) like 
those with Rett or fragile X syndromes [34] [35] from those with selective defi-
cits (perhaps denoted as pure or primary autism). Defining essential autism 
pathways would allow explanation of its significant frequency in almost any dis-
order with ID, just as the focus on young people with heart attacks defined ge-
netic hypercholesterolemia [36] and explained its occurrence in diabetes melli-
tus.  

Autism diagnosis is currently based on subjective observation and parental 
questionnaires, with intentions to bring diagnosis from the standard age of 3 - 4 
years to 18 months [31]. Novel neurophysiologic and neuro-imaging techniques 
[27] [37] could provide objective diagnosis much earlier, defining a new catego-
ry of selective developmental disorders (SDD) based on subtle neurosensory 
deficits. Eye-tracking technologies reveal different gaze behaviors at age six 
months [38] illustrating a potential for early functional diagnosis heralded by 
genomic screening. This would be followed by remodeling of plastic neural 
pathways [37] [39] by stimulation therapies analogous to the eye patch for stra-
bismus [40] or the cochlear implant for deafness [41]. A more definitive classifi-
cation would include the timing of autistic symptoms, extent of ID, types of 
neurosensory deficits, and underlying disorders as presently known or newly de-
fined.  

4. The New Genomics of Autism  

Evidence of polygenic-environmental interaction in autism has progressed from 
indirect family studies (60% - 90% concordance rates for monozygotic twins, 
5% - 15% for sibs) [7] [8] to direct demonstration of altered genes or chromo-
some regions by molecular techniques. The presence of autistic symptoms in 
most chromosomal or genetic disorders that cause significant ID is now com-
plemented by CGH-microarray analysis (CMA) [2] [3] [4] and candidate gene 
association/DNA sequencing studies [42] [43] that identify genetic variations in 
high-functioning autism. Copy number variants (CNVs) are detected by CMA 
in 5% - 10% of autistic children who had prior normal karyotypes, [2] [3] [4], 
revealing new candidate genes within aneuploid segments [44] that cause ex-
tremely variable phenotypes [45].  
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Table 1 presents a detailed list of chromosome regions and/or gene sequences 
highlighted in patients diagnosed with autism who do not have recognized con-
ditions like Rett or fragile X syndromes [35]; gene symbols in Table 1 and Table 
2 are explained in the appended Table A. Placing the autism diagnosis first, then 
the genetic finding avoids controversy about whether disorders like fragile X 
cause behaviors that merit a typical autism diagnosis [19]. Chromosome loci and 
genes are ordered by chromosome position (p for short arm, q for long arm, 
numbers reflecting bands) and partitioned in five columns based on the tech-
nology employed—first by genetic linkage that is now accelerated by whole ge-
nome association studies [43], second by microarray analysis/CMA [2] [3] [4], 
third by association with particular genes in the manner of the HLA B27 marker 
with ankylosing spondylitis [43], fourth and most convincing by showing muta-
tions or translocations that disrupt particular genes [44], and fifth by showing 
altered gene expression [44]. As reviewed previously [2] and summarized in Ta-
ble 2, Table 1 lists 69 genomic regions solidly implicated in autism by recurring 
microduplications or microdeletions detected by microarray analysis and 
another 35 documented by gene sequence mutation or disruption (transloca-
tion), supporting the polygenic inheritance implied by population studies. Less 
definitive are the loci implicated in autism by linkage (28 loci), association (28 
loci), or expression studies (13 loci), the latter encompassing the sparsely ex-
plored domain of epigenetic influence [34].  

The left column of Table 2 lists loci implicated by two or more genetic ap-
proaches, drawn from the detailed genetic changes listed in Table 1. Genes 
within the implicated regions listed in columns related to their potential influ-
ence on brain development and function, their symbols defined in appended 
Table A. Table 2 lists 30 loci implicated by at least two linkage, genomic, or ex-
pression techniques with 3 regions (2q31q32, 7q21q22, and 16p11p13) hig-
hlighted by all 5 genetic approaches and others (2q, 3p, 5q, 7q, 15q, 16p, 17q, 
and X) implicated by several. Genes within these susceptibility domains can be 
grouped by their potential regulation of early pattern, synaptogenesis, or other 
functions, discussed below from the perspective of neurosensory development.  

Early pattern genes. Correlating with sensory importance [16] is the out-
side-in development of the nervous system, beginning with dorsal ectoderm that 
becomes midline neural plate with flanking neural folds and neural crest. Poten-
tial neural patterning genes include PAX3 (paired-box gene 3), PITX1 
(paired-like homeodomain transcription factor-1), EN2 (engrailed-2), WNT2 
(wingless-type MMTV integration site family, member 2), and the MET pro-
to-oncogene among others in Table 2. PAX3 murine [197] and WNT3 avian 
[198] homologues are expressed in dorsal tube/neural crest, while cell adhesion 
mediated by cadherins [199] and the FHIT fragile site/tumor suppressor (that 
influences β-catenins within WNT pathways) [200] is involved in neural tube 
and neural crest patterning. Anterior signals amplify forebrain regions and dor-
sal sensory organs including special optic sulci and otic pits that appear even 
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before the anterior neuropore is closed at 25 days post-conception. Segmenta-
tion into fore- and hind-brain segments involves the sonic hedgehog SHH gene 
that is deleted in some cases of holoprosencephaly malformation [201] and sig-
nal molecules in the HOXA2, bone morphogenetic protein (BMP), and hedge-
hog families guide dorsoventral differentiation of the spinal cord, telencephalon, 
and hypothalamus [202]. The SHH, BMP, and WNT genes all have roles in pat-
terning the cerebral cortex or pallium [201] [202]. 

Cephalic proliferation of the dorsal neural tube and the embryonic head fold 
bring dorsolateral optic and otic vesicles to their respective adult anterior and 
lateral positions. As the otic vesicles migrate ventrally, the branchial arches/pha- 
ryngeal grooves ascend anteriorly and reach toward olfactory and cochlear or-
gans with mouth and ear canals. While the optic cups induce surface ectoderm 
to form the surface structures of vision (cornea, iris, lens), the olfactory nerves 
extend to cluster at the nasal cribiform plate near palate and tongue. The sensory 
organs of sight, smell, hearing, and taste all derive from neurectoderm and pro-
duce analogous neuron patterns, each with unique metabotropic receptors [37] 
that extend sensory maps from receptor to tract to processing center to sensory 
cortex [203] [204] [205] [206], each with unique connections that will be custo-
mized by experience-directed neural activity [37] [39] [203] [204] [205] [206].  

Concordant molding of cerebral and optic pattern is illustrated by the sin-
gle-eyed cyclops malformation that reflects underlying holoprosencephaly, an 
anomaly caused by mutations in the hedgehog pathway or by defective choles-
terol synthesis in Smith-Lemli-Opitz syndrome with its frequent autism [20] 
[201]. The cholesterol moieties required for SHH action [201], like folic acid 
prevention of neural tube defects and the fetal brain anomalies with maternal 
diabetes, establish links between nutrients and brain development analogous to 
the enhancement of visual acuity and cognitive outcomes by essential fatty acids 
[207]. Cephalic enlargement relates to other genes listed in Table 1—NDE1 in-
teracts with DISC1 (deleted in schizophrenia) to increased cortex gyral differen-
tiation and size [208] while mice with PTEN mutations have macrocephaly 
[209]; humans with the latter mutations can manifest macrocephaly and autism 
[210].  

5. Synapse and Connectivity Genes 

The human brain contains over 100 trillion synapse units that are organized by 
morphogen, guidance, and cell adhesion molecules to produce highly specific 
neural connections and pathways [37] [204]. Neurons employ successive depo-
larization of Na/K chloride voltage-gated channels to jump synapses electrically 
or release neurotransmitters that trigger responses on the post-synaptic mem-
brane [37]. Genes from Table 1 and Table 2 that could regulate sensory receptor 
activation and synapse transmission include those encoding channel proteins 
SLC40A1, SCN7A, SCN1A, SLC25A12, SLC40A1 NHE9/SLC9A9 (SCN for so-
dium channel, SLC for solute carrier family/transporter) plus ACP4 (aquaporin 
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4). Others encode the metabotropic receptors/regulators GRIN1, GRIN2A (glu-
tamate receptors), the GABRA1, GABRR2, GABRB3, GABRA5, and GABRG3 
gamma-aminobutyric acid receptors, and the calcium-dependent activator pro-
tein CADPS2. Several encode cell adhesion molecules including NRXN1 (neu-
rexin 1), CNTN3 and CNTNAP2 (contactin or contactin-associated proteins), 
GJA1 (gap junction alpha-1/connexin 43), SEMA5A (semaphorin 5A), SHANK3 
(SH3 and multiple ankyrin repeat domains 3), and the neuroligins NLGN4 and 
NLGN3. 

Autism often involves altered connectivity [26] [35] but the challenge is to as-
sociate specific synaptic pathways with specific disorders and molecular deficits, 
e. g., the autism-associated neuroligin mutation that depletes its protein at neu-
ronal surfaces [211]. Certain neurotransmitters like GABA are not only message 
but medium, playing structural roles in synapse maturation and stabilization. 
Down-regulation of the GABA-A alpha3 subunit decreases the number of GA-
BAergic inhibitory synapses with mismatched synapse formation [212] while 
abnormal clustering of neuroligin-2 was observed when postsynaptic mem-
branes were deprived of GABA-A receptors [213]. In vivo techniques [27] [37] 
should allow localization of altered receptors and synapse transmission in autis-
tic patients.  

6. Exploring Stimulation Therapies  

As correlation of sensory pathways with particular synaptic molecules 
progresses, knowledge of experience-directed sculpting of these pathways is also 
expanding. Modulation of neuron clusters called barrels in the sensory cortex of 
rats can be achieved by ablation or stimulation of particular snout whiskers, and 
the plasticity of these barrel maps documented by in vivo photon or fluorescent 
imaging rather than postmortem histology [204]. The sculpting of sensory cor-
tex maps in response to passive or training inputs is achieved by rapid long-term 
potentiation or depression of excitatory (NMDA/glutamate) and inhibitory 
(GABA) synaptic circuits as well as by slower rearrangement of synaptic connec-
tions [204] [205] [206]—processes involving genes that are well-represented in 
Table 1. A critical junction of change seems to be the post-synaptic dendritic 
spines, elements of excitatory sensory synapses that enlarge or contact in con-
junction with synapse electrical activity [204]. The dependence of oriented cor-
tex networks on sensory stimuli can be demonstrated by exposing kittens to one 
visual stimulus orientation or by connecting developing ferret retina to their au-
ditory cortex; the kittens demonstrate a customized visual cortex and the ferrets 
an auditory cortex patterned by visual stimuli [204].  

Modeling of the sensory cortex by perception of stimuli can also be demon-
strated by fMRI studies of primates. Stimulation of the monkey frontal eye field 
produces general activity in the visual cortex, but production of topographically 
specific activity patterns required appropriate visual stimuli [214]. Objects also 
elicit different fMRI activities in the human hippocampus if they are perceived 
as different, providing a mechanism for visual “pattern separation” that simpli-
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fies storage in memory [215]. Moreover, the ability of visual stimuli to elicit re-
producible, topographically unique fMRI patterns in the human visual cortex 
required conscious recognition of the stimulus as a face or house; control images 
that exploited binocular fusion to obliterate image recognition elicited non-  
specific fMRI activity in face-sensitive visual areas [216]. Completing the loop is 
a modification of visual perception by prior, experience-sculpted activity pat-
terns—“predictive codes” that anticipate and facilitate recognition of familiar 
stimuli [217]. Such experiments preview neurodevelopmental cycles—input to 
perception to memory/experience to tailored perception—that would progres-
sively mold the sensory processing maps used for language response and social 
interaction.  

Developmental, experience-directed sculpting of sensory pathways is also 
demonstrated by perception of facial emotional expressions [218] and individu-
als with autism do show alterations in face and face emotion perception [12] 
[219] [220] with the expected changes in cortical connectivity [221] [222]. 
Changes in auditory processing and pitch discrimination [24] [25] have been 
demonstrated, along with impaired perception of linguistic and social auditory 
stimuli that may relate to song practice and, in birds, the FOXP2 gene [223]. 
Subtle auditory processing deficits could relate to noise sensitivities and musical 
savant tendencies in Williams syndrome and other disorders with frequent aut-
ism symptoms [223] [224] [225] [226].  

Mirror neuron alterations have been claimed [224] or denied [225] in autism, 
but such changes, guided by the sensorimotor cortex [226], could certainly lead 
to altered voice inflection, language idiosyncracies, fine motor differences, and 
production of repetitive movements by sensorimotor disconnection. The smaller 
cerebellum [227] that stands out among cortex and amygdale volume differences 
in autism [27] may seem to contradict the hypothesis of sensory deficits unless 
coordinated development of sensory and motor pathways is recognized [228].  

The preceding information shows how congenital deficits in detecting or 
processing sensory inputs would have cumulative effects, sometimes exacerbated 
by environmental factors, and emerge as the cardinal communication and social 
impairments of autism. A clear research pathway would combine genetic 
screening for autism susceptibility with neurosensory measures to document 
early sensory/perception deficits. Novel stimulation therapies to promote genesis 
of face or voice recognition pathways, not to be confused with discredited ocular 
therapies [229], would be employed before critical periods of neuroplasticity 
have expired. The occasional successes of sensory stimulation [18] or Applied 
Behavior Analysis/ABA [31] therapies may foreshadow more targeted strategies 
that make primary autism as treatable as strabismus [40] or deafness [41]; these 
approaches could substantially improve function in autistic children with global 
ID.  

7. Genomic Guides to Environmental Factors 

Autism-associated genes provide a rationale approach to environmental influ-
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ence, approached through the framework of gene-environmental interactions 
and pharmacogenomics (Table 3). Sensory injury by overwhelming inputs could 
implicate increasing use of fetal ultrasound [230], higher radiation exposure 
[231] or urban noise. Reduced sensory inputs could implicate reduced exposure 
to outdoor light as suggested for myopia [232] and proven for vitamin D defi-
ciency [233]. These factors highlight several calcium-dependent genes from Ta-
ble 1 (the CACNA1C calcium channel, the CADPS2 calcium-dependent activa-
tor protein for secretion, and several neurotransmitter or adhesion-related 
genes). Deficits in gut sensation from smell/taste in the upper tract to mucosal 
receptors in the lower tract could explain early feeding and gastrointestinal 
problems that stoked fears of vaccine injuries in autism [5] [234] a “gut-brain” 
connection or immune pathogenesis [34] [235] involving nutrient deficiencies, 
food allergens, and toxins could be examined using candidate genes like ITGB3 
(integrin beta-3) or IL1IRAPL1 (interleukin1 receptor accessory protein-like, 
calcium-related) from Table 1. However, recognition of the low frequency of 
any single causal factor should restrict trial of alternative therapies/elimination 
diets to those with the relevant genetic changes.  

A complex area of environmental interaction concerns abnormal socialization 
as a core symptom of autism. Social deficits may relate to a lack of joint atten-
tion—the parallel processing of information about one’s own and other people’s 
visual attention—that begins developing at 4 - 6 months of infancy [236] [237]. 
Joint attention is the beginning of self-other perception, and it may be depen-
dent on early social visual pursuit that can be measured by eye-tracking [27] 
[237] Although most would reject Bettleheim’s emphasis on “refrigerator moth-
ers” [234], coincidence of loci for schizophrenia and autism including the cad-
herin pathway [9] could underlie altered maternal-infant bonding and decreased 
infant stimulation. Altered face processing in parents of autistic children [238] 
and trends toward isolated family units and single parents could be additional 
factors that combine with genetic predisposition to increase autism prevalence.  

8. Study the Patient  

Now that whole genome techniques have defined chromosome regions and 
genes associated with autism as a broad phenotype, correlation of genetic 
changes with scrupulously defined patients is needed [239]. Trends toward pro-
prietary genomic databases should be reversed so that benign CNVs and muta-
tions can be distinguished from those related to autism, with or without global 
ID. The contribution of individual genes within aneuploid segments, easily iden-
tified through appropriate genome browsers [44], will likely require CSF 
RNA/protein expression studies [235]. These gaps in genomic knowledge em-
phasize that prenatal genetic screening should target autism as susceptibility ra-
ther than disease, coupled with novel therapies modeled by early enzyme sup-
plementation in cystic fibrosis [240].  

Clinical delineation, with a focus on essential autism as outlined here, is the 
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perhaps the greatest asset for future research. Autism registries should be viewed 
as dynamic resources where calibrated natural histories, morphologic changes, 
and behavioral symptoms are regrouped using the latest neurogenetic tech-
niques. Particularly important is the single case, for patients are the elements of 
medicine and case presentations its essence, case reports [88] pure cultures 
compared to the mixed flora of group studies. Among the large registries may be 
some striking child who reveals a key scotoma of autism like the amnesiac H. M. 
[37] did for memory and the lobectomized Phineas Gage did for behavior [241]. 
As the geneticist Richard Goldschmidt stated [242]: 

“Progress in biology is derived from cooperation of observation, experiment, 
and constructive thinking and none of these can claim primary. A good observa-
tion may lead to results which a meaningless experiment cannot achieve, and a 
good idea or analysis may accomplish with one strike what a thousand experi-
ments cannot do. This truism, obvious as it is in the history of all sciences, is 
frequently forgotten in this era of overestimation of new techniques, which are 
tools of progress only when in the hands of constructive thinkers. We must 
therefore take whatever material is available in any field and try to use it to its 
full extent, subject to critical evaluation.” 
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Appendix 
Table A. Key to gene symbols in Tables 1-3. 

A2BP1, ataxin 2-binding protein 1 (605104); 16p13 

ABAT, 4-(gamma)-aminobutyrate transferase (137150); 16p13.3 

ACTB, actin-beta (102630), 7p22.1 

ADSL, adenylosuccinate lyase (608222); 22q13.1 

AKAP8, A-kinase anchor protein 6 (604692) 19p13.12 

AMPA 1, GRIA1 glutamate receptor, ionotropic (138248); 5q33 

ANKRD11, ankyrin repeat domain-containing protein 11 (611192); 16q24.3 

APBA2, amyloid beta A4 precursor protein-binding, family A (602712); 15q13.1 

APC, adenomatous polyposis coli (611731); 5q21q22 

AQP4, aquaporin 4; (600308) 18q11.2q12.1 

ARX, aristaless-related homeobox, X-linked (300382); Xp22.13 

AVPR1A, arginine vasopressin receptor 1A (600821); 12q14q15 

BDNF, brain-derived neurotropic factor (115505); 11p13 

CACNA1C, calcium channel, voltage-dependent, L type, alpha-1C subunit (114205); 12p13.3 

CADPS2, calcium-dependent activator protein for secretion 2 (609978); 7q31.3 

CDH9, cadherin 9 (609974); 5p14 CDH10, cadherin 10 (604555); 

CDH10, cadherin 10 (604555); 5p14p13 

CENTG2, centaurin, gamma-2 (608651); 2q37.3 

CHAT, choline acetyltransferase (118490); 10q11.23 

CHRNA7, cholinergic receptor neuronal nicotinic alpha polypeptide 7 (118511); 15q14 

CNTN3, contactin 3 (601325); 3p26 

CNTN4, contactin 4 (607280); 3 p26p25 

CNTNAP2, contactin-associated protein-like 2 (604569); 7q35q36 

COMT, catechol-o-methyltransferase (116790); 22q11.2 

CSMD3, cub and sushi multiple domains 3 (608399); 8q23.3 

CYFIP1, cytoplastmic FMRP-interacting protein 1 (606322); 15q11 

DIA1, CXORF36, deleted in autism 1; chromosome 3 open reading frame (612200); Xp11.3 

DISC1, disrupted in schizophrenia 1 (605210); 1q42.2 

DLG1, discs large, drosophila, homolog of (601104); 3q29 

DLX1, distal-less homeobox 1 (600029); 2q32 

DLX2, distal-less homeobox 2 (126255); 2q32 

EIF4E, eucaryotic translation initiation factor 4E (133440); 4q21q25 

EN2, engrailed 2 (131310); 7q36 

EPC2, enhancer of polycomb, Drosophila, homolog of, 2 (611000); 2q23.1 

FABP5; FABP7, fatty acid binding protein 5 (605168); 8q21.13; and 7 (602965); 6q22.31 

FHIT, fragile histidine triad gene, fragile site (601153); 3p14.2 
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Continued 

FMR2, fragile site, folic acid type, rare, FRAXE (300806); Xq28 

FOXP2, forkhead box P2 (605317); 7q31 

GABRA1 gamma-aminobutyric acid receptor, alpha-1 (137160); 5q34q35 

GABRA2 gamma-aminobutyric acid receptor, alpha-2 (137140); 4p13p12 

GABRA4 gamma-aminobutyric acid receptor, alpha-4 (137141); 4p13p12 

GABRA5, gamma-aminobutyric acid receptor, alpha-5 (137142); 15q11.2q12 

GABRB2 gamma-aminobutyric acid receptor, beta-2 (600232); 5q34q35 

GABRB3, gamma-aminobutyric acid receptor, beta-3 (137192); 15q11.2q12 

GABRG3, gamma-aminobutyric acid receptor, gamma 3 (600233); 15q11.2q12 

GABRR2, gamma-aminobutyric acid receptor rho-2 (137162); 6q14q21 

GAD1, glutamic acid decarboxylase-1 (605363); 2q31 

GAD2 (glutamic acid decarboxylase-2 (138275); 10p11.23 

GJA1, gap junction protein alpha-1, connexin 43-heart (121014); 6q21q23.2 

GLO1, glyoxylase 1 (138750); 6p21.3p21.2 

GRIK2, glutamate receptor, ionotropic kainate 2, gluR6 (138244); 6q21 

GRIN1, glutamate receptor, ionotropic, N-methyl-D-aspartate subunit 1 (138249); 9q34.3 

GRIN2A, glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2A (138252); 16p13 

HOXA1, homeoboxA1 (142955); 7p15.3 

IL1RAPL1, interleukin 1 receptor accessory protein-like calcium-related (300206); Xp21.3p21.2 

ITGA4, integrin alpha-4 (192975); 2q31q33 

ITGB3, integrin beta-3 (serotonin blood level trait-173470); 17q21.32 

KIAA0442, Kazusa DNA Institute brain cDNA clone 0442 (607270); 7q11.2 

MACC1, metastasis-associated gene in colon cancer 1 (612646); 7p21.1 

MAOA, monoamine oxidase A (309850); Xp11.23 

MAP2, microtubule-associated protein 2 (157130); 2q34q35 

MBD3, methyl-CpG-binding domain protein 3(603573); 19p13.3 and 4 (603574); 3q21q22 

MCPH1, microcephalin 1 (607117); 8p23 

MECP2, methyl-CpG-binding protein 2 (30005); Xq28 

MEF2C, MADS box transcription enhancer factor2, polypeptide C (600662): 5q14.3 

MET, MET protooncogene (164860); 7q31 

MMP16, matrix metalloproteinase 16 (602262); 8q21 

MTF1, metal regulatory transcription factor-1 (600172); 1p33 

NBEA, neurobeachin fragile site 13A (604889); 13q13.2 

NCAM2, cell adhesion molecule, neural, 2 (602040); 21q21.1 

NDE1, Nude, A. nidulans, homolog of 1 (609449); 16p13.1 

NHE9/SLC9A9 sodium/hydrogen exchanger 9/solute carrier family 9 (608396); 3q24 

NIPBL, nipped-B-like (608667); 5p13.2 
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NIPA1, non-imprinted gene in Prader-Willi/Angelman syndrome chromosome region 1 (608145); 15q11.1 

NLGN3, NLGN4, NLGN4Y neuroligin 3 (300336); Xq13.1, 4(300427);Xp22.33, Y-linked (400028); Yq11.2 

NRXN1, neurexin-1 (600565); 1p16.3 

NSD1, nuclear receptor-binding set domain protein 1 (606681); 5q35.3 

OXTR, oxytocin receptor (167055); 3p26.2 

PAK2, p21-activated kinase2 (605022); 3q29 

PAX3, paired box gene 3 (606597); 2q35 

PCDH10, protocadherin 10 (608286); 4q28.3 

PDE4D, phosphodiesterase 4D (600129); 5q12 

PHF8, PHD finger protein 8 (300560); Xp11.2 

PITX1, paired-like homeodomain transcription factor 1 (602149); 5q31 

PRKCB1, protein kinase C beta-1 (176970); 16p11.2 

PTEN, phosphatase and tensin homolog (601728); 10q23.31 

PTPN9, protein-tyrosine phosphatase nonreceptor-type 9 (600768); (15q22q23) 

RAB11FIP5; RAB11 family-interacting protein 5 (605536); 1p13 

RAI1, retinoic acid induced gene (607642); 17p11.2 

RAPGEF4, RAP, guanine nucleotide exchange factor (606058); 2q31.1 

RASA1, RAS p21 protein activator 1 (139150); 5q14.3 

RBM8A, RNAN-binding motif protein 8A (605313); 1q21.1 

REEP3, receptor expression-enhancing protein 3; 10q21.3 

RELN, Reelin, from mouse mutation “reeler” with poor coordination (600514); 7q22.1 

RNF8, Ring finger protein 8 (611685); 6p21.3 

RPS6KA3, ribosomal protein X6 kinase, 90-Kd, 3 (3000075); Xp22.12 and 7Z 

SCN1A, SCN7A, sodium channel neuronal type I alpha subunit (182389); 2q24 and VII (182292); 2q21q23 

SCT, secretin (182099); 11p15.5 

SEMA5A, semaphoring 5A (609297); 5p15.2 

SHANK3, SH3 and multiple ankyrin repeat domains 3 (606230); 22q13.3 

SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter, member 3-600111); 5p13 

SLC4A10, solute carrier family 4 (sodium bicarbonate transporter-like) member 10 (605556); 2q24.2 

SLC6A3/DAT1, SLC6A4, solute carrier family 6, member 3-dopamine transporter (126455); 5p15.3 and 4 (182138); 17q11.1q12 

SLC9A9/(NHE9 sodium/hydrogen exchanger 9/solute carrier family 9 (608396); 3q24 

SLC18A3, solute carrier family 18 (vesicular acetylcholine), member 3 (600336); 10q11.23 

SLC25A12, solute carrier family 25 (mitochondrial carrier, ARALAR member (603667); 2q24 

SLC40A1, solute carrier family 40 (iron-regulated transporter), member 1 (604653); 2q32 

SSBP1, single-stranded DNA-binding protein 1 (600439); 7q34 

ST7, RAY1, suppressor of tumorigenicity (600833); 7q31.1 

STK, serine/threonine protein kinase 39 (607648); 2q24.3 
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STS, Steroid sulfatase (300747); Xp22.32 

T2R3, taste receptor type 2 member 3 (604868); 7q31.3q32 

TRIP 8, JMJD1C, thyroid hormone receptor interactor 8, jumonji domain-containing protein 1 (604503); 10q11.1 

UBE3A, ubiquitin-protein ligase E3A; 15q11q13 

UPF3, yeast upf homolog-RNA decay protein (300298); Xq25q26 

VCX, variably charged, X chromosome (300229); VCX2 (300532); VCX3A (300533); Xp22.3 

WAC, WW domain-containing adaptor with coiled-coil region (615049); 10p12.1 

WNK3, protein kinase, lysine-deficient; Xp11.2 

WNT2, wingless-type MMTV integration site family, member 2 (147870); 7q31 

Gene symbols are followed by their definition, number assigned in Online Mendelian Inheritance in Man (http://www.omim.org/), and their cytogenetic 
location (chromosome number, p for short, q for long arm, band number). 
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