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Abstract 
New heteroleptic lanthanide complex [L1ILaN{Si(CH3)2}] (1) containing tri-
dentate [ONO] ancillary ligand was synthesized from an acid-base ligand ex-
change reaction with ligands H2L1 and corresponding homoleptic lanthanide 
compound La[N{Si(CH3)3}2]3. Meanwhile, dimeric complexes [L1LaCl] (2) 
and [L1ILaCl] (3) were prepared from salt metathesis reaction between one 
equivalent of ligands H2LI,II, three equivalent of NaN{Si(CH3)3}2, and one equiva-
lent of LaCl3. These compounds were characterized by nuclear magnetic reson-
ance (300 MHz) and elemental analysis. These complexes were used as catalysts in 
the ring-opening homopolymerization of α-methylene-γ-butyrolactone. While 
compound 1 did not show any significant reactivity, compounds 2 and 3 gave 
significant amount of highly branched poly(α-methylene-γ-butyrolactone) as 
confirmed by 1H NMR spectroscopy and Malvern’s triple detector GPCMax 
analysis in DMSO with molecular weights of over 500,000 Dalton. The 
glass-transition temperatures of the branched polymer samples were deter-
mined using a Dynamic Mechanical Analyzer, DMA Q800. 
 
Keywords 
Lanthanide, α-Methylene-γ-Butyrolactone, Polyesters, Ring-Opening  
Polymerization 

 

1. Introduction 

Due to their good mechanical properties, hydrolyzability and biocompatibility, 
aliphatic saturated polyesters have been extensively investigated with great ap-
plications in packaging, drug delivery and medical implantation devices [1]-[10].  
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The best and most reliable method of synthesizing high molecular weight po-
lyesters is via ring-opening polymerization (ROP) of lactones with a relatively 
high strain energy using metal initiators for chain-growth polymerization 
[11]-[35]. 

Unsaturated polyesters are of high scientific and technological interest for 
producing tailor-made functionalized biodegradable materials of commercial 
importance [36] [37] [38]. Preferably, they are easily synthesized via 
ring-opening polymerization (ROP) of unsaturated lactones [38]. 
α-Methylene-γ-butyrolactone (α-MBL), also known as Tulipaline A, has re-
ceived much interest in the synthesis of sustainable unsaturated polyesters since 
it is the simplest member of a class of naturally occurring sesquiterpene lactones 
found in tulips [37]-[46]. α-MBL can also be produced chemically from biomass 
feed stocks making it naturally renewable [47]. When polymerized, α-MBL can 
either undergo vinyl addition polymerization at the highly reactive exocyclic 
double bond or ROP of the γ-butyrolactone (γ-BL) five-membered ring 
(Scheme 1). γ-BL is non-polymerizable due to its low strain energy [48] [49] 
[50] [51]. 

Because vinyl-addition is favored over ring-opening at room temperature due 
to the stability of five membered rings, special conditions and reagents must be 
used to favor the ring-opening polymerization. In fact, ring-opening copolyme-
rization of α-MBL and other highly strained lactones to obtain unsaturated po-
lyesters have been reported [39] [42] [46]. However, the ring-opening homopo-
lymerization of α-MBL has not been reported in the literature. Herein, we report 
the ring-opening homopolymerization of α-methylene-γ-butyrolactone into 
highly branched polyester using heteroleptic lanthanide initiators at 0˚C. 

2. Experimental Procedure 
2.1. Materials and Measurements 

All air- or moisture-sensitive reactions were carried out under a dry nitrogen 
atmosphere, employing standard Schlenk line and glovebox techniques. An-
hydrous solvents were purchased and used as received under nitrogen. α-MBL 
was purchased from Acros, stored under an inert atmosphere, and used as re-
ceived. Deuterated solvents were purchased from Alfa Aesar and used as re-
ceived. 3,5-di-tert-butyl-2-hydroxybenzaladehyde was purchased from Alfa Ae-
sar while (R)-2-phenylglycinol was purchased from Acros Organic and used as  
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Scheme 1. Vinyl addition polymerization versus ROP of MBL. 

 
received. (L)-Valinol[(S)-(+)-2-Amino-3-methyl-1-butanol] was purchased from 
TCI and used as received. All 1H and 13C NMR spectra were recorded on a 
JEOL-300 NMR spectrometer and referenced to CDCl3, C6D6 or C4D8O. Ele-
mental analyses were performed by Midwest Microlab, Indianapolis, IN. Melting 
points were obtained on a Mel-Temp apparatus and are uncorrected. Optical 
rotations were recorded on a Rudolph Autopol III polarimeter with sodium 
D-line (589 nm) at room temperature. GC-MS analyses were performed on 
Bruker Scion 436-GC systems at 50˚C with electron impact ionization (70 eV). 
Gel permeation chromatography (GPC) analyses were performed using Malvern 
Malvern Viscotek GPCMax TDA 305 triple detection system (refractive index, 
right angle light scattering, and viscometer). Thermal analysis was done using 
TA Walters DMA Q800. 

2.2. Synthesis of Ligands 
2.2.1. (R)-(+)-2-Phenyl-2-Imino-1-Ethanol-2,4-Di-Tert-Butyl-Phenol 

(H2LI) 
3,5-Di-tert-butyl-2-hydroxybenzaldehyde (4.00 g, 0.017 mol), and  
(R)-(+)-2-phenylglycinol (2.33 g, 0.017 mol) were dissolved in methanol (50 
mL). The resulting solution was heated at reflux for 18 h and then cooled to 
room temperature. Solvent and water were removed using high vacuum Schlenk 
line to obtain yellow oil. The ligand was purified by column chromatography 
using hexane-ethyl acetate mixture (9:1) (5.56 g, 92.5 %). [α]D + 0.332 (c = 0.005, 
toluene). Elemental analysis: (Found: C 76.80, H 9.12, N3.16. C23H31NO2 requires 
C 78.15, H 8.84, N 3.96%). 1H NMR (300 MHz; CDCl3; 298 K) 1.36 (s, 9H, Art-

Bu), 1.49 (s, 9H, ArtBu), 3.96 (br, 2H, ArCH=NCH(Ph) OH), 4.50 (br, 1H, 
ArCH=NCH(Ph)CH2OH), 7.18 (s, 1H, ArH), 7.36 (s, 1H, ArH), 7.40 - 7.48 (br, 
5H, ArH), 8.56 (s, 1H, ArCH=N), 9.81 (s, 1H, ROH), 11.62 (s, 1H, ArOH). 
GC-MS m/zcalcd for C23H31NO2: 353.51; found 353.5. 

2.2.2. (S)-(+)-3-Methyl-2-Imino-1-Butanol-2,4-Di-Tert-Butyl-Phenol 
(H2LII) 

3,5-Di-tert-butyl-2-hydroxybenzaldehyde (3.00 g, 0.013 mol), and L-valinol 
[(S)-(+)-2-Amino-3-methyl-1-butanol] (1.32 g, 0.013 mol) were dissolved in 
methanol (50 mL). The resulting solution was heated at reflux for 18 h and then 
cooled to room temperature. Solvent and water were removed using high va-
cuum Schlenk line to obtain yellow oil. Recrystallization from methanol at 
−10˚C (freezer) yielded yellow solid (4.025 g, 98.4%). Mp: 103.9˚C - 104.0˚C; 
[α]D + 0.006 (c = 0.005, toluene). Elemental analysis: (Found: C 75.32, H 10.16, 
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N 4.58. C20H33NO2 requires C 75.19, H 10.41, N4.38 %). 1H NMR (300 MHz; 
CDCl3; 298 K) 0.95 (dd, 6H, J = 6.51 Hz, MeCHMe) 1.32 (s, 9H, ArtBu), 1.44 (s, 
9H, ArtBu), 1.93 (m, 1H, J = 6.51 Hz, MeCHMe), 3.03 (br, 2H, 
ArCH=NCH(iPr)CH2OH), 3.80 (br, 1H, ArCH=NCH(iPr)CH2OH), 7.14 (s, 1H, 
ArH), 7.42 (s, 1H, ArH), 8.38 (s, 1H, ArCH=N), 9.87 (s, 1H, ROH), 11.65 (s, 1H, 
ArOH). 13C{H} NMR (75 MHz; CDCl3; 298 K) 18.9 (ArCMe3), 19.9 (ArCMe3), 
29.5 (ArCMe3), 30.2 (MeCHMe), 31.6 (ArCMe3), 34.3 (MeCHMe), 35.1 
(ArCH=NCH(iPr)CH2OH), 64.8 (ArC=NCH(iPr)CH2OH), 117.8, 126.3, 127.3, 
136.8, 140.3, 158.2 (all ArC), 167.2 (ArCH=N NCH(iPr)CH2OH). GC-MS 
m/zcalcd for C20H33NO2: 319.49; found 319.4. 

2.3. Synthesis of Lanthanide Complexes 
2.3.1. [LIILaN{Si(CH3)3}2]THF(1) 
A 50 mL Schlenk flask was obtained and dried in the oven. To a colorless THF 
solution (20 mL) of La[N(SiMe3)2]3 (0.25 g, 0.40 mmol) at −50˚C (acetone/dry 
ice mixture), a clear yellow toluene solution (10 mL) of ligand H2LII (0.128 g, 
0.40 mmol) was added drop-wise under nitrogen using a Schlenkline. The re-
sulting orange solution was stirred gently for 4 hours. Volatiles were removed in 
vacuo without heating to afford an orange-yellow solid that was dried under 
high vacuum to afford compound 1 (0.109 g, 44.80%); Mp: 184˚C; [α]D‒0.026 (c 
= 0.01, toluene). Elemental analysis: (Found: C 52.00, H 7.39, N3.74. 
C30H57N2O3Si2La (1) requires C 52.31, H 8.34, N 4.07 %). 1H NMR (300 MHz; 
C4D8O; 298 K) 0.2 ppm (br, 18H, -N[Si(CH3)3]2), 0.9ppm (d, 6H, -CH(CH3)2), 
1.5ppm (s, 9H, −(CH3)3), 1.7 ppm (s, 9H, −(CH3)3), 2.0 ppm (m, 1H, 
NCH(iPr)CH2O), 3.2 ppm (m, 1H, NCH(iPr)CH2O), 3.7 ppm (m, 2H, 
NCH(iPr)CH2O), 7.3 ppm (s, 1H, ArH), 7.5 ppm (s, 1H, ArH), and 8.2 ppm (s, 
1H, Ar-CH=N). 

2.3.2. [LILaCl] (2) 
A 100 mL Schlenk flask was obtained and dried in the oven. To a colorless THF 
solution (20 mL) of NaN(SiMe3)2 (0.77 g, 4.20 mmol) at room temperature, a 
clear yellow toluene solution (10 mL) of ligand H2LI (0.50 g, 1.40 mmol) was 
added drop-wise under nitrogen using a Schlenkline. The resulting orange-yellow 
solution was stirred gently for 4 hours. LaCl3 (0.34 g, 1.40 mmol) was added and 
the solution was refluxed overnight at 78˚C. White precipitate of NaCl was visi-
ble at bottom of flask. The supernatant clear greenish-yellow solution was de-
canted into another Schlenk flask. Volatiles were removed in vacuo to afford 
agreenish-yellow solid, which was further extracted with hexanes and dried un-
der high vacuum to afford compound 2 (0.332 g, 42.86%); Mp: 170˚C; [α]D + 
0.008 (c = 0.01, toluene). Elemental analysis: (Found: C 51.79, H 6.01, N2.21. 
C23H29NO2LaCl (2) requires C 52.53, H 5.56, N 2.66 %). 1H NMR (300 MHz; 
C4D8O; 298 K) 1.16 (br, 9H, ArtBu), 1.35 (br, 9H, ArtBu), 2.95 (br, 2H, 
ArCH=NCH(Ph)CH2O), 4.37 (br, 1H, ArCH=NCH(Ph)), 6.85 (s, 1H, ArH), 
7.32 - 7.38 (br, 5H, ArH), 7.84 (br, 1H, ArH), 8.58 (s, 1H, ArCH=N). 
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2.3.3. [LIILaCl] (3) 
A 100 mL Schlenk flask was obtained and dried in the oven. To a colorless THF 
solution (20 mL) of NaN(SiMe3)2 (0.88 g, 4.80 mmol) at room temperature, a 
clear yellow toluene solution (10 mL) of ligand H2LII (0.5 g, 1.6 mmol) was added 
drop-wise under nitrogen using a Schlenk line. The resulting orange-yellow so-
lution was stirred gently for 4 hours. LaCl3 (0.39 g, 1.6 mmol) was added and the 
solution was refluxed overnight at 78˚C. White precipitate of NaCl was visible at 
bottom of flask. The supernatant clear greenish-yellow solution was decanted 
into another Schlenk flask. Volatiles were removed in vacuo to afford a green-
ish-yellow solid, which was further extracted with hexanes and dried under high 
vacuum to afford compound 3 (0.324 g, 41.25%); Mp: 180˚C; [α]D + 0.003 (c = 
0.01, toluene). Elemental analysis: (Found: C 49.39, H 7.06, N 2.81. 
C20H31NO2LaCl (3) requires C 48.84, H 6.35, N 2.85 %). 1H NMR (300 MHz; 
C4D8O; 298 K)\1.0 ppm (br, 6H, −CH(CH3)2), 1.2 ppm (s, 9H, −(CH3)3), 1.4 ppm 
(s, 9H, −(CH3)3), 2.3 ppm (br, 1H, NCH(iPr)CH2O), 2.9 ppm (br, 1H, 
NCH(iPr)CH2O), 3.4 ppm (m, 2H, NCH(iPr)CH2O), 7.2 ppm (s, 1H, ArH), 7.3 
ppm (s, 1H, ArH), and 8.4 ppm (s, 1H, Ar-CH=N). 

1) General polymerization procedure 
All materials were prepared in a glovebox and all reactions (air- and moisture- 

sensitive) were carried out in flamed Schlenk-type glassware on a Schlenk line. 
The monomer/initiator ratio employed was 500:1. In a 25 ml flame dried 
Schlenk flasks, 1.0 g of the monomer (α-methylene-γ-butyrolactone) was added 
to the calculated ratio of the catalyst along with 8.0 ml of DMSO. The polymeri-
zation reaction was maintained at 0˚C using acetone and ice. After the desired 
reaction time, the reaction was quenched with 2.0 ml of 5% acidified methanol 
(HCl/MeOH) and the solid was allowed to precipitate in the freezer (−15˚C) 
overnight. The white polymer product was filtered, dried and characterized by 
1HNMR spectroscopy (d6-DMSO), Gel Permeation Chromatography(DMSO) to 
obtain polymer microstructure, and molecular weights (Mn and Mw), respective-
ly. Thermal analyses of polymer were done using DMA Q800 to obtain Tg. 

2) Gel Permeation Chromatography (GPC) data procedure 
GPC analyses were performed on a Malvern ViscotekGPCMax TDA 305 triple 

detection system (RI, RALS, and viscometer) using a two mixed bed D6000M 
columns. Dimethyl Sulfoxide (DMSO) was used as the dissolution solvent and 
mobile phase at a flow rate of 0.75 mL∙min−1. The temperature of the detectors 
and columns were set at 50˚C. The calibration method used was triple detection. 
Samples were dissolved at concentration between 1 - 5 mg/mL and dissolved 
overnight. Allowing for dissolution overnight, the samples were not fully in so-
lution, so heat at 50˚C for 1 hour was applied and the samples were allowed to 
cool. Samples were filtered through a 0.2 um Nylon syringe filter prior to analy-
sis. 

3) Dynamic Mechanical Analyzer (DMA) data procedure 
Melting temperature, Tm, of polymer samples was done using melting point 

apparatus while glass transition temperature was obtained using TA Walters 
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Dynamic Mechanical Analyzer, DMA Q800. Tg was obtained as Tan Delta value 
from DMA Q800 Multi-Frequency-Strain Mode using a powder clamp Temper-
ature Ramp method mounted onto a dual cantilever at 3.00˚C /min from 25˚C 
to 150˚C and 20.00 µm Amplitude. 

3. Results and Discussion 
3.1. Synthesis of Ancillary Ligands 

This project discusses the synthesis of cross-linked biodegradable polyesters us-
ing new heteroleptic lanthanide catalytic system with three main components 
LLaX: where L is a chiral dianionic multidentate ancillary ligand, H2LI and H2LII 
(see Figure 1), La is a highly electropositive trivalent lanthanum metal and X is 
an initiator (trimethylsilylamide, chloride) that initiates ring-opening of cyclic 
ester monomer. In order to initiate ROP, the initiating group, X, must be a good 
nucleophile and monodentate with labile coordination to lanthanide. The ancil-
lary ligand, L, is to stabilize the metal catalyst during ROP as it remains bound to 
the lanthanide metal during coordination–insertion mechanism for ROP of lac-
tones. 

Newly synthesized ligands H2LI and H2LII (Figure 1) will be employed as L 
component in the catalytic system LLaX [41] [49] [50] [51] [52] [53]. Deproto-
nation of phenolic hydrogens in H2LI and H2LII will afford dianionic multi-
dentate ancillary ligands with different steric and electronic demands. The li-
gands were synthesized via Mannich condensation reactions using 
3,5-Di-tert-butyl-2-hydroxybenzaldehyde and chiral auxillary,  
(R)-(+)-2-phenylglycinol (H2LI) and [(S)-(+)-2-Amino-3-methyl-1-butanol 
(H2LII) (Scheme 2). The synthesized ligands were characterized by NMR, and 
elemental analysis. 

3.2. Synthesis of Lanthanide Complexes 

Attachment of ligands H2LI and H2LII to homoleptic lanthanum amide offers 
new heteroleptic metal complexes for metal catalyzed ring-opening polymeriza-
tion of MBL. A diverse array of synthetic strategies for the different catalyst 
precursors is proposed from ligand exchange reactions (see Scheme 3) to salt 
elimination metathesis (see Scheme 4). The synthesis of catalysts via acid–base 
ligand exchange reaction (Scheme 3) offers a superior, cleaner approach over 
 

 
Figure 1. New [ONO] ancillary phenolate ligands and intended heteroleptic Lanthanide 
Catalyst System showing catalytic pocket around metal coordination site. 
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Scheme 2. Synthesis of ligand H2LII via condensation reaction. 

 

 
Scheme 3. Synthesis of compound 1via ligand exchange reactions. 

 

 
Scheme 4. Synthesis of LLaCl catalyst via salt metathesis reactions. 

 
salt metathesis reactions (Scheme 4) since the by-products from acid-base reac-
tions can be readily removed, making it easier to obtain analytically pure com-
pounds. 

New lanthanum compound 1 was synthesized using homoleptic La{N(SiMe3)2}3 
and ligand H2LII in toluene and THF to afford [LIILaN{Si(CH3)3}2] THF 1 
(Scheme 3). The synthesized heteroleptic lanthanum compound was fully cha-
racterized by NMR spectroscopy, elemental analysis and melting point (see ex-
perimental). Meanwhile, compounds 2 and 3 were isolated via salt metathesis 
reaction using one equivalent of ligands H2LI,II, three equivalent of NaN{Si(CH3)3}2, 
and one equivalent of LaCl3 in refluxing THF for 18 h (Scheme 4). The goal was 
to synthesize the amido compounds but heterolepticlanthanide chloride was 
isolated presumably as slight amount of water from the 99% dry THF solvent 
must have reacted with some of the sodium amide. 1H NMR spectroscopy of 
compound 1 in d8-THF(C4D8O) revealed one LII molecule and asilylamide ligand 
(Figure 2) while NMR spectroscopy of 2 and 3 in d8-THF(C4D8O) also con-
firmed their formulation. This was supported by elemental analysis results and 
chloride test. Compound 1 gave a negative chloride test while 2 and 3 gave white 
precipitate with AgNO3 indicative of the presence of chloride. It was very diffi-
cult to isolate good single crystals for X-ray determination. 

3.3. Ring-Opening Homopolymerization of MBL Using New  
Lanthanide Complexes 

Unsaturated aliphatic polyesters, which can be synthesized from ROP of natu-
rally available α-methylene-γ-butyrolactone (MBL), are of scientific and  
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Figure 2. 1HNMR of LII La(NSiMe3)2THF (1) in d8-THF. 

 
technological interest for producing tailor-made functionalized biodegradable 
shape memory materials. The unfavorable thermodynamics involved in the ROP 
of MBL results in too small negative change of enthalpy (ΔH) to offset a large 
negative entropy change (ΔS). As a result, MBL prefers vinyl addition polymeri-
zation to ROP. 

Hong and Chen recently reported the first Ring-Opening Copolymerization 
(R˚C) of MBL with ε-caprolactone (ε-CL) catalyzed by homoleptic lanthanide 
tris(bistrimethylsilyl)amide Ln[N(SiMe3)2]3, that produced exclusively an un-
saturated copolyester PMBL-co-PCL (Scheme 5) [42]. Despite the non-homo- 
polymerizability of unsaturated gamma lactones toward ring-opening polymeri-
zation due to the relative low ring-strain energy (high thermodynamic stability) 
of its five-membered ring, copolymerization with ε-CL using lanthanide coordi-
nation catalytic system, coupled with appropriate reaction conditions (relatively 
nonpolar solvent and low temperature at 0˚C to –20˚C) was an effective way of 
shutting down the vinyl-addition pathway via conjugate addition across the ex 
Cyclic C=C double bond (ring retention). After carrying out extensive investiga-
tions, Hong and Chen also reported that non polar solvents such as toluene was 
able to suppress the competing vinyl-addition polymerization while copolyme-
rization with a high strain lactone and low reaction temperature favored ROP of 
the five-membered unsaturated lactones [42]. Using similar reaction conditions 
with newheteroleptic lanthanide complexes LLaX using the ligands H2LI and 
H2LII, ring-opening polymerization of MBL was achieved. Homoleptic LnX3 such 
as Ln[N(SiMe3)2]3 has shown to catalyze ROP very rapidly without any polyme-
rization control due to lack of a stabilizing ancillary ligand such as H2LI and 
H2LII, and as a result form competing vinyl-addition polymerization and ROP 
(Scheme 1) where copolyester PMBL-co-PCL recorded high molecular weight 
distribution with polydispersity up to 2.77 [42]. The high Lewis acidity and 
coordination number of the lanthanides (desirable for monomer coordination 
and activation) and the high nucleophilicity of amides and alkoxides (desirable 
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Scheme 5. Ring Opening Copolymerization (ROC) of MBL and ε-CL to form 
PMBL-co-PCL. 

 
for chain initiation) is illustrated in the mechanism presented in Scheme 6. 

Compounds 1, 2, and 3 were treated with MBL and the results are summa-
rised in Table 1 below. All polymerization reactions were performed in DMSO at 
0˚C. Entry 1 is the control reaction which shows no polymerization, even after 
24 h. Furthermore, there was no polymer formation with compound 1 after 1 
hour which is probably due to slow initiation process as a result of bulky amide-
group and non-polymerizability of MBL (Table 1, entry 2). However, compound 
2 and 3 gave significant polymer formation after 1 hour (Table 1, entries 3 - 4). 
All polymerization reactions were quenched with acidified methanol. Due to 
high solubility of this polymer in DMSO, the reaction flask was kept in freezer 
overnight to allow precipitation of the white PMBL product. This reactivity sug-
gests that the chloride is better at initiating ROP of MBL than the bulky amide. 
1H NMR analysis of the polymer obtained showed that the methylene protons of 
exocyclic C=C bond at 5.7 ppm and 6.0 ppm were significantly absent indicative 
of vinyl addition reactions to form branched polymer (see Figure 3). 

GPC analysis of the polymer obtained supports highly branched polyester 
with a very high molecular weight, about 25 times larger compared to the ex-
pected linear unsaturated polyester. The hydrodynamic volume was also very 
large. Because these compounds were so large compared to expected linear po-
lymers and to ensure reproducibility in analysis since these polymers are novel, a 
comparison of the samples was repeated with a 73 kDa Dextran polymer stan-
dard at different concentrations and the following chromatograms were ob-
tained showing similar molecular weight as previously analyzed (see Figure 4). 
All these samples displayed a much larger hydrodynamic size than the 73 kDa 
Dextran standard. Sample #2 (Table 1, entry 4) showed higher molecular weight 
of 754 kDa while sample #1 gave 577 kDa (Table 1, entry 3). Both polymeric 
samples gave a narrow polydispersity of 1.3. The GPC was analyzed using Mal-
vern Viscotek GPCMax triple detector system (refractive index, light scattering 
and viscometer) which has been proven to successfully determine the absolute 
molecular weight of polymeric materials. The only explanation to the large mo-
lecular weight is the production of highly branched polymer through vinyl addi-
tion of the C=C double bonds bringing many linear PMBL polymers into one 
unit. This is supported by 1HNMR spectra of the polymers, which showed a sig-
nificant reduction and in some cases disappearance of the exocyclic CH=CH 
double bond proton signals. This also explains the difficulty in solubility of these 
branched polymers. Due to its higher molecular weight, sample #2 gave higher  
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Scheme 6. Proposed Mechanism for ROP of MBL. 
 

 
Figure 3. 1H NMR of PMBL (Table 1, entry 3) in d6-DMSO. 

 

 
Figure 4. GPC Data of newly synthesized branched PMBL. 
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Figure 5. DMA Data of newly synthesized branched PMBL showing Tg values for en-
tries 3. 

 

 
Figure 6. DMA Data of newly synthesized branched PMBL showing Tg values for en-
tries 4. 
 
melting and glass transition temperatures than sample #1 (Figure 5 and Figure 
6). The Tg for sample #1 was 87.61˚C while that for sample #2 was 123.38˚C. 

4. Conclusion 
New heteroleptic lanthanide complexes supported by newly synthesized triden-
tate dianionic [ONO] aminophenolate ligands were characterized by NMR and  
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Table 1. Polymerization of MBL using La complexes at 0˚C. 

Entry Initiator [MBL]/[I]a Solvent 
Time 
(min) 

Yield 
(g) 

Mw 
(kDa)b 

Mn 
(kDa)b 

PDIb 
Tm 
(˚C) 

Tg 
(˚C) 

1 None - DMSO 120 0 - - - - - 

2 [LIILaN{Si(CH3)3}2]THF (1) 500 DMSO 120 0 - - - - - 

3 [L1LaCl] (2) 500 DMSO 120 0.185 577 430 1.34 110 87.61 

4 [L1ILaCl] (3) 500 DMSO 120 0.100 754 570 1.32 199 123.38 

a: Monomer to initiator ratio. b: Mw and Mw/Mn (PDI) of polymer determined by GPC; PDI = polydispersity index. 

 
elemental analysis. We also report for the first time, the ring-opening homopo-
lymerization of α-methylene-γ-butyrolactone into highly branched polyester 
using lanthanide initiators at 0˚C. GPC analysis of the newly synthesized 
branched polymer gave large molecular weight above 500,000 g/mol and a nar-
row polydispersity of 1.3. The glass-transition temperatures of the polymer sam-
ples were recorded at 87.61˚C and 123.38˚C using a Dynamic Mechanical Ana-
lyzer, DMA Q800. The newly synthesized polyester is suitable candidates for 
medical implantation devices and shape memory materials. 
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